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the treatment of the coordinate singularity is discussed.
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1.1 coordinate singularity: axisymmetric; polar coordinates;

1. Consider a general, magnetic vector potential given in Cartesian coordinates,

A = Ax∇x + Ay∇y + Az∇z + ∇g (1)

where Ax, Ay, Az, and the as-yet-arbitrary gauge function, g, are regular at (x, y) = (0, 0), i.e. they can be expanded as a Taylor

series, e.g.

Ax =
∑

i,j

αi,jx
iyj , Ay =

∑

i,j

βi,jx
iyj , Az =

∑

i,j

γi,jx
iyj , g =

∑

i,j

δi,jx
iyj , (2)

for small x and small y.

2. Note that we have restricted attention to the “axisymmetric” case, as there is no dependence on z.

3. The ‘polar’ coordinate transformation,

x = r cos θ,

y = r sin θ, (3)

z = ζ,

induces the vector transformation

∇x = cos θ ∇r − r sin θ ∇θ ,

∇y = sin θ ∇r + r cos θ ∇θ ,

∇z = ∇ζ .

(4)

4. By repeated applications of the double-angle formula, the expressions for Ax, Ay and g can be cast as functions of (r, θ),

Ax =
∑

m

rm[am,0 + am,1 r2 + am,2 r4 + . . .] sin(mθ), (5)

Ay =
∑

m

rm[bm,0 + bm,1 r2 + bm,2 r4 + . . .] cos(mθ), (6)

Az =
∑

m

rm[cm,0 + cm,1 r2 + cm,2 r4 + . . .] cos(mθ), (7)

g =
∑

m

rm[gm,0 + gm,1 r2 + gm,2 r4 + . . .] sin(mθ), (8)

where attention is restricted to stellarator symmetric geometry, but similar expressions hold for the non-stellarator symmetric

terms.

5. Collecting these expressions, the vector potential can be expressed

A = Ar∇r + Aθ∇θ + Aζ∇ζ + ∂rg ∇r + ∂θg ∇θ, (9)

where

Ar = r0 [ ( b0,0 + g1,0 ) + (. . .)r2 + (. . .)r4 + . . . ] sin θ

+ r1 [ ( a1,0/2 + b1,0/2 + 2g2,0 ) + (. . .)r2 + (. . .)r4 + . . . ] sin 2θ

+ r2 [ ( a2,0/2 + b2,0/2 + 3g3,0 ) + (. . .)r2 + (. . .)r4 + . . . ] sin 3θ

+ . . .

(10)

(Note: Mathematica was used to perform the algebraic manipulations, and the relevant notebook is included as part of the SPEC

CVS repository.)
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6. There is precisely enough gauge freedom so that we may choose Ar = 0. For example, the choice

g1,0 = − b0,0 ,

g2,0 = − ( a1,0/2 + b1,0/2 ) / 2 ,

g3,0 = − ( a2,0/2 + b2,0/2 ) / 3 ,

. . . = . . .

(11)

eliminates the lowest order r dependence in each harmonic.

7. By working through the algebra (again, using Mathematica) the expressions for Aθ and Aζ become

Aθ = r2f0(ρ) + r3f1(ρ) cos(θ) + r4f2(ρ) cos(2θ) + r5f3(ρ) cos(3θ) + . . . (12)

Aζ = g0(ρ) + r1g1(ρ) cos(θ) + r2g2(ρ) cos(2θ) + r3g3(ρ) cos(3θ) + . . . (13)

where ρ ≡ r2 and the fm(ρ) and gm(ρ) are abitrary polynomials in ρ. [The expression for Aζ is unchanged from Eq.(7).]

1.2 somewhat generally, . . .

1. For stellarator-symmetric configurations,

A =
∑

m,n

Aθ,m,n cos(mθ − nζ)∇θ +
∑

m,n

Aζ,m,n cos(mθ − nζ)∇ζ, (14)

where now the dependence on ζ is included, and the angles are arbitrary.

2. The near-origin behaviour of Aθ and Aζ given in Eq.(12) and Eq.(13) are flippantly generalized to

Aθ,m,n = rm+2fm,n(ρ), (15)

Aζ,m,n = rm gm,n(ρ), (16)

where the fm,n(ρ) and gm,n(ρ) are arbitrary polynomials in ρ.

3. Additional gauge freedom can be exploited: including an additional gauge term ∇h where h only depends on ζ, e.g.

h(ζ) = h0,0 ζ +
∑

h0,n sin(−nζ), (17)

does not change the magnetic field and does not change any of the above discussion.

4. The representation for the Aθ,m,n does not change, but we must clarify that Eq.(16) holds for only the m 6= 0 harmonics:

Aζ,m,n = rm gm,n(ρ), for m 6= 0. (18)

5. For the m = 0, n 6= 0 harmonics of Aζ , including the additional gauge gives Aζ,0,n = g0,n(ρ) + nh0,n. Recall that g0,n(ρ) =

g0,n,0 + g0,n,1ρ + g0,n,2ρ
2 + . . ., and we can choose h0,n = −g0,n,0/n to obtain

Aζ,m,n = rm gm,n(ρ), for m = 0, n 6= 0, with gm,n(0) = 0. (19)

6. For the m = 0, n = 0 harmonic of Aζ , we have Aζ,0,0 = g0,0(ρ) + h0,0. Similarly, choose h0,0 = −g0,n,0 to obtain

Aζ,m,m = rm gm,n(ρ), for m = 0, n = 0, with gm,n(0) = 0. (20)

7. To simplify the algorithmic implementation of these conditions, we shall introduce a ‘regularization’ factor, ρm/2 = rm.

8. Note that the representation for Aθ,m,n given in Eq.(15), with an arbitrary polynomial fm,n(ρ) = fm,n,0+fm,n,1ρ+fm,n,2ρ
2+ . . .,

is equivalent to Aθ,m,n = ρm/2αm,n(ρ) where αm,n(ρ) is an arbitrary polynomial with the constraint αm,n(0) = 0.

9. We can write the vector potential as

Aθ,m,n = ρm/2αm,n(ρ), with αm,n(0) = 0 for all (m,n), (21)

Aζ,m,n = ρm/2βm,n(ρ), with βm,n(0) = 0 for m = 0. (22)

1.3 non-stellarator symmetric terms

1. Just guessing, for the non-stellarator-symmetric configurations,

Aθ,m,n = ρm/2αm,n(ρ), with αm,n(0) = 0 for all (m,n), (23)

Aζ,m,n = ρm/2βm,n(ρ), with βm,n(0) = 0 for m = 0. (24)
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