Introduction to Magnetic Fusion

Stewart Zweben, PPPL NUF June 9, 2008

- The Dream
- The Reality
- The Future

Unlimited Energy from Fusion

For first generation fusion reactors

Heat D+T to ~ 20 keV

Produces 17.6 MeV

Energy gain ~ 450

Deuterium in 1 gallon of water can produce the energy of 300 gallons of gasoline, if burned in a fusion D-T reactor

Tritium can be created from D-T neutrons in a Li "blanket"

<u>Plasma</u>

- Electrons start to break off atoms at ~ 1 eV (10,000 °C)
- D,T atoms are fully ionized at T ~ 20 keV => *plasma*
- Energy tends to leave a plasma rapidly and cool it
 - radiation (visible @ 1 eV, x-rays @ 20 keV)
 - particle loss (ion speed ~ 1000 km/sec)

need to heat the plasma as fast as it cools at 20 keV

Fuel Can be Self-Heated by Alphas

Condition for self-sustaining D-T reaction ("ignition"):

alpha heating rate = plasma energy / energy loss time

const.• n² T² \approx 3 n T / $\tau_{\rm E}$

 $n \cdot T \cdot \tau_E \approx (10^{14} \text{ cm}^{-3}) \cdot (20 \text{ keV}) \cdot (5 \text{ sec})$

or $\mathbf{n} \cdot \mathbf{T} \cdot \tau_{\mathsf{E}} \approx (10^{24} \, \mathrm{cm}^{-3}) \cdot (20 \, \mathrm{keV}) \cdot (0.5 \, \mathrm{nsec})$

Energy for use comes out in the 14 MeV neutrons

Fusion Already Works

Sun

very long energy confinement due to gravity H-Bomb

very short energy confinement due to inertia of fuel

Magnetic Confinement

- Both ions and electrons are free to move along B
- Both ion and electrons are "confined" across B

$$m_i v_{\perp}^2 / r_{gyro} = e v_{\perp} x B => r_{gyro} = m_i v_{\perp} / eB$$

• For B= 10 kG at $T_i = 20$ keV, $r_{gyro} \sim 2$ cm (pretty good !))

Some Types of Magnetic Confinement

stellarator

Example of Magnetic Confinement

Magnetic Fusion Power Plant

The Reality

- This dream was accepted internationally by 1958
- Many ideas were tried and a few have "survived"
- Best results so far are near D-T reactor conditions

The reality is that magnetic fusion is facing many serious scientific and engineering problems, and it is not yet clear that we can make a reactor

Progress in Magnetic Fusion

Model A Stellarator ca. 1953 $n \approx 10^{13} \text{ cm}^{-3}$ (?) $T \approx 10 \text{ eV}$ (?) $\tau_E \approx 10 \ \mu \text{sec}$ (?) $nT\tau_E \sim 10^6 \text{ from ignition}$ JET Tokamak ca. 2003: $n \approx 10^{14} \text{ cm-3}$ $T \approx 20 \text{ keV}$ $\tau_E \approx 1 \text{ sec}$ $nT\tau_E \sim 5 \text{ from ignition}$

What Happened to the Other Ideas ?

- Stellarators were largely abandoned in the 1960's due to poor confinement and stability (until the 2000's !?)
- Pinches were largely abandoned in the 1970's due to poor stability (needed ~ 80 m device for 'breakeven')
- Mirrors were abandoned in 1980's due to poor confinement (after 'breakeven' device was built and terminated)
- Tokamaks were invented in USSR in the 1960's and have dominated the world fusion program since the 1980's

The Tokamak

- Russian acronym for "toroidal magnetic chamber"
- Strong toroidal field plus large internal plasma current
- Relatively good stability, confinement, and simplicity

Some Problems with Tokamaks

- Many problems remain to be solved before we can build a tokamak reactor
- Some of these problems are generic to all toroidal magnetic fusion devices:
 - pressure limits and macroscopic stability
 - confinement and "microscopic" stability
 - impurities and plasma-wall interaction
 - maintaining a steady-state plasma

Tokamak Pressure Limits

- Fusion plasma pressure is $P_{\perp}=2nT \sim 6 \text{ atm} [\sim 6x10^5 \text{ Pa}]$
- Plasma pressure limit in B field is $\beta \equiv P_{\perp}/(B^2/2\mu_o) \sim 1$
- "MHD" instabilities can occur much lower, e.g. $\beta \le 5\%$

for conventional tokamaks

$$\beta \sim 5\% \implies B \sim 5$$
 Tesla

=> needs superconducting magnets and massive support structures

Effect of MHD Instability - Disruption

 Near beta limit, plasma can 'disrupt' in ~5 msec, leading to complete loss of plasma energy and plasma current

Tokamak Plasma Confinement

- Confinement time τ_E is "anomalous" ($\leq 100 \text{ x}$ "classical")
- Empirical scalings used to extrapolate to reactor regime

scaling in "engineering" variables

$$\tau_{\text{th},98\text{y2}} = 0.0562 I_{\text{p}}^{0.93} B_{\text{t}}^{0.15} n_{19}^{0.41} P_{\text{L}}^{-0.69} R^{1.97} \varepsilon^{0.58} \kappa_{a}^{0.78} M^{0.19}$$

