#### Quiet Periods in Edge Turbulence Preceding the L-H Transition in NSTX

S.J. Zweben<sup>1</sup>, R.J. Maqueda<sup>1</sup>, R. Hager<sup>2</sup>, K. Hallatschek<sup>2</sup>, S. Kaye<sup>1</sup>, T. Munsat<sup>3</sup>, F.M. Poli<sup>4</sup>, L. Roquemore<sup>1</sup>, Y. Sechrest<sup>3</sup>, D.P. Stotler<sup>1</sup>

<sup>1</sup> Princeton Plasma Physics Laboratory, Princeton, NJ 08540
<sup>2</sup>Max-Planck-Institute for Plasma Physics, Garching, Germany
<sup>3</sup>Univ. Colorado, Boulder CO 80309
<sup>4</sup>University of Warwick, Coventry CV4 7AL, UK

What triggers the L-H transition in NSTX ?

also thanks to: R. Bell, C.S. Chang, E.D. Fredrickson, T.S. Hahm, S. Kubota, B. LeBlanc, K.C. Lee, D.A. Russell, S.A. Sabbagh, and K. Tritz

TTF meeting 4/10

# **Gas Puff Imaging Diagnostic on NSTX**

- Views  $\mathsf{D}_{\alpha}$  light along B to get 2D radial vs. poloidal view
- Turbulence structure and motion derived using  $D_{\alpha}(n,T_e)$





# **GPI Images Across L-H Transition**







## **Quiet Periods Preceding Transition**

Sometimes GPI images in L-mode look like H-mode !



4 🖉

#### **Define "Scrape-off Layer Fraction"**

- $F_{sol}$  = fraction of GPI  $D_{\alpha}$  light located outside separatrix
- Measures "H-mode-ness",  $F_{sol} \le 0.15$  seen in H-mode
- F<sub>sol</sub> determined by shape of n, T<sub>e</sub> profiles near separatrix



#### **Frequency and Extent of Quiet Periods**

- $F_{sol}$  frequency spectrum has a broad peak at f ~ 3±1 kHz
- Quiet periods extend ≥30 msec before L-H transition



#### **Quiet Periods vs. Poloidal Flow**

- Poloidal flow  $V_{pol}$  measure from GPI turbulence motion
- $F_{sol}$  and  $V_{pol} \sim 50\%$  correlated within ±3 cm of separatrix



### **Geodesic Acoustic Mode (GAM) Analysis**

R. Hager, K. Hallatschek, IPP Garching

- GAM expected roughly at f(Hz)=  $(1/\pi R) [\gamma(T_i+T_e)/m_i]^{1/2} G$
- linear simulations show three GAM candidates for NSTX #135042
- nonlinear simulations show low frequency mode (red) excited at 3 kHz for T<sub>i</sub>+T<sub>e</sub> ~ 40 eV



TTF meeting 4/10

#### **Edge Zonal Flow Analysis**

D.A. Russell, Lodestar

 SOLT 2-D simulation of NSTX shows 'bursty' behavior in SOL quasi-periodic V<sub>pol</sub> modulation at ~ 4 KHz (D.A. Russell et al Phys. Plasmas 16, 122304 (2009)



 Zonal flow also expected at f ~ v<sub>ii</sub>(R/a) ~ 3 kHz (Hahm) (assuming n=10<sup>13</sup> cm<sup>-3</sup>, T<sub>i</sub>=50 eV, μ=2)

# **Estimate of Shear Flow from GPI**

- Dimensionless shear:  $S = (dV_{pol} / dr) (L_{rad} / L_{pol}) \tau$
- Scale lengths and times derived from correlation functions
- Poloidal velocity from delayed-time cross-correlations
- Average over ~40  $\mu sec,$  and ~ 1.5 cm radial for  $dV_{\text{pol}}$  / dr
- $L_{rad} \sim 3 \text{ cm}, L_{pol} \sim 4 \text{ cm}, \tau \sim 8 \mu \text{sec}, dV_{pol}/dr \sim \pm 10^5 \text{ sec}^{-1}$

=> S ~ ± 1-2 (interesting coincidence !?)

# **<u>Shear Preceding Transition (ρ ~ 0)</u>**

•  $V_{pol}$  and S reverse sign during quiet periods ( $F_{sol} < 0.2$ )



#### **Shear Preceding Transition**

 Turbulence shear S is not changing before L-H transition, so does not appear to trigger transition



### **Nonlinear Bicoherence Analysis**

#### F.M. Poli, U. Warwick

- Total bicoherence b<sup>2</sup><sub>tot</sub> has minima during quiet periods in all frequency ranges until 2 ms before L-H transition
- Total bicoherence slightly increases ~0.5 ms before transition in the low- to intermediate- frequency range



# **Conclusions**

- So far: "the role of turbulence in triggering the L-H transition must be considered open." [G.R. Tynan et al, PPCF (2009)]
- Possibilities:
  - L-H transition is triggered by slow or slight changes
  - the trigger is non-local, i.e. outside GPI field of view
  - creative data analysis might yet identify the trigger