Edge Turbulence Imaging in Alcator C-Mod and NSTX

S. Zweben, J. Terry, R. Maqueda, O. Grulke, T. Munsat, D. D'Ippolito, K. Hallatschek, J. Myra, D. Stotler, M. Umansky and the NSTX and Alcator C-Mod Teams

PPPL, MIT, FP&T, Greifswald, Garching, Lodestar, LLNL

- Motivations
- Gas puff imaging
- Results from C-Mod
- Results from NSTX

Motivations

- Edge turbulence probably determines edge and SOL parameters, which can strongly affect the global confinement and plasma-wall interactions
- Edge turbulence can probably be understood from first principles by comparing turbulence data with theory (both simulations and simplified physics models)

Some topics of interest:

- Coherent structures
- Intermittency
- SOL transport
- L-H transition

- Shear and zonal flows
- Edge localized modes
- Quasi-coherent modes
- Density limit

Alcator C-Mod and NSTX

Gas Puff Imaging Diagnostic

- High speed cameras see "filamentation" of D_{α} light emission (e.g. Niedermeyer, Goodall '82, TFTR '89)
- Fluctuations of D_{α} light similar to Langmuir probe results (e.g. Zweben '83, Endler '95)

- => <u>GPI diagnostic in Alcator C-Mod and NSTX ('99 -):</u>
 - Image D_{α} light emission from a small gas puff
 - View along B to see radial vs. poloidal structure

Turbulent "Filaments" in the Edge

 These movies show the short poloidal correlation and long toroidal correlation length of the turbulence

Fisheye view of NSTX

GPI Diagnostic in Alcator C-Mod

- Looks at D_{α} or HeI light from gas puff I $\propto n_o n_e f(n_e, T_e)$
- Views \approx along B field line to see 2-D structure \perp B
- Image coupled to camera with 400x400 fiber bundle

Movies of C-Mod Turbulence

- Taken at 250,000 frames/sec with PSI-5 camera
- Camera has 300 frames with 64 x 64 pixels per frame

Interpretation of GPI Results

- Gas puff does not significantly perturb edge turbulence
 - GPI gas puff smaller than normal fueling puff
 - doesn't affect other fluctuation measurements
 - results ~ independent of puff size or D/He species
- Space vs. time *structure and motion* of fluctuations should be ~ independent of atomic physics $f(n_e, T_e)$, but not fluctuation *level* (e.g. if I $\propto n_e^{\alpha}$, then $\delta I/I \approx \alpha \delta n/n$)
- Atomic physics can be applied to simulations for quantitative (statistical) comparison with imaging data
 - => Estimate turbulence structure and motion from images

outboard limiter

Implication: blobs form in steep gradient region, not at boundary between open/closed field lines

J. Terry

Velocity Fields from C-Mod Imaging

- Turbulence propagation velocity can be inferred from cross-correlation of 2-D images in time
- Average velocities show radial convective motion in SOL

Some Other C-Mod Results

- Poloidal correlation lengths are $\approx 0.5 1$ cm , somewhat rising from inside separatrix to far outside SOL (Terry)
- Fluctuation level at inner midplane is ≈ 5 times less than outer midplane, showing "ballooning" character (Terry)
- GPI fluctuations are well correlated with Langmuir probe fluctuations when probe and GPI are lined up along a B-field line (Grulke)
- ⇒ Turbulence ~ similar to previous measurements at ege of tokamaks (and stellarators ?)

Comparison with Theory

- Structures look ~ similar to model of Garcia et al (PRL '04)
- k_{pol} spectrum compared with NLET simulation (Hallatschek)

Terry et al, Phys. Plasmas '03

GPI Diagnostic in NSTX

- Looks at D_{α} or HeI light from gas puff $I \propto n_o n_e f(n_e, T_e)$
- View \approx along B field line to see 2-D structure \perp B
- Image coupled to camera with 800 x 1000 fiber bundle

GPI Data for NSTX '04 Run

• Exactly the same PSI-5 camera as used for C-Mod

see: http://www.pppl.gov/~szweben/NSTX04/NSTX_04.html

Ohmic Cases

<u>Ohmic Plasma</u> NSTX #113348 B=4.0 kG, I=800 kA <n>=2.4x10¹³ cm⁻³ 250,000 frames/sec

L-Mode Cases

<u>NBI L-mode</u> NSTX #113830 B=3.0 kG, I=650 kA, 2.7 MW NBI <n>=3.3x10¹³ cm⁻³ 250,000 frames/sec

