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Abstract

We introduce a modular, parallel, multi-regional, implicit transport equation
solver built over the Plasma State and other publicly available (NTCC) libraries.
The solver has been installed, is being tested, and will be available for use in
predictive TRANSP (PTRANSP). The solver itself does not depend on PTRANSP
internals and will be made available through the NTCC website. The solver is
used to integrate the highly nonlinear time-dependent equations for ion, and
electron temperatures and densities, and angular momentum with implicit
Newton iteration methods. The user controls choice of transport models
attached to the solver, with a wide range of neoclassical and/or turbulent, or
semi-empirical or data driven choices available. Available turbulent transport
models include: MMM series, GLF23, and TGLF. For the more CPU-intensive
transport models such as TGLF, a multi-level, communicator splitting method is
used to parallelize the computation of transport coefficients using MPI, allowing
the code to run on a flexible number of CPUs. In order to test and benchmark the
code, PTRANSP code predicted temperature profiles have been compared to
experimental data, achieving good agreements.



Governing equations

lon energy conservation equation
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Angular momentum conservation equation
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QL is a parameter for hyper-conductivity terms. Note these term vanish in limit 40 =0




Numerical algorithm

* Finite difference method used to discretize the governing equations

* Newton iteration method developed by S.Jardin & G. Hammett (JCP 2008)
used to solve tri-diagonal finite difference equations

* Hyper-conductivity term to damp short wave oscillations
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Plasma flows and E x B shear

* No poloidal momentum equation solved in present formulation.

* Two methods have been implemented to calculate poloidal velocities

* NCLASS model to calculate the poloidal velocities
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* R.E.Waltz’s neoclassical approximation for simple circular geometry
(R. E. Waltz, G.M.Staebler et al., PoP, 1997)
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Parallel PT_SOLVER

e Some turbulent models (such as TGLF) use most of the
computing time.

e The newton iteration solver is efficient.

 Multi-region capability allows user to choose different model
for core, middle, and edge plasma region.

e Communicator split method for multi-task parallelization. It
assigns different task into different group of CPUs (daughter
communicator)

e |ntegrated, multi-scale simulation code requires multi-task
parallelization.

e Two-level parallelization implemented in PT-SOLVER using
communicator split method.

a): parallelization of flux-surface numbers
b): parallelization of TGLF in spectrum domain.



TGLF model

*The model solves for the linear eigenmodes of trapped ion and
electron modes (TIM, TEM), ion and electron temperature gradient
(ITG, ETG) modes and electromagnetic kinetic ballooning (KB)
modes.

*The TGLF model generalizes the methods of GLF23 to a more
accurate system of moment equations and an eigenmode solution
method that is valid for shaped geometry and finite aspect ratio.

*The Miller equilibrium model is used in TGLF for shaped finite
aspect ratio geometry.



Plasma state module

e The plasma state

1): contains data for axisymmetric MHD equilibrium, plasma and
source profiles (1D and 2D), and associated scalar data.

2): has interface to access the data (rezone, and interpolation
function).

3): data in plasma state is component based fortran 90 type.

4): provides a mechanism for communication between different
codes.

5): PT_SOLVER is based on plasma state software.
6): see http://cswim.org/componentdescrip/plasma_State_V2.003.doc
for more details.



Communicator split method (parallel PT_SOLVER)

Global communicator

MPI_COMM_WORLD

sub-communicators

MPI_GRP_n
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1: split MPI_COM_WORLD
Into several sub
communicators,

the number of
sub-communicators

IS dependent on the umber
of node on which tglf model
will run.

2. assign the TGLF model
on the sub-communicators
to calculate the transport
coefficient

3: collect the transport
coefficients for the Newton
iteration solver.



Spectrum domain decomposition(parallel TGLF)

The number of CPU is limited by NKY in TGLF code.

The default value of NKY is 12
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parallel run benchmark
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Effects of hyper-viscosity coefficients (ALPHA)
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Code test(1)

1): PT-SOLVER run in TRANSP

In TRANSP analysis mode, the profile data (Te, Ti, angular momentum and
density profiles) are used as input
PT-SOLVER predicts Te, Ti and angular momentum profiles

EETR_OBS is calculated in TRANSP as:
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Where X and Te profiles are calculated from ETG turbulence model so
that EETR_MOD = EETR_OBS

As a consistency check, we compare EETR_OBS (TRANSP) with
EETR_MOD (PT-SOLVER)
2). PT-SOLVER compare with XPTOR code

PT-SOLVER and XPTOR use fixed density and angular momentum profiles,
predict Te, and Ti profiles with TGLF turbulent model

13



Code test(2)

TRANSP run in
analysis model
using profile data

PT-SOLVER
predicts Te, Ti, and
omega profiles
using TRANSP
sources.
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Comparison with experimental data
DIII-D shot from torque scan

® Compare predicted T; and T with data and fits used for the TRANSP run
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Another DIII-D shot from torque scan

® Compare predicted T; and T, with data and fits used for the TRANSP run
at time with near balanced NBI
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Summary and future work

A modular, parallel, multi-regional, implicit transport equation solver built
over the Plasma State and other publicly available (NTCC) libraries has been
developed.

 Wide range of neoclassical, turbulent, or data driven choices models,
including MMM series, GLF23, and TGLF.

e Two level parallelization has been implemented in PT_SOLVER with MPI library
 Smooth convergent solution obtained using combination of Newton iteration
and hyper-conductivity.

e |Initial test of PT_SOLVER in TRANSP gives consistent results with TRANSP
analysis

e Good agreement with XPTOR code
e PT-SOLVER with TGLF model used to compare with experimental data

e More benchmark cases are necessary to test the code’s robustness and
correctness.
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