Search for Edge Zonal Flows in Alcator C-Mod

S.J. Zweben¹, J.L. Terry², M. Agostini³, T. Golfinopoulos², O. Grulke⁴, R. Hager⁵, J.W. Hughes², D.C. Pace⁶ and the Alcator C-Mod group

¹Princeton Plasma Physics Laboratory, Princeton NJ 08540
²Massachusetts Institute of Technology, Cambridge MA 02139
³Consorzio RFX, Associazione EURATOM, I-35127, Padova Italy
⁴ Max Planck Institute for Plasma Physics, D-17489, Greifswald, Germany
⁵Max Planck Institute for Plasma Physics, D-85748 Garching, Germany
⁶ORISE, Oak Ridge, TN 37831

- Motivation
 - Methods
 - Results

APS DPP 2011

Significance of Zonal Flows

- Zonal flows are m=0 fluid flows, generally with small radial correlation length and low frequency (f < drift waves)
- Zonal flows can reduce energy in drift wave turbulence, and so reduce turbulent radial transport (in theory)

Edge Turbulence Imaging in Alcator C-Mod

- Gas puff imaging diagnostic using D₂ puff in field of view
- Viewing area along $B \sim 6$ cm radially x 6 cm poloidally
- Camera imaging 64x64 pixels at 400,000 frames/sec

3

Method to Evaluate Turbulence Velocity

- Use 2-D cross-correlation to find V_{pol} of turbulence in ~ 25 μ s
- Average V_{pol} over poloidal field of view (~ 5 correlation lengths)
- Assume V_{pol} of turbulence is the same as poloidal ExB flow velocity (as in BES in DIII-D, Doppler reflectometry in AUG)

Poloidal Velocity Frequency Spectra

- For some ICRF cases see coherent mode at ~6-7 kHz
- More often broadband, intermittent spectra ~1-20 kHz

Radial Profile of Poloidal Velocity Spectra

- Spectra of coherent mode extends over -1.5 cm < ρ ≤ 1.0 cm
- Spectrum of broadband features within ± 1 cm of separatrix

Correlation with Magnetic Fluctuations

- Coherent V_{pol} mode is correlated with B-dot from coils
- This magnetic mode seems to have n=0 like zonal flow

APS DPP 2011

Poloidal Velocity Fluctuations vs. Density

- Magnitude of poloidal velocity fluctuations does *not* vary in a simple way with line-averaged density, B, or power
- But radial correlation width of V_{pol} decreases with density

radial correlation width of V_{pol} (FWHM)

APS DPP 2011

Poloidal Velocity at L-H Transition

 Coherent mode in V_{pol} disappears at L-H transition at all radii, at least in the *one shot* obtained so far

spectrum of V_{pol} just inside separatrix just before L-H transition

Theoretical GAM Frequency for C-Mod

• From a fit to GAM eigenfrequency for various plasma shapes $f = G c_s / (\pi R)$ with $R = R_o + r$, and $c_s = [\gamma (T_i + T_e) / m_i]^{1/2}$

where G ~ $(2^{-1/2}) (2/(1+\kappa) (1+1/(2A^{2/3}) (1+1/(4q^2)))$

• For C-Mod A=3, κ =1.6, q=3, T_e=T_i=50 eV, γ =4/3 and m_i=2

 $\Rightarrow f_{GAM} \sim 20 \ kHz$

• But radial profile of observed oscillation *does not* follow the radial profile of $T_e^{1/2}$ within $\rho = \pm 0.5$ cm ($T_e^{-35-350}$ eV)

Summary of C-Mod Results

- Coherent zonal-like flows or GAMs at ~6-7 kHz seen in edge of some ICRF shots, with correlated magnetic fluctuations
- More commonly, see broadband, intermittent poloidal velocity fluctuations with radial correlation decreasing with density
- Coherent velocity fluctuations disappear at the L-H transition

Experiments next year will investigate whether the coherent mode is related to ICRF-driven "E-GAMs"