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The “sawtooth cycle” is a slowly changing, but very significant aspect of the plasma equilibrium.
Observations show that the character of the sawtooth event in the MST changes dramatically
when the =0 surface is removed from the plasma. Time evolved measurements of
thermodynamic profiles have been obtained in both reversed (F<0) and non-reversed (F=0)
plasmas, leading to the first measurement of radially resolved, time evolving heat transport in
the MST. In both cases, the heat flux is predominantly conductive over the majority of the
plasma volume, though convective heat transport becomes significant in the edge. The
observed heat and particle fluxes cannot be described by a diagonal transport matrix.
However, including cross-terms, such as those consistent with Rechester-Rosenbluth and
Harvey, can account for the observed fluxes. The value of magnetic field stochasticity
expected by this analysis agrees very well with predictions from DEBS modeling.
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Outline

 Motivation: To measure the coefficients for electron particle and
energy transport with sufficient accuracy to make valid comparisons
to theoretical models.

— Measurements of particle and energy source terms and gradients.

 Experimental Conditions: time dependant transport study of
o “Standard” plasma: ~385 kA, 1.1x101° m-3, F ~ -0.24, in deuterium.
* “Non-Reversed” plasma: ~385 kA, 1.1x101° m3, F = 0, in deuterium.

* Determination of Particle Flux (in flux surface geometry)
— ng(p.t), S,(p.Y), dn/dt D (p,t)
e Determination of Heat Flux

— Tp), ne(P.D), Ni2(p.t) EY Q(p.Y)

« Diffusive transport coefficients: D and x

« The Harvey model of stochastic transport: D
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Motivation

The plasma “sawtooth cycle” is a slowly changing, but very significant
aspect of the plasma equilibrium. Examining transport quantities wrt/
the sawtooth cycle phase can shed light on important plasma
dynamics.

To accurately study the movement of energy and particles in a MST
plasma it is necessary to have detailed, accurate measurements of
basic plasma parameters: T, n., np, T;, |, €tc.

Some of these quantities can be directly measured:

— n(r,t) from Far Infrared Interferometry

— np(r,t) from n_, and a collinear D, array

— T,(r,t) from Thomson Scattering

— T,(~0,t) from Rutherford Scattering

Others (in particular j) can be found from modeling (MSTFIT)
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Particle and Heat Transport Equations

Including possible sources and sinks of energy and particles, the equations of

continuity and energy balance are:

on —
ot rar(rr) +S

Solving for the particle and heat fluxes:

2(3nM) =-1+2(rQ) +Sg

on
Me = 1/1(Spe ~5)0r

=1r(sg -2 (EnT))or

For electrons in a 3 component plasma (e, np*, impurity Z), we can

write: Sp,e = NeNH(OjV)
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The Madison Symmetric Torus Reversed Field Pinch

|
| | minor radius .52 m
| ! major radius 1.5 m
T ==l plasma current < 0.6 MA
Ei; " Jfr 5 aef2 Im‘-p- voltage ~ 10V
B i : — 1 R= le ang® toroidal volt-sec <2V
. | : j : : pulse length < B0 e
. 1 m ; electron temperature < 1000 eV
! :[ ; 00 lemperature < 500 eV
! . — ¢ 100 em electron density <2x 10" ¢m™
| beta ~5 - 15%
Il/ ' energy confinement time < 10 ms

! I
Magnetic diagnostics:
Radial Field:
32 coils around the poloidal gap

Mode spectra:
B4 setsof 3 orthogonal coils toroidally distributed
16 sets of 3 orthogonal coils poloidally distributed
8 sets of 3 orthogonal coils poloidally distrbuted
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Poloidal Projection of Diagnostic Locations
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Introduction to the Experiment: F~-0.2

Motivation: To study the

13-nov-2000 Shot 69 dynamics of a fully
diagnosed MST plasma
é over a sawtooth cycle.

_+ Typical plasma parameters:

e e _ “Standard" w/ full PFN
L =1 ~385kA

— F~-024

— n,~1.1x1013 cm-3

— Deuterium

Sawtooth period ~ 5.5 ms

Time of interest. ~ 15 ms,
l.e. early in the discharge
but during plasma “flattop”
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Introduction to the Experiment: F=0

Motivation: To study the
30-mar-2001 Shot 80 effect of removing the

reversal surface from the
plasma.

=
o
S
o
o
@

g Typical plasma parameters:

— “Non-reversed” w/ full PFN
L — 1,~385KA

- F~0
V MWWMWMWWMWWWWWWWM@ - n,~ 1.1x1013 cm-3

— Deuterium

000 A

Sawtooth period ~ 5.5 ms

e Ll bl
el
s [

‘e Time of interest. ~ 15 ms,
l.e. early in the discharge
but during plasma “flattop”
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Shots are Ensembled wrt. The Sawtooth Crash

nov-2000 ensemble of ~400 shots
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Plasma shots are
ensembled for 2 reasons:

— Want an “average”
measure of quantities, i.e.
smooth out the fluctuations

— Need ~400 shots to get
T,(r,t) from Thomson sct.

This 6 ms time window
about the crash is sub-
divided into 12 time slices,
every 0.5 ms.

— High time resolution
signals (e.g. FIR) are
computed as 0.1 ms
ensembles.

— Raw TS data is ensembled
iIn 0.5 ms hins.
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The g=0 surface Is excluded in F=0 plasmas

The “Safety Factor” profile -1.75 ms away from

the nearest sawtooth crash.
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0.4

0.5

In MST plasmas B;~B; and
R/a~3, resulting in g<1
everywhere.

