Moving Divertor Plates in a Tokamak

S.J. Zweben, H. Zhang MIT Jan. 19, 2009

- Moving parts in ITER divertor
- Other moving divertors ideas
- Moving divertor plate idea
- Some potential problems

thanks to: D. Johnson, C. Skinner, J. Strachan, L. Zakharov, D. Zweben

Divertor Cassette Movement in ITER

- Divertor cassettes will be replaced every ~ 3-4 years (?)
- Each of 54 cassettes is 8-9 tons (3.5 m x 2 m x 1 m)
- All remotely handled, e.g. cutting/welding water lines

refurbishment

http://www.iter.org/a/index_nav_5.htm

Palmer FED 2007

Divertor Water Cooling in ITER

- 150 m³ water @ ~1 ton/sec, 3 MPa, 100-150 °C, 3.7 MW
- Needs major systems to mitigate damage due to LOCA

Fig. 1. Plant scheme and breaks' locations.

Modeling of ITER Divertor LOCA

- Various codes used for thermal / hydraulic / aerosol transport + chemical reactions for assumed 'reference events'
- Worst case: ex-vessel divertor coolant leak => starts FPTS => disruption => 0.4 GJ on divertor in 1 sec => in-vessel water leak from 0.3 m² break of carbon tiles of divertor

=> 70 tons of water plus 7 tons of steam into vessel + tritium + Be and W dust => "mixed waste"

GSSR Vol. VII.3.4.4, Fig. VII.3.4.4-3

Moving Liquid Walls (ALPS and APEX)

thick ~ 0.5 m @ 10 m/sec

thin ~ 1 cm @ 10 m/sec

divertor jets @ 10 m/sec

Table 1

Possible materials, configuration, and confinement options

Liquid species	Li, Flibe, SnLi, Ga
Surface configuration Confinement options	Fast film, droplets, waterfall, stagnant film, pool, backside impinging jet Tokamak, advanced tokamak, spherical torus, field reversed configuration, stellerator

Fig. 1. Example of an advanced liquid surface divertor module.

Mattas et al FED 2000

Moving Belt Limiter and Pebble Drop

moving belt divertor

pebble drop divertor

belt ~ 1 mm thick @ ~ 5 m/sec

Fig. 2. Divertor belt.

Snead Vesey, Fus. Tech. 24, 83 (1993) Hirooka et al, Fus. Eng. Design 65, 413 (2003) Hirooka et al, J. Nucl. Mat. 363-365 (2007) pebbles ~ 1 mm thick @ ~ 5 m/sec

Isolbe et al Nucl. Fusion 40, 647 (2000) Matsuhiro et al, Nucl. Fusion 41, 827 (2001) Voss et al, Fus.Eng. Design 81 327 (2006)

Moving Divertor Plates

- Basic idea (pictures)
- Plate parameters (#'s)
- Alternate geometries
- Degrees of Freedom
- Potential Problems

Simple Moving Divertor Geometry

- Plasma contacts divertor on a set of removable plates
- Plates heated locally over thermal diffusion time
- Plates removed for processing and returned

Plate Motion Vertical and Toroidal

- Sweep plates in vertical and toroidal directions to use full height of plates as thermal heat sink
- Sweep speed can be adjusted to keep plate temperature within desired range

Ex-vessel Plate Processing

- Plates can be cooled by conduction to a big heat sink
- Plates can be dusted, cleaned and recoated
- New plates types can be substituted easily

Simple Model for Plate Heating

• Time τ to heat plate of thickness d with diffusivity χ (cm²/sec)

$$\chi \sim d^2/3\tau$$
 [$\chi = \kappa$ (W/cm °C) / c(J/g °C) ρ (g/cm³)]

• Average temperature T_{ave} after time τ for heat Q(Watts)

$$T_{ave} \sim Q\tau/c\rho V$$
 [V=2 π Rwd, w=width]

• Therefore time to reach T_{ave} and thickness for a given T_{ave}

$$\tau \sim T_{ave} c\rho V/Q \sim T_{ave} c\rho (2\pi Rwd)/Q$$

d ~ $6\pi\chi T_{ave}c\rho Rw/Q \propto 1/(power per unit area)$

Surface vs. Average Temperature

• For infinite plate with heat flux Q(W/cm²) for time τ

 T_{surf} = 2 Q(W/cm²) [τ/πκρc]^{1/2} [Herrmann, EPS '01]

• For this model with $\chi \sim d^2/3\tau$, $T_{surf} \sim 2 T_{ave}$, independent of heat flux or material properties !

Some Numerical Estimates

Material properties

material	heat	density	heat	heat diffusivity
	capacity	ρ (g/cm ³)	conductivity	χ (cm ² /sec)
	c (J/g °C)		к (W/cm °C)	
tungsten	0.13	19.3	1.74	0.7
carbon fiber	~ 0.7	~ 2	~ 2	1.4
beryllium	1.82	1.85	2.01	0.6

Machine properties

machine	major radius R (cm)	exhaust power P (MW)	P/R (MW/m)
ITER	620	130	21
ARIES-AT	520	370	71
NHCX	100	50	50

Plate Thickness and Diffusion Time

		$T_{ave} = 1$	300 °C	$T_{ave} = 0$	600 °C
machine	material	d (cm)	τ (sec)	d (cm)	τ (sec)
ITER	tungsten	1.8	1.6	3.6	6.4
ITER	CFC	2.0	1.0	4.0	4.0
ITER	Beryllium	2.1	2.5	4.2	10.0
ARIES-AT	tungsten	0.56	0.15	1.1	0.6
ARIES-AT	CFC	0.62	0.10	1.2	0.4
ARIES-AT	Beryllium	0.65	0.23	1.5	0.9
NHTX	tungsten	0.8	0.3	1.6	1.2
NHTX	CFC	0.9	0.18	1.8	0.7
NHTX	Beryllium	0.9	0.5	1.8	2.0

