Edge Turbulence Imaging on NSTX and Alcator C-Mod

S.J. Zweben¹, R.A. Maqueda², J.L. Terry³, B. Bai³, C.J. Boswell³, C. E. Bush⁴, D. D'Ippolito⁵, E.D. Fredrickson¹, M. Greenwald³, K. Hallatschek⁶, S. Kaye¹, B. LaBombard³, R. Maingi⁴, J. Myra⁵, W.M. Nevins⁷, B.N. Rogers⁸, D. Stotler¹, and X.Q. Xu⁷

¹ Princeton Plasma Physics Laboratory
³MIT Plasma Science and Fusion Center
⁵ Lodestar Research Corp
⁷Lawrence Livermore Laboratory

²Los Alamos National Laboratory
⁴Oak Ridge National Laboratory
⁶ Max-Plank-Institut fuer Plasmaphysik
⁸ Dartmouth University

TTF '02

<u>Goal</u>

Understand edge turbulence by measuring its 2-D structure vs. time and comparing with theory

Outline

- Gas Puff Imaging (GPI) diagnostic
- Summary of C-Mod GPI results

Comparison of k-spectrum with DBM and BOUT

• Summary of NSTX GPI results

Radial profile during H-L mode transition

- DEGAS 2 Simulation of GPI signals
- Tentative Conclusions and Plans for 2002 run

Gas Puff Imaging Diagnostic

 Gas puff imaging (GPI) telescope views neutral line emission from He or D₂ gas puff ≈ along B field at the plasma edge (like BES but uses neutral gas instead of NBI)

 $S(photons/cm^3) = n_o f(n_e, T_e) A$

where the radiative decay rate is $A >> 10^7 \text{ sec}^{-1}$ for these lines.

- Space and time variation of neutral light emission is measured with fastfast gated cameras and PMs or PDs on discrete chords to determine edge turbulence structure (assumes k_{II} << k_⊥)
- Gas puff changes plasma density by ≈ 1% in C-Mod and ≤10% in NSTX, but this does probably not to perturb the edge turbulence significantly

Summary of C-Mod GPI Results

- Edge turbulence imaged over \approx 6 cm poloidally x 3 cm radially at outer midplane
- Frequency spectra and fluctuation levels agree well with Langmuir probes
- Poloidal k-spectra from GPI compared with DBM code and BOUT for one case

Videos of Edge Turbulence in C-Mod

- Taken at 2 µsec/frame at 250,000 frames/sec with the 64 x 64 pixel camera made by Princeton Scientific Instruments (Model PSI-3)
- Usually appears to be "blobs" (local maxima) moving radially and poloidally through the edge and SOL

(C-mod MPEGS here)

GPI Diagnostic Set-up in NSTX

- Similar to C-Mod system but using re-entrant port instead of coherent fiberbundle and elongated gas manifold instead of single-point gas nozzle
- Generally have used He puffs in NSTX and Deuterium puffs in C-Mod (although results from both are similar in each machine)

Location of GPI View (2001 Run)

- LANL Kodak camera views \approx 30 cm x 30 cm area just above outer midplane
- Fast chords view 2 cm diameter "spots" in 7 channel radial array with PM tubes (bandwidth ≈ 100 kHz, digitized at 500 kHz)

Typical GPI Videos for NSTX

- Made using LANL Kodak camera at 10 µsec/frame and 1000 frames/sec
- Grossly undersamples turbulence of autocorrelation time \approx 10-100 µsec NOTE: IMAGE ROTATED $\approx 90^{\circ}$ IN THESE MPEGS

#105627 density scan

#105710 (0.7 MA, 3 kG) (0.7 MA, 4.5 kG) (0.7 MA, 4.5 kG) H-L transition

#105711 no-H mode

Typical Signals from Fast GPI Chords

- Signals from 7 radial chords digitized for 0.128 msec @ 500 kHz
- Near outer wall see "intermittant" fluctuations with ~ 100% modulation
- Nearer center, see "Gaussian" fluctuations with $\approx 20\%$ modulation

Edge Turbulence Signals at L-H Transition

- L-H transition occurs within \approx 1 msec on most channels
- Perhaps preceeded by large "bursts" in outermost channels

Edge Turbulence Signals at H-L Transition

- H-L transitions occurs within $\approx 20 \ \mu sec$ in most channels
- Transition seems to propagate outward at $\approx 10^6$ cm/sec
- Transition seems to start with coherent mode (ELM ?)

Fluctuation Profiles in H-mode vs. L-mode

- Fluctuation level seems to be lower in H-mode (but non-zero) in #105710 etc, as expected from appearance of "brain-dead" H-mode emission in images
- Only one Thomson Scattering point within range of GPI data from '01

Correlations in H-mode vs. L-mode

- Correlation lengths and autocorrelation times in "late-H" (0.21 sec) similar to "L", with cross-correlations of ≈0.4 implying fluctuation level is non-zero
- But correlation lengths and autocorrelation times in "early-H" (0.20 sec) lower !

DEGAS 2 Simulation of GPI

- Average D_{α} or He (587.6 nm) emission cloud simulated given edge profiles
- Near center of GPI cloud, $S \propto n_e^{0.5} T_e^{0.5}$ for C-Mod and $S \propto n_e^{0.7} T_e^{0.5}$ for NSTX
- H-mode emission profile is narrower simply due to narrower edge profiles

Tentative Conclusions and Plans for 2002

- Edge turbulence in GPI looks similar to that seen elsewhere
- Initial comparisons with simulation / theory are encouraging
- Interesting radial profile changes during H-L transition in NSTX
- 2-color GPI imaging in Alcator C-Mod using two Xybions
- Make more ultra-fast videos using 28 frame PSI-4 camera
- Ask theorists to run simulations for more cases
- Feed simulation into DEGAS 2 and compare with GPI data