Structure and Motion of Edge Turbulence in NSTX and Alcator C-Mod

S.J. Zweben, R.J. Maqueda, J.L. Terry,
T. Munsat, J.R. Myra, T. Stoltzfus-Dueck, D.P Stotler,
C.E. Bush, D. D'Ippolito, O. Grulke, J.A. Krommes,
B. LeBlanc, R. Maingi, D.A. Russell, S.A. Sabbagh, A.E. White,
K.M. Williams, and the NSTX and Alcator C-Mod Teams

PPPL, MIT, Nova Photonics, Lodestar Research, ORNL, Columbia, Greifswald, Colorado, UCLA

Motivations

- Edge turbulence affects location of plasma-wall interaction
- Edge turbulence influences global tokamak confinement
- Cause of L-H transition is not yet completely understood

Outline

- Gas puff imaging diagnostic
- NSTX GPI images (L, L-H and H)
- Analysis of Structure and Motion
- Comparison with Alcator C-Mod
- Initial comparisons with theory
- Open questions and directions

National Spherical Torus Exp't (NSTX)

typical parameters for this talk

> R = 0.85 m a = 0.68 m B = 0.3 T I ≈ 0.8 MA P_{NBI} ≈ 2-4 MW $β_T ≈ 10\%$

Gas Puff Imaging (GPI) Diagnostic

- Looks at D_{α} line of neutral deuterium from a gas puff
- View \approx along B field line to see 2-D structure \perp B

Location of GPI Light Emission

- D is unexcited @ $T_e < 5 eV$
- D is ionized @T_e > 100 eV

$\begin{array}{l} \text{NSTX Edge Parameters} \\ n ~ 0.2\text{-}2 ~ x10^{13} ~ \text{cm}^{-3} \\ T_e ~ 5\text{-}50 ~ eV \\ L_{\perp} ~ 5\text{-}50 ~ eV \\ L_{\parallel} ~ 5\text{-}50 ~ \text{m} \\ \rho_s ~ 0.2 ~ \text{cm} \\ \beta_e ~ 10^{-3} \end{array}$

similar to many tokamak
 edge plasmas

GPI Fluctuation Data in NSTX

- PSI-5 camera records 300 frames at ≤ 250,000 frames/sec with 64x64 pixels / frame => 1.2 msec of data per shot
- Additional PM tube array digitized radial vs. poloidal array at 500,000 Hz => 64 msec of data per shot

Interpretation of GPI Fluctuations

- Line emission signal levels ∝ n_e^αT_e^β with 0.5 < α, β < 2, so measured signals are nonlinear functions of n and T_e [see Stotler et al, Cont. Plasma Phys. 44, 294, 2004]
- However, turbulence structure and motion are approximately independent of these nonlinearities and also nonlinearity in camera intensifier (nonlinearity acts like "contrast knob") [see S.J. Zweben et al, Nucl. Fusion 44, 134, 2004]
- => Assume that structure and motion of GPI light fluctuations represents structure and motion of the turbulence (not necessarily the same as the fluid motion)

Gas puff imaging diagnostic

- NSTX GPI images (L, L-H and H)
- Analysis of Structure and Motion
- Comparison with C-Mod
- Comparisons with theory

Images During L-mode

- color scale the same for all images in each shot

movies at: http://www.pppl.gov/~szweben/ ¹⁰

Images During L-H Transition

L-H Transition

NSTX #113732 B=3.0 kG, I=780 kA, 2.0 MW NBI <n>=2.2x10¹³ cm⁻³ 250,000 frames/sec

Images During H-Mode

Analysis of Structure and Motion

• Use simplest analysis via 2-point cross-correlation function of fluctuations in GPI light signals vs. space and time:

$$C(\Delta x, \Delta t) = \sum_{t} \widetilde{S}_{0}(t) \widetilde{S}_{\Delta x}(t + \Delta t)$$

- Correlation length from FWHM of C(Δx , 0) [\approx 1.6 x $\sigma_{Gaussian}$]
- Velocity from time the delay of the peak in C(Δx , Δt) vs. Δx
- C(Δx , Δt) averages over space and time spectrum of signals

2-D Structure from Chords

- No significant changes from L- to H-mode (13 shots)
- Maybe some increase in L_{pol} over ~ 30 msec before L-H

2-D Structure from Images

- Evaluated near radial peak of GPI signal ~ separatrix
- No statistically significant changes from L- to H-mode

Poloidal Motion from Chords

- Poloidal motion generally in ion diamagnetic drift direction
- Poloidal flow more "frozen" in H-mode than L-mode ($\rho \sim 0$)

Poloidal Motion from Images

- Average flow is generally in ion diamagnetic drift direction
- V_{pol} gradient tend to be lower for H-mode than L-mode

