
Homework 5

APAM 4990 (2010)

As we have discussed in the class, by changing F (x,v, t) to F (R, µB, U, ϕ, t), where x =

R + ρ, µB = v2
⊥/2B, v = v⊥ + U b̂, ρ = b̂ × v⊥/Ω, v⊥ = v⊥(cosϕê1 + sinϕê2), b̂ =

ê1× ê2, v = U b̂ + v⊥, and b̂ is the unit vector in the direction of the external magnetic field, we

can write the Vlasov equation in slab geometry as
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by using ∂F/∂x ≈ ∂F/∂R and
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where E(x) = −∇Φ(x). From the ordering consideration of ω/Ω ∼ k‖U/Ω ∼ eΦ/Te ∼ o(ε),

where ε is a smallness parameter, we can conclude that
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is the lowest order solution. This knowledge enables us to assume that

F = f + εg,

for which f(R, µB, U, t) 6= f(ϕ), and the Vlasov equation to the order of ε then becomes
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Note that the last term in Eq. (1) is of o(ε2) and, therefore, is negligible.

(1) Show that the last term in Eq. (3) comes from ∂Φ/∂x ≈ ∂Φ/∂R for ρ ≈ const. and
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which can be obtained from Eq. (2) [hint: ∂Φ(x)/∂v = 0, why?].

The gyrophase averaged equation can then be obtained from Eq. (3) as
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and the gyrophase dependent part becomes
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where Ē(R) = 〈E(x)〉ϕ and Φ̄(R) = 〈Φ(x)〉ϕ are the gyrophase-averaged electric field and

potential, respectively, and 〈· · ·〉ϕ ≡
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In the limit of k⊥v⊥/Ω → 0, Φ̄(R) ≈ Φ(x), which gives Ē(R) ≈ E(x). Thus, Eq. (4) becomes

the usual drift kinetic equation in this limit, since there is no distinction between R and x.

However, the different between Φ and Φ̄ needs to be maintained even in the limit of k⊥v⊥/Ω→

0 for Eq. (5), because

n =
∫
Fdv =

∫
fdv +

∫
gdv,

and the latter is the all-important polarization density, i.e.,
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where the drift kinetic f in g, Eq. (5), can further be approximated by a Maxwellian.

(2) Show that, for dv = BdµBdUdϕ/2π, the corresponding gyrokinetic Poisson’s equation
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by first transforming Φ̄(R) in np back to the x coordinates through eik·R = eik·x−ik·ρ and then by
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Note that Eq. (4), in its drift kinetic form, and Eq. (6) agree with the ad-hoc equations that

we derived in class earlier. The gyrokinetic Vlasov-Poisson system valid for k⊥v⊥/Ω ∼ o(1) is

included in the posted lecture and will be discussed later.


