Visible Imaging of Edge Turbulence in NSTX

S. Zweben (PPPL), R. Maqueda (LANL) D. Johnson, L. Roquemore et al - PPPL, G. Wurden - LANL

TTF Meeting, Apr. 00

<u>**Goal</u>**: Understand physics of edge turbulence as a basis for understanding:</u>

- H-mode transition
- power and particle flow across SOL
- CHI current penetration (?)
- ICRH wave coupling (?)

<u>Strategy</u>: Quantitative and detailed comparisons of experiment with theory

- use "Gas Puff Imaging" to measure 2-D structure of edge density turbulence
- compare numerical simulations for NSTX (e.g from Maryland, LLNL, Garching...)

Imaging of Turbulence at ICRF Antenna

all Shot 101125, 20 µsec exposure time

113 msec

115 msec

117 msec

Talk outline

- Gas puff Imaging (GPI) diagnostic
- GPI Implementation on NSTX
- 2-D Images (w/ video)
- Data Analysis
- Comparison with theory
- Plans for NSTX and C-Mod

Gas Puff Imaging -Poloidal vs. Toroidal

Deuterium gas puff with no filter 10 μs exposure @ 1000 frames/sec

Shot 101533

Gas Puff Imaging -Radial vs. Poloidal

Helium gas puff with Hel filter (587.6 nm) 10 µs exposures @ 1000 frames/sec

Summary of NSTX GPI Analysis

- Strong (>10%) turbulence in visible light emission from D or He gas puffs or recycling at edge
- Poloidal / toroidal structure is similar to previous experiments (B field-aligned with $\lambda_{pol} \approx 10-15$ cm, $k_{pol} \rho_s \approx 0.1-0.2$, assuming $T_e \approx 25$ eV at edge
- Radial / poloidal structure as viewed by He gas puff shows strong turbulent variation vs. time
- Frequencies spectrum is broadband 1-100 kHz, power law exponent 2±1 above ≈ 1 kHz

Yet to do:

- Cross-correlation analysis of time series
- Search for coherent spatial structure
- Variation with plasma edge conditions
- Effects of ICRH or CHI on turbulence

Implementation of GPI on NSTX

• Use LANL fast camera for 2-D imaging

- typically use 10 µsec exposure time
- 1000 frames/sec @ approx. 200x200 pixels
- use with either D or He gas & line filters

• View gas puff either:

- across machine (toroidal vs. poloidal view)
- along B field line (radial vs. poloidal view)
- also look at recycling from ICRF antenna

• Supplement with 3-channel time series

- fiberoptic views 5 cm diameter at wall
- light detected by photomultiplier tube
- frequency response to $\approx 200 \text{ kHz}$

Plans for GPI on NSTX and C-Mod

- Clarify relationship between visible light fluctuations and density fluctuations
 - atomic physics
 - effect of neutrals on turbulence ?

• Improve 2-D imaging along B field

- linear gas manifold in NSTX
- re-entrant bellows on C-Mod
- million frame/sec camera ?

Increase radial extent of imaging

- high speed gas nozzle ?
- USX imaging w/µchannel plate ?

• Direct comparisons with simulations

- LLNL BOUT code
- Rogers/Drake code

Comparison with Theory

- First results from BOUT code show edge structures ≈ 2 cm in NSTX
- Not much else done yet:
 - edge parameters not well measured
 - codes not quite ready for NSTX
- Eventually want to compare:
 - radial and poloidal correlation lengths
 - zonal flows and coherent structures
 - changes with H-mode transition
 - variations with j(r), p(r), β (r), v(r), etc.

Time Series Analysis (1 Channel)

- Looking at gas puff near midplane in $D\alpha$ light
- Diameter of view ≈ 5 cm at wall
- Digitized at 500 kHz for 8 msec

- rms/mean ≈ 25%
- τ(auto) ≈ 30 µsec
- power law f(-2±1)
- no long-time correlations
- tail on probability dist. f'n
- often seems like "bursts"

GPI Gas Flow Rate in NSTX

- For He puff case in "end-on" image, total gas input $\approx 4x10^{19}$ atoms into chamber in ≈ 1 sec
- This is much less than the total neutral influx due to recycling, $\approx 10^{22}$ atoms/sec
- Local neutral density at He puff ≈ 10¹² atoms/cm³ similar to normal edge neutral density (?)
- Local particle source rate $\approx 10^{16}$ ions/cm²-sec
- Local ion flow without puff ≈ 10¹⁹ ions/cm²-sec, i.e. much larger than gas puff source
- Local cooling rate @ 50 eV/atom \approx 0.1 W/cm³
- Local cooling without puff $\approx 1 \text{ W/cm}^3$ (?)

==>> seems like local puff should not perturb edge plasma significantly at this level