Assumes for all cases:

w =20 cm Q = P/2

For ITER CFC case:	For	ITER	CFC	case:
--------------------	-----	------	-----	-------

<u>300 °C</u>	<u> </u>
τ ~ 1 sec	4 sec
d ~ 2 cm	4 cm

Plate Parameters and Speeds

Parameter	$T_{ave} = 300 \text{ °C}$	$T_{ave} = 600 \text{ °C}$
plate thickness	2 cm	4 cm
plate diffusion time	1 sec	4 sec
plate width	250 cm	250 cm
plate height	200 cm	200 cm
# of plates in vessel	18	18
plate mass (each)	200 kG	400 kG
plate energy (each)	40 MJ	160 MJ
plate residence time	10 sec	40 sec
vertical plate speed	20 cm/sec	5 cm/sec
horizontal plate speed (360° rotation)	500 cm/sec	100 cm/sec

Assumes for all cases:

ITER power flux CFC plates w =20 cm

For 360° toroidal sweep:

	<u>300 °C</u>	<u> </u>
Т	~10 sec	40 sec

Alternate Geometries

- Could allow gaps in toroidal coverage of strike zone
- Could used curved plates to reduce edge heating
- Other options using shaping, tilting, rotation etc

offset sweep/swap

Other Degrees of Freedom

- Plates can be inserted at multiple toroidal locations to reduce plate speed (but with added machinery)
- Wide variety of plate sizes and/or structures can be tried with the same rails (if designed cleverly)
- Plates surface can be optimized, e.g. with slots or grooves to reduce impurity influx or increase helium pumping
- Could install gas puffing or biasing on plates, recharged every cycle through processing

Some Potential Problems

- Tokamak operation with flat plates
- Mechanical motion in vacuum
- Plate cooling outside vessel
- Thermal and transient stress
- Plate processing

Tokamak Operation with Plates

- Magnetic geometry of divertor needs to be modified but this needs to be done anyway (e.g. "Super-X")
- Effects of "open' geometry on impurity influx, helium pumping, etc. needs to be tested experimentally
- Possible to use plates as moving "pumped limiters"

Mechanical Motion in Vacuum

- Plates can be mounted on wheels and moved by cables
- Plates can be cleaned and lubricated every ~60 seconds
- Wheels could be motorized as in lunar rover (ca. 1971)

roller coaster

cable car

lunar rover

Plate Cooling Outside Vessel

- Plates can be cooled by conduction to cold copper plates
- Cooling times ~10-40 sec, comparable to in-vessel times

time to cool the divertor (divertor final temperature)					
material	one-side	cooling	double-side cooling		
and initial	cooling plate	e temperature	cooling plate temperature		
temperature	80K	273K	80K	273K	
tungsten				16 s (127°C)	
(873K/600°C)	23.5 s (77°C)	39 s (127°C)	12 (27°C)	24.75 (77°C)	
tungsten		32.35 s			
(573K/300°C)	16.5 s (27°C)	(77°C)	6.6 s (27°C)	13 s (77°C)	
CFC				14 s (127°C)	
(873K/600°C)	26.5 s (77°C)	39 s (127°C)	11 (27°C)	19.5 s (77°C)	
CFC					
(573K/300°C)	20 s (27°C)	33.5 s (77°C)	6.4 (27°C)	11 s (77°C)	
Beryllium		39.25 s			
(873K/600°C)	30 s (97°C)	(177°C)	17 (27°C)	23 s (127°C)	
Beryllium	22.75 s				
(573K/300°C)	(27°C)	40 s (87°C)	9.2 (27°C)	18.2 s (77°C)	

ANSYS results

1 MPa pressure

0.14 mm Grafoil for better contact

Thermal and Transient Stress

- ANSYS analysis of maximum thermal strain during cooling gives ~1e9 cycles to failure (tungsten)
- Since plates will be inspected every ~60 sec, any gradual damage should not be a problem
- Disruption loads will be a problem as usual, but any damaged plates can be replaced immediately
- ⇒ Only damage which would prevent plates from being removed would be a problem

Plate Processing

- More complex RH process are being developed for ITER
- Plates can be dusted and tritium removed every cycle
- Plate coating/structure can be changed easily and often
- Tokamak vacuum isolation from processing can be done with differential pumping chamber or 'plasma window'
- New plates can be stored in processing chamber to replace worn or damaged plates (plate cost should be low)

Summary of Advantages

- No down time to replace divertor cassettes
- No divertor loss-of-coolant accidents scenario
- Divertor surfaces 'refreshed' every minute
- Plate structure design can be changed easily
- Plates more rugged than belts, drops, liquids
- Plate-plasma contact similar to existing divertors

Things to Do ?

- Test options for mechanical motion in vacuum, e.g.
 Iubrication and motors
- Engineering design for large-scale tokamak, e.g. access and remote handling issues
- Limited test on existing tokamak (e.g. one plate sweeping radially during a shot)
- Design small tokamak test facility with moving divertor plates, like Kazakhstan Tokamak

Kazakhstan Tokamak (KTM)

FIGURE 13 Divertor of the KTM tokamak.

Azizov Plasma Devices Operations 2003 Tazhibayeva Fus. Sci. Tech. 2005

- Similar to NSTX and MAST
- Focused on testing materials and structures for divertor
- Removable divertor plates on rotating internal table
- External "transport sluice device" for replacement divertor plates without a vacuum break