7th Workshop on the Interrelationship between Plasma Experiments in Laboratory and Space, IPELS 2003

Anisotropic Turbulence in Laboratory Plasmas

S.J. Zweben, PPPL

J. Terry et al, MIT R. Maqueda, LANL D. Stotler, PPPL K. Hallatschek, Garching

<u>Outline</u>

- Introduction: anisotropic turbulence in lab plasmas
 - summary of observations
 - drift wave model vs. experiments
- Drift wave turbulence in tokamak plasmas
 - motivation
 - 2-D imaging of edge turbulence
 - comparison of simulation vs. experiment
- Relationship to turbulence in space plasmas

Turbulence in Laboratory Plasmas

- Most easily seen as low frequency (ω < ω_{ci}) random fluctuations in Langmuir probe signals (i.e. in δn and δφ), perhaps first reported by Bohm in 1940's
- Apparent universality of spectrum noted by Chen in '65

Characteristics of Lab Turbulence

In low β magnetized plasmas with ρ_i < a:

- $\omega \approx \omega_{drift} \ll \omega_{ci} \Rightarrow$ near diamagnetic drift frequency
- $k_{\perp}\rho_i \approx 0.3 \Rightarrow$ transverse scale set by ion gyroradius
- $k_{\parallel} \ll k_{\perp} \gg$ highly anisotropic with respect to B
- $\delta n/n \approx 1/(k_{\perp} L_n) =>$ level reaches "mixing length" limit
- $|e\delta\phi/kT_e| \approx |\delta n/n| =>$ seems dominantly electrostatic
- $\delta B_{\perp}/B \ll \delta n/n \Rightarrow$ small magnetic fluctuations

=> all consistent with "*drift wave turbulence*"

Drift Wave Model

- Driven by pressure gradients in magnetized plasma
- Destabilized by resistivity, rotation, parallel current, etc.
- Linear theory very well developed since 60's

Lab Experiments vs. Drift Waves Model

- Early experiments on Q-machines identified *coherent* oscillations as drift waves based on *linear theory* (e.g. Hendel and Chu, Phys. Fluids '68)
- But quantitative comparisons were difficult since waves were observed in their "saturated" steady-state
 need to compare with nonlinear theory
- Comparisons of drift wave experiments with nonlinear theory are so far *marginally successful* at best (e.g. Sen, Klinger, Tynan)

=> good quantitative agreement not yet obtained

Tokamak

Tokamak = toroidal magnetic chamber (Russian acronym)

Turbulence in Tokamaks

Motivations for studying this:

- Drift wave turbulence probably causes the anomalous (i.e. non-collisional) plasma energy loss in tokamaks
- Understanding this process might lead to the design of a better MFE reactor

Tokamak parameters (R \approx 1 m, R/a \approx 3, B \approx 1 Tesla):

Core: T ≈ 1-10 keV n ≈ 10¹⁴ cm⁻³ β ≈ 1-100% Edge: T \approx 10-100 eV n \approx 10¹² -10¹³ cm⁻³ $\beta \approx$ 10⁻⁴ -10⁻⁵

Drift Wave Turbulence in Tokamaks

- Measured turbulence looks similar to laboratory turbulence
 - limited measurements in hot core (e.g. scattering)
 - extensive probe measurements in edge (≤ 50 eV)
- Nonlinear simulations show electrostatic turbulence with

 $k_{II} << k_{\perp}$ driven by temperature or density gradients

3-D simulation of tokamak drift wave core turbulence (Candy and Waltz, '03)

Edge Turbulence in Tokamaks

- Dominantly electrostatic with $\delta n/n \ge 0.1$ but $\delta B_{\perp}/B \approx 10^{-5}$
- Similar broadband frequency spectrum in many devices
- Responsible for particle and heat transport across edge

Edge Density Turbulence Imaging

Magnetic structure of edge plasma **NSTX** R = 85 cma = 68 cmA = 1.25 $l \leq 1.5 \text{ MA}$ $B \le 6 kG$ 5 MW NBI 6 MW ICRH $\beta_{\rm T} \leq 35\%$

fast camera 10 µsec/frame at 1000 frames/sec

Gas Puff Imaging Diagnostic

- Looks at He1(578.6 nm) from gas puff $I \propto n_o n_e f(n_e, T_e)$
- View along B field line to see 2-D structure \perp B

