Numerical properties of simulation plasmas
e Linear Properties
e Fluctuation-Dissipation Theorem
 Numerical Noise
e Time Step Restrictions
e Grid Spacing Restrictions
* Initial loading: Quiet Start - Fobanacci numbers

e Implicit Schemes



Normal Modes 1in a One-Dimensional Plasma

5f = —2 [1+

k e,
1 w/ +ir—6(v — w/k)] ¢lo  -- weakly damped modes

v—w/k k

e Cold plasma limit, |w/k| > viq

—1/2k2\?
w R wpe\/l + 3202 lil - i\/gexlf’( (m/ ) De)]
De

Wpe = £/ dmn,e?/m -- plasma waves contributed by electrons only

w/kvee| << 1

w/kvii| >>1 and warm electrons,

]‘CCS j:l Z\/? me 1 T
w =~ o o _ .
(]. -+ k2>\%e)1/2 8 m; (1 4 kz)\%e)g/z Cgs e/mz

-- 1on acoustic waves contributed by both electrons and ions

e Cold 10ns,

e These are the damped normal modes based on the linear dispersion relation
e These oscillations can be observed in an one dimensional particle code.

e This 1s the first step in verifying the code: frequencies and damping rates of these
normal modes.



Fluctuations 1n a Simulation Plasma

e Weakly damped modes are the long-lived normal modes of an equilibrium plasma. The
level of their fluctuations can be obtained from the Fluctuation-Dissipation Theorem (FDT)
through the linear dispersion relation. As such, its an invaluable tool for the particle pushers
for diagnostic purposes -- one man’s noise 1s another man’s signal.

e FDT cannot tell us anything about a linearly unstable system. However, if we know the
dispersion relation for a nonlinearly saturated system, we may be able compare the saturation

level with the fluctuation (noise) level.

e It has always been a magic to me, even to this day. But, apparently, FDT has a solid

theoretical base.

 For one-dimensional plasma in equilibrium,

LIE(kw) /87 = —(T/w)Im(1/e)

LIE(k)|* /8 = (T/2)/(1 + k*AD)

- FDT

-- Total thermal fluctuation level

= T/2 for long wavelength modes



Fluctuations in Weakly Damped Normal Modes [Kiimontovich ‘67]
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* High frequency modes - plasma waves
L|E(kwpe)|? /87 =T/2

e Low frequency modes - 1on acoustic waves
22
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e Thus, all the fluctuation energy is in high frequency waves for long wave length modes.



Particle Noise 1in a Simulation Plasma

e The reason we are concerned about fluctuations in an equilibrium plasma 1s to estimate how
many particles we have to use in the simulation.

e [t can then be shown that

1
e®(k, wpe)/Teltn = NN plasma waves
De
1
\eCID(k, ws)/Te\th = — 10n acoustic waves
vV N

* N is the number of simulation particles in the wave, not in the Debye shielding volume.

* Noise resides mostly in high frequency space charge waves for long wavelength modes.

e Noise 1s much less in low frequency quasineutral waves -- good news for microinstabilities.



Fluctuations 1n Simulations with Finite Size Particles

[Many papers by Birdsall, Langdon and Okuda in *70’s]

e Linear Dispersion Relation
€ = 14 [Skl*[1 + & Z (&) + 7 + 76 Z(&)]/ (BApe)? = 0

* Thermal fluctuations

T/2
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* Finite size particles only affects short wavelength modes by reducing their fluctuation (noise) level .

e For long wavelength modes with k*)\7, < 1 and k2a? < 1, physics is intact.



Time Step Restrictions in Particle Codes

e Plasma Dispersion Function [Dawson ‘61]

kv, t)?
ot )]dt

Xa=&02(&n) =—1+ (kvm)2 /Ootexp [z’wt — ( 5

0 —o

and substituting them into the above function for the electrons, we obtain a new form
of the linear dispersion relation for an equilibrium plasmas

e =1+ (wpeAt)? Z gexp [i(wAt)qg — (kApe)* (wpeAt)?q%/2] =0

q=0
where the cold 10n response is used.

e Langdon elegantly showed that At here is equivalent to the time step used in
the leap-frog scheme [JCP “79]

e Limitations on the time step
wpe AL <1 _it’s violation will cause numerical instability

kvie At = (kApe)(wpeAt) <1 - it’s violation will cause numerical inaccuracy only



Limitations on Grid Spacing in Particle Codes
* Finite difference for the potential

E(x) =[®(x — Azx) — ®(x + Ax)|/2Ax

gives k — ksin(kAz)/(kAx)
- 2 12 sin(kAx/2) ’ 0 y
d k k [ (hAz)2) ] = k*W (kAx/2)