Core modes are dominantly m=1
and n=5,6,7

Edge modes are dominantly m=0
(at the reversal surface) and
n=1,2,3,...

In F=0 plasmas, the q=0 surface is
removed to the extreme edge,
eliminating the m=0 rational
surface, and presumably reducing
the overal level of magnetic
fluctuations.
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Bp array signals constrain q,(t)>1/6 for F~-0.24

Magnetic mode number
M 2
m: ™ T T 14 m T T T ™

(Gauss)

14
- .

16}

10F

5t

b A

-3 -2 -1 4 1 2 23

2001 Joint US-European TTF Workshop

11
Hl}: PSSR
15?—
| S,

-3 -2 -1 0 1 2 3

5
20f T i
1DE—
st -
u:_'"_ﬁ_._A\-ﬂ...__,.._.

-2 -2 -1 0 1 2 3

time from sawtooth (ms)

8
%
155
1of ]
of

-3 -2 -1 & 1 2 21

May 17t%, 2001




B array signals constrain q,(t)>1/5 for F=0

Magnetic mode numbern
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T,(0,t) from Rutherford Scattering shows ion heating
. Standard, F~-0.24 Non-Reversed, F=0

¥
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* Rutherford Scattering measures the temperature of the majority ion
species, showing evidence of ion heating at the sawtooth crash to
temperatures hotter than the central electron temperature for F~-0.24.

« Impurity ion (C,) temperatures, measured via an lon Dynamics
Spectrometer, have confirmed this heating in the past. Data Pending.

 There is no evidence of this ion heating in F=0 plasmas.
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Temperature Profile Evolution

Standard, F~-0.24 Non-Reversed, F=0
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Eliminating the Reversal Surface Results in Higher T,

Standard, F~-0.24
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Non-Reversed, F=0
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Density Profile Evolution

Standard, F~-0.24 Non-Reversed, F=0
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Pressure Profile Evolution: F~-0.24

Electron pressure evolution from n*T,

Pe

Before the sawtooth crash
the edge pressure gradient
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Pressure Profile Evolution: F=0
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Particle and Heat Flux

Stanc!ard, F~-0.24
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Particle and Heat transport coefficients: D, X

Standgrd, F~-0.24 - oo Non-Reversed, F=0
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Transport Equations (Harvey)

The kinetically derived Fokker-Plank Equation for a plasma, including an
ambipolar, radial electric field is:
(o) = Voa| (D) , GEa (Dm)Thi , 9Ea o [
ot/m r [ or MVpar OVpgy [1Pr MVpg 0V [
« Taking the first two moments of this equation and comparing to the source
free continuity ( & =-+&(T) and energy balance (53T =S -15(Q)) equations
leads again to expressions for the particle and heat flux:

r=- Dn(lan 101 qE) Q= 2DnT(;@ §16_T_qE_a)

nor 2T or T nor 2T or T

By making the identification (x- —viDm =2D ), these expressions can be
combined to yield a relation for the convective and conductive parts of the
heat flux: oT

T -vyn_r =%V 4 cond
Q=2IT—xn--=Q Q

« Assume for the moment that the ambipolar terms are small by comparison in
each expression. In this assumption a stochastic diffusion coefficient can
easily be calculated.
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In F~-0.24 plasmas stochastic diffusion can account for hollow T, n, profiles

S F:—Da(Dn+2—r_]|_D T

10% 10%
F| —-1.75 ms away

L| ——-0.25 ms before
+0.75 ms after

F|——-1.75 ms away
[ | ——-0.25 ms before
+0.75 ms after

1000

1000

(m2/s)

100 £ 100 £

D, (m?/s)

D_st

lOE_ 105—

I S P I B R l-..K.—...I....I....I....

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

rho (m) rho (m)

« In the approximation that the E_ terms are small, the derived

stochastic diffusion coefficients are well behaved across the plasma
volume.

* Note that in this formalism there is the identity that x = 2D.,.

« Including the E_ terms effectively leads to D=Xystrr/2, Since I is

relatively small compared to Q (i.e. conductive heat flux is very much
larger that convective flux) over the majority of the plasma volume.
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Conclusions

« This represents the first measurement of time resolved T,
profiles in the MST.

* In both Standard and Non-Reversed plasmas, the
pressure gradient appears to cross the critical Suydam
limit to interchange instability prior to the sawtooth crash.

 Energy loss is primarily conductive, not convective.

e Confinement is somewhat improved in Non-Reversed
plasmas over Standard plasmas by excluding the g=0
surface.

* A reduced Harvey model for transport in a stochastic
magnetic field could account for observed T, n, profile
characteristics in Standard plasmas, especially where a
simple diffusive model falils.
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Future Work

 The inclusion of HIBP data is underway.
— An additional constraint on the current profile.

— An avenue of direct comparison between “independent”
calculations of E_ and phi.

« |IDS data yet to be examined.
— minority temperature profile, T,(r,t)
— flow velocity profiles for an ion momentum balance est. of E,
— Possible confirmation of ion heating at the sawtooth

 Repeat the analysis for a F>0 plasma experiment.

 Repeat the analysis for a high confinement, “PPCD”
experiment.
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Reprints

Full color version of this poster is available online at:

http://sprott.physics.wisc.edu/biewer/ttf2001poster.pdf
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