High Speed Imaging of Edge Turbulence in NSTX

S.J. Zweben, R. Maqueda¹, D.P. Stotler, A. Keesee², J. Boedo³, C. Bush⁴, S. Kaye,
B. LeBlanc, J. Lowrance⁵, V. Mastrocola⁵, R. Maingi⁴, N. Nishino⁶,
G. Renda⁵, D. Swain⁴, J. Wilgen⁴ and the NSTX Team

Princeton Plasma Physics Laboratory, Princeton, NJ

Los Alamos National Lab, Los Alamos, NM
 West Virginia University, Morgantown, WV
 3 UCSD, San Diego, CA
 4 Oak Ridge National Laboratory, Oak Ridge, TN
 5 Princeton Scientific Instruments Inc, Monmouth Junction, NJ

6 Hiroshima University, Hiroshima, Japan

TTF Meeting, Madison Apr. 3, 2003

- NSTX
- Gas puff imaging diagnostic
- GPI image and time series analysis
- Summary
- Plans

<u>NSTX</u>

R = 85 cm a = 68 cmA = 1.25 $I \le 1.5 \text{ MA}$ $B \le 6 kG$ 5 MW NBI 6 MW ICRH $\beta_{\rm T} \leq 35\%$

Gas Puff Imaging Diagnostic

- Look at Hel(587.6 nm) from gas puff $I \propto n_o n_e f(n_e, T_e)$
- View along B field line to see 2-D structure \perp B

Typical GPI Image

- Use typically 10 µsec exposure time ($\tau_{ac} \approx 40$ µsec)
- Average Hel light intensity peaked near separatrix

PSI camera frame 80 x 160 pixels

GPI Diagnostic Interpretation

- Hel light emission "I" visible where $5 \text{ eV} < T_e < 50 \text{ eV}$
- $I \propto n_e^{\alpha} T_e^{\beta}$, where $\alpha \approx 0.5$ and $\beta \approx 0.7$ near center of cloud
- Space-time structure of I similar to n_e^{α} , but $\delta I/I \approx \alpha \, \delta n_e/n_e$
- Fluctuation spectra of I similar to probe and reflectometer

GPI light gives <u>approximate</u> structure of edge turbulence

High Speed Imaging of NSTX Edge

100,000 frames/sec at 10 µsec/frame for 28 frames/shot [Princeton Scientific Instruments PSI-4]

Poloidal Correlation Length and k-spectra

- $L_{pol} \approx 4 \text{ cm or } k_{pol} \rho_s \approx 0.2$ (similar to other experiments)
- $\delta I/I$ lower in H-mode than L-mode (with much variation)

Time Series of GPI Light Fluctuations

- Hel digitized over 1.5 cm diam. chords through images
- Relative fluctuation level larger as R increases (≈ images)

Statistical Analysis of Typical Chords

- Autocorrelation times typically 40 ± 20 µsec
- Frequency spectra broad over ≈ 0.1 100 kHz

L-H and H-L Transitions

- L -> H in ≈ 100 µsec with obvious precursor
- H -> L in 30 µsec with outward radial pulse

Summary of Results So Far

- Images consistent with previous measurements
 - large fluctuation level in edge
 - broad frequency and k-spectrum
 - approx. isotropic structure $\perp B$
- Coherent structures seem to move through edge
 - "blob-like" look similar to DIII-D IPOs
 - "wave-like" look similar to EDA, QCM
- H-mode generally more quiescent than L-mode
 - considerable variation in behavior
 - transitions can happen very fast

Plans for Comparison with Theory

Using DEGAS-2 or neutral + atomic physics models:

- Compare GPI with BOUT simulations for H- and L-mode (Xu and Nevins)
- Compare motion of GPI "blobs" with blob model (D'Ippolito and Myra)
- Compare with other simulations...

Plans for Additional Measurements

- Capture H-mode transition with high speed camera
- Get better data on zonal flows in images and chords
- Examine turbulence nearer density limit
- Look during RF heating, e.g. co- vs. ctr. current drive
- Make systematic scans of q(a), rotation, Z_{eff} , etc.
- Make quantitative comparisons with other diagnostics