
Numerical properties of simulation plasmas

    • Linear Properties 

    • Fluctuation-Dissipation Theorem

    • Numerical Noise

    • Time Step Restrictions

    • Grid Spacing Restrictions

    • Initial loading: Quiet Start - Fobanacci numbers

    • Implicit Schemes



Normal Modes in a One-Dimensional Plasma

|ω/k| ! vtα• Cold plasma limit, 

• Cold ions, |ω/kvte| << 1|ω/kvti| >> 1 and warm electrons, 

 -- plasma waves contributed by electrons only

-- ion acoustic waves contributed by both electrons and ions

• These are the damped normal modes based on the linear dispersion relation

•  These oscillations can be observed in an one dimensional particle code. 

• This is the first step in verifying the code: frequencies and damping rates of these 
  normal modes.
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Fluctuations in a Simulation Plasma
• Weakly damped modes are the long-lived normal modes of an equilibrium plasma. The 
level of their fluctuations can be obtained from the Fluctuation-Dissipation Theorem (FDT) 
through the linear dispersion relation.  As such, its an invaluable tool for the particle pushers 
for diagnostic purposes  -- one man’s noise is another man’s signal.

• FDT cannot tell us anything about a linearly unstable system.  However, if we know the 
dispersion relation for a nonlinearly saturated system, we may be able compare the saturation 
level with the fluctuation (noise) level.

• It has always been a magic to me, even to this day. But, apparently, FDT has a solid 
theoretical base. 

• For one-dimensional plasma in equilibrium,  

L|E(k,ω )|2/8π = −(T/ω)Im(1/ε)
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- FDT

-- Total thermal fluctuation level

= T/2 for long wavelength modes



• From 

Fluctuations in Weakly Damped Normal Modes [Klimontovich ‘67] 
πδ(x) = limσ→0σ/(x2 + σ2),Im
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• High frequency modes  - plasma waves 

• Low frequency modes  - ion acoustic waves 

• Thus, all the fluctuation energy is in high frequency waves for long wave length modes.

.

• Expanding around a normal mode, Ω : 

• Integrating over frequency                , FDT becomes
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Particle Noise in a Simulation Plasma
• The reason we are concerned about fluctuations in an equilibrium plasma is to estimate how 
many particles we have to use in the simulation.   

 • It can then be shown that

|eΦ(k, wpe)/Te|th =
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• N is the number of simulation particles in the wave, not in the Debye shielding volume.

|eΦ(k, ws)/Te|th =
1√
N

plasma waves 

ion acoustic waves 

• Noise resides mostly in high frequency space charge waves for long wavelength modes.

• Noise is much less in low frequency quasineutral waves -- good news for microinstabilities.



Fluctuations in Simulations with Finite Size Particles 
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[Many papers by Birdsall, Langdon and Okuda  in ‘70’s]

• Linear Dispersion Relation

• Thermal fluctuations

• Finite size particles only affects short wavelength modes by reducing their fluctuation (noise) level .
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Time Step Restrictions in Particle Codes 
•  Plasma Dispersion Function [Dawson ‘61]
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and substituting them into the above function for the electrons, we obtain a new form 
of the linear dispersion relation for an equilibrium plasmas

Let 

Let 
where the cold ion response is used.

ωpe∆t ≤ 1

kvte∆t ≡ (kλDe)(ωpe∆t) ≤ 1

• Langdon elegantly showed that  Δt here is equivalent to the time step used in 
   the leap-frog scheme [JCP ‘79] 

• Limitations on the time step

-- it’s violation will cause numerical instability

-- it’s violation will cause numerical inaccuracy only



Limitations on Grid Spacing in Particle Codes
• Finite difference for the potential
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• Suppression of plasma waves also alleviates this condition.
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 • Dispersion relation for an equilibrium plasma including the finite time step 
   and the finite grid spacing becomes

• Grid spacing limitation: -- it’s violation will cause numerical instability
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Implications of the Numerical Restrictions on Particle Simulations 

the implicit schemes were born in the early ‘80’s.

• Development of the gyrokinetic scheme also in the early ‘80’s

  -- why not get rid of plasma oscillations and the grid spacing restrictions
     with an explicit simulation scheme?
  -- how about using a reduced Vlasv-Poisson system based on gyrokinetic ordering?

ωpe∆t ≤ 1

kvte∆t ≡ (kλDe)(ωpe∆t) ≤ 1

• After Langdon’s JCP paper in ‘79 giving these restrictions:
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• The reasoning behind is that we can let ωpe∆t ! 1
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• The reasoning behind is that we can let • The reasoning behind is that we can let 

• So, let’s get grid of plasma waves and the grid spacing restriction with implicit schemes.

• But, let us deal with the noise issue first.



The Direct Implicit Scheme 
[Friedman, Langdon and Cohen, Comm. Plasma Phys. Control. Fusion 6, 225 (1981)]
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Initial Loading of Particles
• Uniform loading in x and random loading of Gaussian in v, 

-- too noisy

• Uniform loading in x and uniform loading of Gaussian in v

-- Beam - Beam instability 

• Uniform loading in x and with non-random loading of Gaussian in v by 
staggering the particle velocities based on number theory for optimal set of 
points for Monte-Carlo simulation [Zaremba, “Applications of Number 
Theory to Numerical Analysis, Academic, New York (1972), pp. 39-119.]

  -- For 2D 

 -- For higher dimensional problems: using tabulated numbers 

• The question of mathematical accuracy in PIC must be regarded as a convergence problem in the 
frequency and wave number spectra, not from a single particle point of view.

• Initial loading should not have any effects in the long time PIC simulation.

N = α9 = 55

g1 = 1

g2 = α8 = 34

xk
i =

igk

N
mod 1 (g1, g2) = (1, NFibonancci)



Quiet Start         1 (m =1) 
        2 (m =2)
        3 (m =3)
        5 (m =4)
        8 (m =5)
      13 (m =6)
      21 (m =7)
      34 (m =8)
      55 (m =9)
      89 (m =10)
    144 (m =11)
    233 (m =12)
    377 (m =13)
    610 (m =14)
    987 (m =15)
  1597 (m =16)
  2584 (m =17)
  4181 (m =18)
  6765 (m =19)
10946 (m =20)
17711 (m =21)
28657 (m =22)
46368 (m =23)

• Uniform loading in x and with non-random loading of Gaussian in v 
   with Fobanacci numbers

[J. Denavit and J. M. Walsh, Comments Plasma Phys. Cont. Fusion, 6, 209 (1981).]

xi =
2i − 1

2αm

yi = αm−1xi
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√
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     N =        is the number of particlesαm

i = 1,..., N 

• Can we do better than that?  Delta-f ?

     • Higher dimensional problems: bit-reverse scheme,  Hemmersley 
numbers, and Zaremba numbers.

[J. Reynders, Ph.D. Thesis, Princeton University (1992).]

• Steady state fluctuation level agrees with FDT
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Remarks

• The question of mathematical accuracy in PIC must be regarded as a convergence problem in the 
frequency and wave number spectra, not from a single particle point of view.

• Don’t let computers do the thinking for you. 

• Courant condition is relaxed in PIC. 

• There are many attempts on the implicit schemes for particle codes as recent as last ICNP 
conference in Texas. But, they all suffer from the lack of energy conservation.  

• Now, we will proceed to improve particle codes in terms of noise, time step, grid spacing and etc.
-- perturbative particle particle simulation (δf)  
-- gyrokinetic particle simulation
-- multiscale particle simulation


