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Motivation and Outline

Motivation: To measure the coefficients of electron particle
and thermal transport with sufficient accuracy to make
valid comparisons to theoretical models (R.R.).

e “Standard” MST plasmas w/ sawteeth: T, n,, T, ]

e Using MSTFit to calculate P, and

e The RFP as a test bed for stochastic magnetic transport
« DEBS modeling of MST Standard plasmas

e Electron thermal conductivity: measured v. R.R. modeled
e Comparisons to other MST plasmas.

e Summary
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The Madison Symmetric Torus Reversed-Field Pinch

i | minor radius 0.52m
i I 1 ! major radius 1.5m
e I plasma current < 0.6 MA
' == 32 e loop voltage ~10V
= =" — R= 150 cm ¥ toroidal volt-sec <2 V-s
H j —— pulse length <80 ms
| electron temperature < 1500 eV
' ; ion temperature <500 eV
! ¢100 — electron density <2x 1013 ¢cm-
beta ~5-20%
Y ' energy confinement time <10 ms

I L) ~

Magnetic diagnostics:
Radial field:
32 coils around the poloidal gap

Mode spectra:
64 sets of 3 orthogonal coils toroidally distributed

16 sets of 3 orthogonal coils poloidally distributed
8 sets of 3 orthogonal coils poloidally distributed
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Poloidal Projection of Diagnostic Locations
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“Standard” MST Plasma Discharges

13-nov-2000 Shot 69

» Typical plasma parameters:
— “Standard” w/ full PFN
- |, ~ 375 kA
- ng~1.1x10" cm-3
- F~-0.22

— Deuterium
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1 o  Sawtooth period ~ 5.5 ms

e Time of interest: ~ 15 ms,
“ l.e. early in the discharge
EE = but during plasma “flattop’
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Shots are ensembled wrt. the sawtooth crash.

nov-2000 ensemble of ~400 shots
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Plasma shots are
ensembled for 2 reasons:

— Want an “average”
measure of quantities, i.e.
smooth out the
fluctuations

— Need ~400 shots to get
T,(r,t) from Thomson sct.

This 6 ms time window
about the crash is sub-
divided into 12 time slices,
every 0.5 ms.

— High time resolution
signals (e.g. FIR) are
computed as 0.1 ms
ensembles.

— Raw TS data is
ensembled in 0.5 ms bins.
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Density and Temperature Profile Evolution

MSTHTit Abel inverted 11 chord FIR Interferometry*

MSTfit splines to 16 chord Thomson Scattering
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Comparison of Raw S Data to MSTFit Spllnes
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Select Time Slices of T (r) and n(r)*
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lon Temperature Profile Evolution

MSTFIT splines to 6 chord Rutherford Scattering*
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e lons are anomalously heated at
the sawtooth crash to temperatures
above the electron temperature.

 Must be some other mechanism
for ion heating than e-i collisions.
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Anomalous ion heating at the sawtooth crash may be
due to current profile relaxation.

. . _ T. (solid), T_(0) (stars
MSTFit reconstructions of the equilibrium '()e()()
profiles for Standard (solid) and Non-Reversed )
plasmas (dotted) between sawteeth. :
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MSTFit* and Measurement of j(r)

*in collaboration with J. Anderson
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e MSTFitis an equilibrium
reconstruction code that
solves the Grad-Shafranov
equation in toroidal
geometry, constrained by
experimental data.

e To calculate j(r):

MSE,

Faraday rotation, Mirnov
coils, flux loops, etc.
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Po(r.t) is found from the equilibrium fields.*

From Poynting’s theorem:

dwW . 1 9 rl
P,=—=-P,  -W =——gﬁ(ExB)-da-afz(aoE%Bz/uo)dV
\Y%

Poynt. mag
dt Wo s

MSTFit solves the Grad-Shafranov Eqn. to find toroidal and poloidal flux
functions, W,d(r): mm=> (r), B(r)

From 12 equilibrium solutions through the sawtooth cycle, using Maxwell's
Eqgns. and finite difference time derivatives:

0A AA 1 AD
B=VXA E=—— ||~ Ee=— 8 —_ E =_ﬂ=_l£
ot At 2nr At ¢ At R At
0B _AB
at At

With E(r.t,,4) and B(r,t), the Py(r,t) is calculated without measuring Z(r.t)
or modeling the resistivity.
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Using Ohm's law and neoclassical resistivity implies a Z_4~3.5.