Imaging of NSTX Edge Turbulence

CCD camera with 100,000 frames/sec at 10 µsec/frame for 28 frames/shot

[Zweben, Maqueda et al, sub. to NF '03]

Imaging of Alcator C-Mod Turbulence

• This plasma has 15 times the toroidal field of NSTX

 $\frac{\text{Alcator C-Mod}}{\text{R} = 67 \text{ cm}}$ a = 23 cm A = 3 $I \le 1.5 \text{ MA}$ $B \le 80 \text{ kG}$ 5 MW ICRH $\beta_{\text{T}} \approx 1\%$

[Zweben, Terry et al, Phys. Plasmas '02]

Anisotropy of C-Mod Edge Turbulence

• View D_{α} light emission horizontally from side of tokamak

Simulation of Edge Turbulence

- Use 2-fluid equations in 3-D geometry
- Assume initial conditions and evolve

$$\hat{\alpha}[\partial_t \tilde{\psi} + \alpha_d \partial_y \tilde{\psi}(1 + 1.71\eta_e)] - \nabla_{\parallel} [\tilde{\phi} - \alpha_d (\tilde{p_e} + 0.71\tilde{T_e})] = \tilde{J}, \qquad \qquad \mathbf{OB} \quad (1)$$

$$d_t \tilde{n} + \partial_y \tilde{\phi} = \tilde{F}, \qquad \tilde{F} = \epsilon_n \hat{C} (\tilde{\phi} - \alpha_d \tilde{p_e}) - \epsilon_v \nabla_{\parallel} \tilde{v}_{\parallel} + \alpha_d \epsilon_n (1 + \tau) \nabla_{\parallel} \tilde{J}, \qquad \qquad \delta \mathsf{n} \tag{3}$$

$$d_t \tilde{T}_i + \eta_i \partial_y \tilde{\phi} = \frac{2}{3} \left[\tilde{F} + \frac{5}{2} \epsilon_n \tau \alpha_d \hat{C} \tilde{T}_i + \kappa_i \nabla_{\parallel} (\nabla_{\parallel} \tilde{T}_i + \hat{\alpha} \eta_i \partial_y \tilde{\psi}) \right], \qquad (4)$$

$$d_{t}\tilde{T}_{e} + \eta_{e}\partial_{y}\tilde{\phi} = \frac{2}{3}\left[\tilde{F} - \frac{5}{2}\epsilon_{n}\alpha_{d}\hat{C}\tilde{T}_{e} + 0.71\alpha_{d}\epsilon_{n}(1+\tau)\nabla_{\parallel}J + \kappa_{e}\nabla_{\parallel}(\nabla_{\parallel}\tilde{T}_{e} + \hat{\alpha}\eta_{e}\partial_{y}\tilde{\psi})\right], \quad \overleftarrow{OT}_{\Theta} (5)$$
$$d_{t}\tilde{v}_{\parallel} = -\epsilon_{v}\left[\nabla_{\parallel}(\tilde{p} + 4\tilde{G}) + (2\pi)^{2}\alpha\partial_{y}\tilde{\psi}\right], \qquad \overleftarrow{OV}_{\parallel} (6)$$

[Rogers, Drake, and Zeiler, PRL '98]

[Hallatschek '02]

radius

Simulation vs. Experiment

- Simulation reproduces
 k_{pol} spectrum fairly well,
 after taking into account
 the instrument resolution
- Also reproduces fluctuation level, frequency spectrum, and transport to within a factor of x 2 or so
- Similar level of agreement obtained in a comparison with core turbulence [Ross et al, PoP '02]

Is there Similar Turbulence in Space ?

thanks for references: T. Carter, F. Cheng, O. Grulke, G. Hammett, H. Ji, J. Johnson, S. Kaye, R. Kulsrud, G. Morales, D. Newman, B. Rogers, M. Yamada

- Look for low- β plasma fluctuations with:
 - $k_{\parallel} \ll k_{\perp}$
 - k_⊥ρ_i≈1
 - $e\delta\phi/kT_e \approx \delta n/n$
 - $\delta B_{\perp}/B \approx \beta \delta n/n$
- In: ionosphere
 - aurora
 - magnetosphere
 - solar coronal loops
 - interstellar space

Turbulence in "Equatorial Spread F"

[Kelley, Franz et al , JGR '02, Steigies, Block et al , JGR '01]