 Dispersion relation for an equilibrium plasma including the finite time step
and the finite grid spacing becomes

e =1+ (wpeAL?|ISe” Y (kp/k)W" (kpAx/2)

p=—00

x Y qexpli(wAt)q — (wpeAt)? (kpApe)®q®/2] = 0

q=0

k, =k —2np/Ax | n=2 NGP, n=4 linear interpolation or SUDS
e Grid spacing limitation: Az < Ape --it’s violation will cause numerical instability

e Suppression of plasma waves also alleviates this condition.
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Implications of the Numerical Restrictions on Particle Stmulations

e After Langdon’s JCP paper in “79 giving these restrictions:
wpe AL < 1
kve At = (kEApe) (wpeAl) < 1,
the implicit schemes were born in the early ‘80’s.

e The reasoning behind is that we can let Wpe At > 1

and still keep the physics for k“)\7, < 1 intact, the inaccuracy for k*\%, >> 1 is OK.

e So, let’s get grid of plasma waves and the grid spacing restriction with implicit schemes.

e Development of the gyrokinetic scheme also in the early ‘80’s
-- why not get rid of plasma oscillations and the grid spacing restrictions

with an explicit simulation scheme?
-- how about using a reduced Vlasv-Poisson system based on gyrokinetic ordering?

e But, let us deal with the noise issue first.



The Direct Implicit Scheme
[Friedman, Langdon and Cohen, Comm. Plasma Phys. Control. Fusion 6, 225 (1981)]

Leap-frog Upgl = Up L = EEnAt Tnt1 — Tn = Upq 1 At
. 1 1 g B A
Implicit Upgyl = VUp_ 1+ 5%—3 — §EEn+1At Tnl = Tn = Upy1 t
Tpt1 = xf,LOJ)rl + oz zeroth order for free streaming

bx = B(AV)(AL) = AL (q/m)Epiq 0 <6 <1 implicitness parameter

(0 N0 0 o
Pn+1 = IOn-|—1 T 5$axpn—|—1 5p T 5xax n—+1
Let J XEni1] = 470
_— n p— T
¢ I X L1 P

0) d
x = dmBp, )y — AL = fup Al

V- [1+xVonp = —47TP510421




Initial Loading of Particles

e Uniform loading in x and random loading of Gaussian in v,
-- t00 NO1sy

e Uniform loading in x and uniform loading of Gaussian in v
-- Beam - Beam instability

e Uniform loading in x and with non-random loading of Gaussian in v by ]
staggering the particle velocities based on number theory for optimal set of
points for Monte-Carlo simulation [Zaremba, “Applications of Number

Theory to Numerical Analysis, Academic, New York (1972), pp. 39-119.]

-

-- For 2D
k ig" 1 2y - x
v = —mod 1 (97,9°) = (1, NFivonancei) N = g — 55
g =1
-- For higher dimensional problems: using tabulated numbers g? = ag = 34

e The question of mathematical accuracy in PIC must be regarded as a convergence problem in the
frequency and wave number spectra, not from a single particle point of view.

e Initial loading should not have any effects in the long time PIC simulation.



Quiet Start

e Uniform loading in x and with non-random loading of Gaussian in v
with Fobanacci numbers
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FIGURE 4 Fundamental electric field amplitude |E:x| as a function of time for Landau
* ] N damping example. (a) Random initialization with 17711 particles. (b) Nonrandom initializa-
I = ’ ’ tion with 17711 particles. (¢) Result of a Vlasov simulation.

N = «,,, 18 the number of particles

[J. Denavit and J. M. Walsh, Comments Plasma Phys. Cont. Fusion, 6, 209 (1981).1

e Steady state fluctuation level agrees with FDT

e 1
e| Byl /mugpw, = k:)\D\—(b = ——

T N

e Higher dimensional problems: bit-reverse scheme, Hemmersley
numbers, and Zaremba numbers.

{J. Reynders, Ph.D. Thesis, Princeton University (1992).1
* Can we do better than that? Delta-f ?
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Remarks

e The question of mathematical accuracy in PIC must be regarded as a convergence problem in the
frequency and wave number spectra, not from a single particle point of view.

e Don’t let computers do the thinking for you.
e Courant condition is relaxed in PIC.

* There are many attempts on the implicit schemes for particle codes as recent as last ICNP
conference in Texas. But, they all suffer from the lack of energy conservation.

e Now, we will proceed to improve particle codes in terms of noise, time step, grid spacing and etc.
-- perturbative particle particle simulation (0f)
-- gyrokinetic particle simulation
-- multiscale particle simulation



