Biased Electrodes for SOL Control in NSTX

S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D. Ryutov***

PPPL, Princeton NJ USA
* Nova Photonics, Princeton NJ USA
**ORNL, Oak Ridge TN USA
***LLNL, Livermore, CA USA

Poster P3-O3 @ PSI Meeting May 2008

<u>Abstract</u>

Small electrodes were installed near the outer midplane of NSTX to control the width of the scrape-off layer (SOL) by creating a strong local poloidal electric field. Clear increases were seen in the plasma density and potential in between these biased electrodes when the applied $E_{pol} \times B$ drift was directed radially outward. However, little or no change was seen in the D_a emission profile ~1 meter downstream from the electrodes along the magnetic field, implying that the poloidal electric field did not propagate this far along B.

Theory of SOL Control by Epol

 Create localized E_{pol} in SOL near divertor plate to cause radial E_{pol}xB flows to move SOL strike point or induce turbulent broadening of SOL

> R.H. Cohen et al, NF 37, 621 (1997) D.D. Ryutov et al, PPCF 43, 1399 (2001) R.H. Cohen et al, PPCF 49, 1 (2007)]

- Main questions:
 - do these perturbations affect the local SOL ?
 - do these perturbations locally induce turbulence ?
 - how far do perturbations extend II and \perp B ?

Previous Experiments

- Most tokamak biasing experiments aimed to create E_r and not E_{pol} [e.g. PBX-M, DIII-D, TdeV, TEXTOR...]
- Some experiments have shown creation of local E_{pol} in SOL JFT-2M [Hara et al, J. Nucl. Mat. 241-243, 338 (1997)] MAST [Counsell et al, J. Nucl. Mat. 313-316, 804 (2003)] CASTOR [Stockel et al, PPCF 47, 635 (2005)]
- MAST experiment was done to test idea of Cohen/Ryutov, resulting in partial confirmation of theory, e.g. movement of D_{α} strike point at biased divertor "ribs"
- Other experiments have seen potential propagate along B DITE [Pitts and Stangeby, Plasma Phys. Cont. Fusion 32, 1237 (1990)] TEXT [Winslow et al, Phys. Plasmas 5, 752 (1998)] W7-AS [Thomsen et al, Plasma Phys. Cont. Fusion 47, 1401 (2005)] ⁴

NSTX Electrode Biasing Experiment

- Uses electrodes near outer midplane in far-SOL
- Uses probes to measure local potential, n_e and T_e
- Uses GPI to see effects on $D_{\alpha} \sim 1$ m along B
- => Applied $E_{pol} \le 200$ V/cm (vacuum) could create a $E_{pol}xB$ of $V_r \le 5x10^6$ cm/sec, ~50 times larger than the typical radial velocity in the SOL (~ blob velocity)

bias <u>should</u> have strong effect on local SOL (it did) bias <u>should not</u> affect global plasma (it did not)

Biased Electrodes and Probes in NSTX

- 4 electrodes of size 3 cm x 3 cm
- 8 Langmuir probes next to electrodes
- leading edge ~ 1 cm behind RF antenna
- biased field lines seen by GPI diagnostic

Biased Electrodes and Probes

- Electrodes ≤100 V@30 A (or -100V@10 A), mod. @ 50 Hz
- Nearby Langmuir probes biased DC or swept ± 50 volts

NSTX Discharge Conditions

- Typically I=0.8 MA, B=4.5 kG, $P_{NBI} = 2-4$ MW
- Edge density in SOL increases with smaller outer gap

Electrode and Probe Signals vs. Time

- Here E2 @ 90 volts, E3 at + 90 volts, P3b @ +45 volts
- See clear increase in probe current with each biasing

Typical (I,V) Characteristics

- Electrode current $I_e/I_i \sim 7$ at ±40 V
- Probe current $I_e/I_i \sim 24$ at ±40 V $n_e \sim few \ x10^{11} \ cm^{-3}$ $T_e \sim 8\pm 5 \ eV$
- I_i(electrode) / I_i(probe) ~ 100, about area ratio (as expected)
- Electrode electron current more than 'double-probe' limit, but less than 'single-probe' limit

Probe Floating Potential Response

- floating potential of probes near - bias
- **95 V.** electrode doesn't change significantly
 - floating potential of probes near + bias electrode go up ~20% of voltage on electrode
 - => positive electrode affects local V_f
 - negative electrode does not 11

Local SOL Density Profile Effects

- E_{pol} x B directed outward between electrodes E2 and E3
- Radial profiles of I_e (\propto n_e) measured with probes P3a-P3d
- Local density increases x3 to x10 with ±90 volts on E2-E3

Effects on Local Turbulence

- Relative density fluctuations decrease x2 with biasing (floating potential fluctuations increase with biasing)
- Autocorrelation times and radial correlation lengths in L-mode are ~ unchanged by biasing
- During H-mode biasing, small ELMs are seen at probes, which increases correlation times and lengths

Ohmic and RF Heated Cases

 Similar density profile changes were seen in Ohmic plasmas (±90 volts) and RF heated plasmas (± 50 volts), with biasing between E2 and E3

Correlation of Probe & GPI

- GPI field of view showing regions of high correlation with fluctuations in each probe (white ~ 80% correl.)
- Regions of high correlation are near to projection of probes along B field line (green dots)
 - Size of correlation region ~ 4 cm, about size of turbulence 'blob'
 - => probes and GPI are seeing same turbulent 'filaments" or "blobs"

Radial Profile of D $_{\alpha}$ Emission

- D_{α} emission from a GPI gas puff measured ~ 1 m along B
- No significant change seen with biasing

 radial profile as measured between E2 and E3, using alignment from correlations

green dots = electrode centers

white line = range of this plot

red circle = overlap with p_{16}^{robes}

Summary of Experimental Results

• Poloidal electric field had a significant effect on the SOL profiles as measured the local Langmuir probe array:

SOL density increased by ~ factor of x3-10 over ~ 4 cm

- Poloidal electric field did not have a significant effect on the local turbulence (except during small ELMs)
- Positive bias had a small effect on the local floating potential, but negative bias did not have any effect
- No significant change was seen in the D_α profile and turbulence in the GPI diagnostic ~1 m away along B₁

Tentative Theoretical Interpretations

- Outward $E_{pol} \times B$ caused the increase in SOL density, but a quantitative comparison with theory can not be done without more information on penetration II and \perp to B
- Changes in local potential seen with (+) bias, and not (-) bias, is ~ consistent with sheath model of Ryutov et al
- Ratio of electron/ion current to electrodes I(+) ~ 7 x I(-) suggests a significant cross-field current, which may explaining the absence of effect on D_α ~ 1 m along B
- No clear evidence of increased turbulence due to biasing, as might be driven by local K-H instabilities

Sorry I could not come to this meeting

If you have questions or comments, please ask Ricky Maqueda at Poster P3-23, or email me at:

szweben@pppl.gov

Stewart