For comparison, simple Ohm’s law
with neoclassical resistivity:

E(r) =m (n)j(r)
N (0,(0), T.(1), Z; (1)) =N oo (0 (), T (1), Z (1))

oV
ap

o0V .. . «r 0V
Pg=f(E-J)a—pap~f<m-J> ap=fmf>$ap

Equating, leads to an implied Z_*(r):

5

| parameterized profile
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At the wall an average Z_~3.5 is
needed to balance the input power.
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The MHD dynamo is partially accounted for.

From Poynting’s theorem (again): Eej= —li(goEz + i132)- iv * (E xB)
2 0t Yo Yo

Expanding in terms of a fluctuation average over mean and fluctuating
quantities:

<VxB>EMFis Tearing mode (e.g.) induced current
in this term. fluctuations are not accounted for.
’/ 41/3132 S ) L B
<pQ>—E°J+<E ]>—— V'(ExB)— -—<Ve*([ExB)>
2u, 2u, dt
T _ \ ) L /
e Y '
p _d_W _ fE°]dV Calculated with multiple small Small?
“ d MSTFit equilibria.

Dynamo fluctuations result in an EMF which sums with the inductive E to drive
current in the resistive plasma. The effects of this current are measured in our
diagnostics. Those measurements are used in MSTFit to find the total B and
j- Then E is calculated from finite difference time derivatives.
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Measuring y, requires measurements of the local power balance.

—( 0T, >-—1—i<rQ )+,

o Lfifs

e

ot 2nT))6

FEEEEEERaES

5
Qe _ onnv + Qcond __F T ;;.% n VrTe

2.5105.”‘_”._”“
| | —e—-1.75ms (total)
[ 7@ - conductive
- convective
L +0.75 ms (total)
240® | | — — -conductive |
. convective
& 1510° - -
£
2
° L
(@] 110° |- -
510% - .
S o
0 L. 40 P A R E R B
0 0.1 02 0.3 04 0.5
rho (m)

v S.,=P,-P,—-P,—P_ —elE,

rad = Crad(r/a) P

m 4 ln(A)
m; NiNe®

3

P, = LT, - T2/ mom, T,

510&_'"'I""I""I""IIIII

4408 [

3408 [
2108 [

1408 [

Integrated Power (W)

.1103_....|....|....|....|....

rho (m)

Ph.D. Defense, University of Wisconsin-Madison

March 20t, 2002



Radial Electric Field

E (Vim)

The radial electric field was calculated from the ion
momentum balance equation, and compared to
measurements from the HIBP.
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Electron thermal conductivity profiles indicate an

edge transport barrier.

L R

r —— -1.25 ms before
r — — = +0.75ms after

10% L

e

1000 -

measured X (m%/s)

100 L

10

rho (m)

During Standard plasmas, ¥, in

the core and mid-radius regions
is ~400 m?/s.

In the edge, a transport barrier is
inferred, and y,, drops an order

of magnitude to ~40 m?/s.

The thermal conductivity is
reduced after the sawtooth
crash, as compared to before.

The edge transport barrier
shows little change over the
sawtooth cycle.
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The magnetic fluctuation amplitude is not sufficient to
explain the observed electron transport evolution.

02

Trajectory of x, over a sawtooth cycle
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"safety factor"

The RFP is a good test bed for stochastic transport.

Standard MST Plasma
(-1.75 ms before sawtooth crash)
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e Large (m=0,1) magnetic tearing-
mode islands are present in the
MST.

e Overlap of these islands leads to

1 stochastic field-line wandering.
s ®* Regions of stochastic field are

confirmed in field-line tracing

simulations. (DEBS/MAL)
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Rechester-Rosenbluth Model of Stochastic Transport

In 1978, Rechester and Rosenbluth expanded the work of Callen in,

“Electron Heat Transport in a Tokamak with Destroyed Magnetic Surfaces.”
They suggest that for stochastic magnetic field lines, , for radial heat

transport is given by:

XR—R = ]:)stV te

D,(r) ~aR Y b%nré;l

(q(r) n)
b, x,.

effB( )

D (r,,) =

-1 -1 -1
Leff = LAC + )\'mfp

L~ 0.7 - 1.0 min MST (R=1.5 m)
from DEBS/MAL simulations.