- See fluctuations in ionospheric n_e with radar and rockets at ≈ 300 km above equator n_e ≈ 10¹¹ m⁻³; T_e ≈ 0.1 eV ; B= 0.3 G
- Kelley invokes collisional R-T instability for large-scale structure (∇n opposite g)
- Considers drift waves for small ID⁻⁴ ID⁻³ ID⁻² ID⁻¹ ID⁰ ID¹
 scale structure based on
 analogy with lab spectra (Prasad et al , PoP '94),
 but concludes they are not unstable in the ionosphere

Turbulence in Aurora

- Broadband δE and δB in aurora seen by Cluster at 4-5 R_E with $k_{\perp}\rho_{s} \approx k_{\perp}\lambda_{e} \approx 1$, $\beta <<1$
- Identified as Dispersive Alfven Wave with k_{II} << k_⊥ and:
 δE/δB ≈ V_A [(1+k_⊥ρ_s) (1+k_⊥λ_e)]^{1/2}
- Tokamak edge has (e.g. TEXT): $\delta E/\delta B \approx (3x10^3 \text{ V/m} / 10^{-4} \text{ T}) \approx V_A !$

=> looks similar to tokamak ?

Cluster, Wahlund et al, GRL '03 Stasiewicz et al, Sp. Sci. Rev. '00

Magnetosheath and Magnetopause

- Low frequency turbulence in *magnetosheath* identified as Alfven/ion cyclotron or mirror modes (Schwartz et al, Ann. Geophy. '96);
- Similar turbulence in magnetopause either local K-H, microtearing modes, or Alfven waves transferred from magnetosheath (Rezeau, Space Sci. Rev. '01)

n=10⁸ m⁻³, T_{\perp} \approx 0.2 keV, T_{II} \approx 0.1 keV, $\beta \approx$ 0.67

 Suggestion of gradient-drift instability (Hasegawa '85) considered unlikely since turbulence seems to be independent of local ∇n

Plasma Sheet and Magnetotail

 Small-scale turbulence in *plasma sheet* has spikey electric fields attributed to kinetic Alfven waves (Wygant et al, JGR '00, '02)

=> looks similar to tokamak turbulence

• Substorm may be due to drift-ballooning or compressionaldrift wave in *magnetotail* (Miura Sp. Sci. Rev. '01, Horton JGR '03), but plasma there has $\beta > 1$

Solar Coronal Loops

- Fine structure of loops seen by TRACE look like tokamak turbulence with k_⊥>> k_{II} ≈ 0
- However, $k_{\perp} \rho_i \approx 10^{-6}$!

L_⊥ ≈ 10⁶ m (?) $\rho_i \approx 0.3$ m (100 eV, 10 G) => not like tokamaks !

http://vestige.lmsal.com/TRACE/Science/ ScientificResults/trace_cdrom/html/trace_images.html

 But maybe this structure is the low-k₁ limit of an "inverse cascade" due to instability at much smaller scales ?

Interstellar Medium (ISM)

- Broad density fluctuation spectrum inferred by RF measurements, evidence for δB and anisotropy
- Turbulence seems generated by large-scale MHD instability not small-scale drift-waves, but near k_⊥ρ_i ≈ 1 it can be modelled with "gyrokinetics" [Hammett et al, LMS Durham 2002]

Spangler, Sp. Sci. Rev. '00

Summary of Lab vs. Space Turbulence

	k_{II}/k_{\perp}	$k_{\perp} \rho_i$	δn/n	eδφ/kT _e	$\delta B_{\perp}/B$
tokamak	≈ 0.01	0.1-1	0.01-1	0.01-1	≈ 10 ⁻⁵
ionosph.		10 ⁻³ -10 ¹	10 ⁻⁶ -10 ¹		
aurora	≈10 ⁻³	≈ 0.1-10			
plsheet	≈ 10 ⁻³	≈ 1	0.1-1	0.1-1	≈ 10 ⁻³
corona	≈ 0.01 ?	≈ 10 ⁻⁶	≈1?	≈1?	≈1?
ISM	1-10 ⁻³	10 ⁻⁹ - 1	1-10 ⁻³	1-10 ⁻³	1-10 ⁻³

=> some similarities between tokamak turbulence and space turbulence

Some Questions

- Is the relationship of δE and δB in tokamaks Alfvenic ?
- Does space turbulence depend on local gradients \perp B ?
- Is the perpendicular size scale set mainly by ρ_{i} or λ_{e} ?
- How much can we understand with nonlinear simulations ?
- Can we make better lab simulations of space turbulence ?