H-Mode Cases

<u>ELM-free H-mode</u> NSTX #113139 B=4.5 kG, I=825 kA, 0.9 MW NBI 250,000 frames/sec

Summary of NSTX Results

- Turbulence qualitatively similar in Ohmic and L-mode
 - size scale $\Delta_{\text{pol}} \approx 4 \text{ cm}, \Delta_{\text{rad}} \approx 3 \text{ cm}$
 - autocorrelation time $\tau \approx 30$ 70 μ sec
 - light fluctuation level $\approx 20 80\%$
 - similar with LSN, USN, limited
- Edge plasma can be very quiescent during H-mode
 - quiet periods can last \approx 10-100 msec
 - occasional "blobs" and coherent "waves"
- Frequency spectrum looks similar to Langmuir probe and edge reflectometer (at least, f ≤ 100 kHz)

Zweben et al, Nucl. Fus. '04

Velocity Analysis in NSTX

Munsat

Questions for Image Analysis

- Are there patterns or structures in this turbulence ?
 - compare to blob theory & BOUT (e.g. Russell et al)
 - calculate statistical "mode-coupling" coefficients ?
 - try to match with simple dynamics (e.g. SOC, CA)
- Are there shear or zonal flows or radial streamers ?
 - calculate flow spectra from velocity maps
 - estimate vorticity, divergence, intermittency, etc.
 - compare with theory (e.g. Diamond, Hahm et al)
- Can turbulence be correlated with radial transport ?
 - roughly $D_{\perp} \sim \Delta^2 / \tau \sim 10^5 \text{ cm}^2/\text{sec} \sim D_{\text{Bohm}} (> D_{\text{nc}} ?)$
 - compare $\langle v_r \rangle_{turb}$ with $\langle v_r \rangle_{plasma} = \Gamma/n$
 - estimate $\Gamma = \langle n v_r \rangle$ directly from images ?

L-H Transition Cases

Just Before L-H Transition

<u>1 msec Before L-H Transition</u> NSTX #113735 B=3.0 kG, I=790 kA, 4.4 MW NBI <n>=2.3x10¹³ cm⁻³ 250,000 frames/sec

H-L Transition Cases

<u>Dithering H-L Transition</u> NSTX #113062 B=4.4 kG, I=780 kA, 2.6 MW NBI <n>=2.1x10¹³ cm⁻³ 100,000 frames/sec

Observations on L-H Transition

- L-H transitions look like a continuous evolution from turbulent blobs to a quiescent state in ≤ 0.1 ms, apparently without new spatial features or flows
- H-L transitions generally appear as high-n poloidal modes which evolve into radially moving blobs
- Transient periods of H-like quiescence occur ≤10 msec before the main L-H transition

Questions on L-H Transition

- Is there an increase in poloidal flows (shear or zonal) just before the L-H transition (as in theory) ?
- How much does the turbulence "dither" from L- to H-type as a function of time before the main L-H transition ?
- Is there a consistent instability pattern leading from H-L ?
- How do the transitions seen in GPI compare with those in the reflectometer, Firetip and probe diagnostics ?

Comparisons with Theory

- simulations of blob dynamics, emission patterns [2D fluid code + DEGAS-2 (Stotler)] reproduce dynamical features
 - convective velocity & wake
- passive convection assumption also allows inverse mapping:
 n_e, T_e ← I
 - blobs born at region of max γ_{linear}

(Myra, D'Ippolito, Russell)

Lodestar Research Corp.

Blob database allows comparison of convective velocity with theory

Expt. Analysis: wavelet & feature tracking defines blobs *Theory*: delineates several blob regimes & scalings, e.g. sheath-connected regime:

$$v_{x} \sim \frac{qT_{e}^{3/2}}{a_{b}^{2}B^{2}}$$

NSTX shot #112825

Lodestar Research Corp.

BOUT Simulations are in Progress

Modeling of NSTX presents a challange to BOUT due to the relatively weak B field (=> numerical difficulties)

- δN_i at the level ~10%
- δT_{ei} at the level a few eV
- δφ at the level ~10 V
- Spatial scale ~ 2 cm
- Frequency f ~ 1e5 s⁻¹

Umansky

Summary

- 2-D Imaging data looks interesting
 - similar to usual edge turbulence
 - but some new features seen in 2-D
 - need to compare with other diagnostics
- Considerable analysis is needed to:
 - quantify what we see in images
 - relate it to edge turbulence modeling
 - test modeling with dedicated experiments