This is valid when the “stochasticity
parameter” s>>1. They state:

“If s>1, then magnetic surfaces are
destroyed in the region between r,,, and
I+, and the field lines wander ergodically.
s=1 corresponds to overlapping islands of
different helicity. The transition region is
very complicated, and we will be discussing
mainly the case of high stochasticity, s>>1,
with dense rational surfaces.”

1TWon =Wow)
2 an
Wm,n - 4 I‘m,n (br)m,n

m, n
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DEBS Simulations of Standard MST Plasmas*®

: « DEBS is an initial value 3-D code that
solves the normalized non-linear
resistive MHD equations in doubly
periodic cylindrical geometry:

10° |

Lundquist number, S

10° |

p(dV/dt +Sve Av)=Sjx B+ P _A’v

| JA/ot=-E  E+SvxB=nj
tho (m) - e The equilibrium fields and resistivity

02 ““““““““““

> | profile were used to initialize the
] DEBS run with S~106.

o1 p . ] » This value of S is within a factor of 4

’ ] of the experiment, and many of the
| \ ] observed dynamics are demonstrated
o] \ by the simulation.
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DEBS reproduces the MHD activity for S~10°.

MST Standard plasmas DEBS simulation
02 ————7————7— LI R L B 02 vy
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The edge magnetic fluctuation level (normalized by the axial field)
measured in MST Standard plasmas is very similar to the level
simulated by DEBS for S~10°.

Since T, ~ 0.5-1.0 s, the simulated sawtooth period is ~ 3-6 ms, which
agrees very well with the experimental sawtooth period of 6 ms.
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Toroidal mode spectrum is slightly “off” in
DEBS.

MST Standard plasmas DEBS simulation
m=u, mode Gmp,
20 ——————— 0.007 [ —— N — 1
X s > m=1
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+—|—+++ + | AR S Jr‘+.+“|"f.;
O NV ARV AN 4 1 L 1 L | _!— 1 + + = 0 5 10
0 5 10 15 _
mode number toroidal mode number

e Too much energy (relatively) resides in the DEBS m=0 fluctuations,
particularly at very low toroidal mode number.

* The spectral fall-off with increasing n-mode number is not quite right

e Averaging over multiple simulations could make the spectral
dependence nicer.
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DEBS yields radial fluctuation eigenfunctions.

DEBS b, eigenfunctions Normalization functions
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DEBS yields eigenfunctions of b, by, and b,. b, and b, can be
compared to MST measurements at the wall to determine the
normalization factor for b..

Once the b, eigenfunctions are established the magnetic island widths,
the stochasticity parameter, and the thermal conductivity can be
calculated.
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Magnetic islands overlap in Standard plasmas.

Standard MST Plasma

o (-1.75 ms before sawtooth crash) DEBS/MAL* simulation of this experiment
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Y. aNd xrr agree where stochasticity is high.

X (m?/s)
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* In the core the stochasticity is
low and the fluctuation amplitude
overestimates the thermal
transport.

e |In the mid-radius region, where
resonant surfaces are closely
packed, the stochasticity is high.
In this region the stochastic
transport is in good agreement
with the measured transport.

* The edge transport governs the
overall confinement because of
the implied transport barrier
there.
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Volume-averaged . V. xrr ShOWS good agreement.

Over the sawtooth cycle, (core & mid radius)-averaged y, and
xrr SCale linearly, excluding the single time point following the
sawtooth crash.
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Volume-averaged ¥, scales with field stochasticity.