- main scalings: $\tau_{E} \propto$ I R^{2} / $P^{0.7}$
- no simple physical explanation for these global trends

Theory of "Anomalous" Transport

- Plasma transport is driven by small-scale turbulence
- Equations are complex but can be solved numerically
- Simulations can explain some transport to within ~ x2

GYRO simulation of DIII-D tokamak (Candy)

Impurities Can Destroy Plasma

- Low Z ions (helium 'ash', carbon) can dilute D-T fuel
- High Z ions (e.g. 10⁻⁴ g of W) can radiate away energy

plasma erosion of carbon

Post PoP 1995

Plasma Can Destroy First Wall

- 20% of D-T fusion power goes to first wall (~ 1000 MW)
- First wall in a reactor may erode quickly (months ?)
- One disruption could open up a water cooling line

Moly tile surface in Alcator C-Mod tokamak

reached $T_{melt} \sim 2900 \text{ K}$ in < 2 seconds

Whyte, MIT

Steady-State Tokamak ?

- Ohmic heating and current drive last only a few seconds
- Longer plasmas can driven with RF and neutral beams
- So far high performance JET plasmas last ~ 20 sec

Summary of Magnetic Fusion Status

- Tokamaks are the most popular type of magnetic fusion
- Tokamaks have come close to D-T reactor conditions
- We have partial solutions to some reactor problems:
 - pressure limits and macroscopic stability
 - confinement and "microscopic" stability
 - impurities and plasma-wall interaction
 - maintaining a steady-state plasma

=> motivates ambitious plans for the future

The Future of Magnetic Fusion

- ITER and other tokamaks
- Revival of stellarators
- Innovative concepts

MFE Plans tend to be "Optimistic"

Figure 1. Outline of possible scenario for development of a tokamak Experimental Power Reactor.

Jassby, Furth, et al 1977

1991 plan - reactor in 2015

Rebut et al, Phys. Plasmas 1991

see http://fire.pppl.gov/fusion_library.htm

ITER Tokamak

• Design started 1986, first plasma 2016 ("optimisticly")

Figure 1. ITER tokamak and major components.

ITER Parameters and Capabilities

Parameter	Attributes
Fusion power	500 MW (700 MW) ^a
Fusion power gain (Q)	≥10 (for 400 s inductively driven burn);
Plasma major radius (R)	S (steady-state objective)
Plasma minor radius (<i>a</i>)	2.0 m
Plasma vertical elongation (95% flux surface/separatrix)	1.70/1.85
Plasma triangularity (95% flux surface/separatrix)	0.33/0.48
Plasma current (I_p)	15 MA (17 MA) ^a
Safety factor at 95% flux surface	3 (at I_p of 15 MA)
Toroidal field at 6.2 m radius	5.3 T
Installed auxiliary heating/ current-drive power	73 MW (110 MW) ^b
Plasma volume	$830 \mathrm{m}^3$
Plasma surface area	680 m ²
Plasma cross section area	$22\mathrm{m}^2$

Table 2. ITER parameters and operational capabilities.

- Design not yet finished
- Goal Q = 10 for 400 sec @ 500 MW D-T fusion power
- Will not and could not make net electrical power (Q_{Elect} ~ 1)

^a Increase possible with limitation on burn duration.

^b A total plasma heating power of 110 MW may be installed in subsequent operation phases.

Korean Superconducting Tokamak

- Advanced tokamak designed for 300 sec pulses
- Similar devices being built in China and India

<u>Spherical Tori (~ Tokamak)</u>

- Higher β limits and more compact than normal tokamaks
- More difficult current drive and plasma-wall problems

NSTX (USA)

Lithium Tokamak eXperiment (LTX)

Each lower shell to be filled with ~100g of liquid lithium. Remainder of surface coated by evaporation.

Liquid lithium coated shell

D. Majeski

Why not Just Stay with Tokamaks ?

- Many difficult challenges in going from ITER to a DEMO:
 - $Q \sim 50 @ 4000 \text{ MW}$ fusion power
 - month-long pulses w/burn control
 - tritium breeding and inventory
 - neutron damage to first wall
 - interior robotic maintenance
 - very high reliability (90%?)
- Even if a tokamak DEMO could be built, it would most likely be very complicated and very expensive

Stellarators are Being Revisited

- Large stellarators being built in Japan and Germany
- No need for external current drive, maybe no disruptions
- · Confinement like tokamaks, but very complicated to build

Photograph of the first plasma in the LHD. A camera is aimed at the plasma through NBI (tangential) port.

Compact Stellarator (NCSX)

- Aims to combine best features of tokamak and stellarator
- Difficult to build but maybe more stable and steady-state

Some "Innovative Concepts"

The Dream Revisited

Conceptual design of a D-³He fuelled RMF/FRC reactor - a more rapid route to **practical** fusion power ?

S.A. Cohen

Potential Areas for "Breakthrough"

Computational capability to find an optimized configuration for plasma confinement without costly experiments

Technological innovations such as room temperature superconductors or radiation resistant materials

Physics surprises such as increased fusion cross section or a way to preferentially maintain hot ions

Get $T_i > T_e$, $P_f \rightarrow 2P_f$

Fisch and Rax, 1992