Gas puff imaging diagnostic

- NSTX GPI images (L, L-H and H)
- Analysis of Structure and Motion
- Comparison with C-Mod
- Comparisons with theory

Terry et al, J. Nucl. Mater. '04 ¹⁹

NSTX vs. C-Mod (L-Mode)

	NSTX *	Alcator C-Mod**
B _{edge}	2-3 kG	40 kG
n _{edge}	0.2-2x10 ¹⁹ cm ⁻³	2-20x10 ¹⁹ cm ⁻³
T _{e,edge}	5-50 eV	20-80 eV
L _{pol}	5-9 cm	0.6-1.0 cm
L _{rad}	2-6 cm	0.7-1.5 cm
V _{pol}	≤ 5 km/sec	≤ 1 km/sec
V _{rad}	≤ 1-2 km/sec	≤ 1.5 km/sec

* S.J. Zweben et al, Nucl. Fusion 44, p. 134 (2004)

** J.L. Terry et al, submitted to Fusion Science and Technology (2005)

Gas puff imaging diagnostic

- NSTX GPI images (L, L-H and H)
- Analysis of Structure and Motion
- Comparison with C-Mod
- Initial comparisons with theory
 - L-H transition
 - blob model
 - NLET model
 - ESEL model

Comparison with L-H Transition Model

- Transition doesn't look like standard ExB flow shear picture
 - little or no decrease in radial correlation length
 - little or no increase in poloidal shear flow
- Yet flow shear is near the usual stabilization criterion for L-H $\nabla V_{pol}(L_{rad}/L_{pol}) \approx 30-40 \text{ kHz} \approx 1/\tau_{auto}$

Caveats:

- region causing transition may be outside GPI view
- poloidal velocities averaged over ~ 1 msec
- no actual simulation of L-H transition
- relatively small data set

Bichoherence at L-H Transition

- An increase in total bicoherence, suggesting an increase in coupling between low frequency flows and high frequency turbulence, was seen at L-H transition DIII-D (Moyer 2001)
- The same analysis was applied to NSTX chord data, but no significant increase in bicoherence was observed at L-H.

Comparison with "Blob" Model

- Model for dynamics of isolated density structures in SOL
- Various regimes depending on blob size and collisionality

Lodestar

Comparison with NSTX Data

- Measure radial blob speed vs. time for one typical NSTX shot
- Compare with theory using some assumptions (Myra APS '05)

NLET (nonlinear EM turbulence) Model

 Klaus Hallatschek compared his 3D NLET code (an offshoot of Maryland's DBM model) with C-Mod L-mode data

- L_{pol} agreed fairly well
- Γ_n agrees to within ~ x2
- τ_{auto} x2 too small in code

Jim Terry et al, Phys. Plasmas 10, 1739 (2003)

ESEL (edge SOL ES turbulence) Model

 Olaf Grulke compared the 2D interchange model of Garcia and Naulin (Phys. Plasmas 12, 2005) to blob speed distributions in C-Mod L-mode plasmas

- track blob motion with same method in C-Mod and code
- radial blob speed is higher in code by x5
- further analysis in progress

- Gas puff imaging diagnostic
- NSTX GPI images (L, L-H and H)
- Analysis of Structure and Motion
- Comparison with Alcator C-Mod
- Initial comparisons with theory
- Open questions and directions

Some Open Physics Questions

- What is the minimal physics needed to explain L-mode edge turbulence ? (2D or 3D ? ES or EM ? fluid or kinetic ? local or nonlocal ? radiation/neutrals ?)
- Do zonal flows affect L-mode edge turbulence ?
- What causes the H-mode ?
- What forms blobs ?
- Can edge/SOL transport be predicted for ITER ?
- How can edge turbulent transport be controlled ?

Some Experimental Directions

- Analyze higher-order spatial structure
- Analyze 2-D velocity fields vs. time
 - optical flow (Munsat APS '05)
 - PCA (Stoltzfus-Dueck APS '05)
- Try imaging at other locations (X-point, inner wall, core ?)
- Acquire image data for longer times to see L-H and ELMs better
- Compare results on different devices (TJ-II stellarator, JET, LAPD, etc)

Some Theoretical Directions ?

(Apparently a large code will be needed to explain this data)

- Use 3D codes such as BOUT (Xu, Umanksy) and GEM (Scott) to simulate NSTX and/or Alcator C-Mod
- Understand physics of code results with analytic models
- Develop more comprehensive edge codes (NYU, LLNL)

> verify and validate codes with present data
 > use codes to develop possible control methods
 > test these control methods in existing machines
 > control L-H transition and SOL transport in ITER