3000 .
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L]
o
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e
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500 |

(core & mid-radius)-averaged y,
and stochasticity parameters

o Standard

o Non-reversed
4 PPCD

1500 |

core-averaged stochasticity

4.5

* Through the discharges, the
field stochasticity appears to be
a good qualitative measure of
the transport characteristics of
the core & mid-radius regions
of the plasma.

e This holds across different
discharge conditions.

e During Standard plasmas the
time point following the crash
(filled circle) has a stochasticity
lower than implied from
fluctuation level alone, since
the g-shear has increased from
the current profile relaxation.
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A Summary of 0-D Transport Properties

FIR TS RS MSE

F Ip ne Te T, B, Tg Prot

KA xtorems eV eV T ms %

PPCD-0.97 383 1.10 825 410 0.395 40 98
Stan -0.22 375 1.10 310 240 0.347 1.5 6.5
N.rev 0.00 374 1.10 350 190 0.306 20 6.6
F>0 +0.02 390 1.00 250 225 0.329 1.25 4.6
F>>0 +0.03 386 1.03 250 225 0.310 0.75 4.3
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Comparisons of Mag

normalized fluctuation level

normalized fluctuation level
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* The reversal surface
is at the wall for F=0
plasmas, stabilizing
m=0 magnetic
fluctuations.

e A corresponding
reduction in the m=0
mode amplitudes is
observed, which
decreases even
further for F>0.

e During PPCD
plasmas there is an
overall reduction in
magnetic fluctuations.
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te and Total
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core averaged X, (m?fs)

Volume-Averaged . for Various Discharges
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M 1 plasmas have the lowest thermal conductivity,
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At the sawtooth crash, y, reaches a very high
value for F=0 and F>0 plasmas.
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Y. ODEYING % rre IMpPOses a lower limit on .

Normalized m=1 (core mode) amplitude

Anomalous Power in the Core 0.06
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Averaging over the core, <ygr.> ~ 1.3<x.>, SO0 we might expect
<X~ <Xrri> =<DgVy>
As a lower limit, we can approximate:  y,~y.(m,T,/mT,)"?

Allowing an estimate of ion energy balance in the core to examine
“anomalous” ion heating: It's small everywhere except when magnetic
fluctuations are big, just after the sawtooth crash.
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E (V/m)

A Note on Electron Diffusion.
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A Note on Electron Diffusion (cont.)
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Summary

18t time that sufficient diagnostics were available to characterize the
equilibrium behavior of MST plasmas over a sawtooth crash.

» Allowed profiles of y, to be calculated.

In the core, DEBS simulations confirm that the magnetic islands are
essentially isolated, which implies a low field stochasticity despite
large fluctuations, and which results in low electron thermal transport.

In the mid-radius region x.~D.V,, and scales correspondingly with
increasing fluctuations and stochasticity.

In the edge, a transport barrier is implied, which persists throughout
the sawtooth cycle and governs the overall confinement.

x; bounded by stochastic transport implies an anomalous ion heating
power (Dynamo?) which agrees qualitatively with the fluctuation
increase at the sawtooth crash.

Electron diffusivity is much lower than electron conductivity, and of
the same order as ion conductivity and ion diffusivity, suggesting that
particle flux remains ambipolar even though heat flux is not.
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b, iIncreases at the crash, as measured at the wall.

Magnetic mode number
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B.. Is extracted from the wall signals.

m=0,1 mode amp.
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mode number

B(n) = {B2(n)+ BZ(n)+ B*(n)

E(m,n) = ‘,1 +(IE—3R) Ep(m,n)

By(n)= EBP(m,n)
= B,(0,n)+B,(1,n)+B,(2,n)+...
~0+B,(1,n)+0+...

Bm=1,n)=~ Ju(%) B,(n)

B(m = 0,n) = B other,n) = yfB2(n)+ B2(n) - Jn(%‘) B,(n)
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Overview of the Experimental Conditions

CO, TS RS MSE
F Ip Ne Nshots  Tsawt. Te Ti BO trel
KA x10mcms3 ms eV ev T ms

PPCD-0.97 383 1.00 389 NA 825 410 0.395 |1
Stan. -0.22 375 089 475 6 310 239 0.347 -1.75
N.rev 0.00 374 1.01 401 6 350 187 0.306 -1.75
F>0 +0.02 390 0.93 336 4 250 225 0.329 -1.75
F>>0 +0.03 386 1.02 221 3 250 225 0.310 -1.25

Deuterium was the working gas for all experiments.
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