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Abstract 

• We describe a new parallel predictive profile time-advance in the TRANSP code,  

     PT-SOLVER, which has been developed during last two-years. A multilevel 
parallelization paradigm is implemented in PT-SOLVER, with the computationally 
intensive transport routines (such as NEO and TGLF) treated as independent 
components with their own communicators. The SOLVER component, which 
advances the transport equations, controls the other components for 
synchronization and communication. A communication layer is dynamically 
established to exchange the data from the SOLVER component to the turbulent 
and neoclassical transport components, and to collect the neoclassical and 
turbulent fluxes from their respective components. We demonstrate the parallel 
computational aspect of TRANSP by presenting results using over 1,000 cores on 
NERSC supercomputers. Parallel scaling properties are illustrated. PT-SOLVER is 
fully compatible with utilizing parallel versions of NUBEAM (for neutral beam 
and fusion products heating) and TORIC (for RF heating) in the same TRANSP 
simulation. 



TRANSP solver (PT-SOLVER) 

1): PT-SOLVER is modular, parallel, multi-regional solver for TRANSP.  
 
2): Integrates the highly nonlinear time-dependent equations for electron and ion 

temperatures, densities, and angular momentum. 
 
3): multilevel parallelization (over flux-surface and wave number in TGLF). No 

longer limited by the number of zones in flux-surface. Flexible number of CPUs 
can used depending on the problem. 

 
4): Inputs to PT-SOLVER are provided by “plasma state” file.  
 
5): Upto 10 kinetic species can be used for TGLF.  
 
6): available turbulent and neoclassical models are: 
      TGLF, GLF23, MMM, RLW, NEO, NCLASS, Chang-Hinton, and PALEO classical 

Model. 

 
 



Current status of PT-SOLVER development 

1): Stand-alone version of PT-SOLVER with TGLF for Te, Ti, ne and ω prediction 
with two-level parallelization (over flux-surface and wave number in TGLF) 

 
2): Implementation of PT-SOLVER  into TRANSP for Te, Ti, ne & ω prediction  

(maximum 3 regions, axial, confinement, and edge region) 
 
3): Ni prediction  
      a): predict total thermal ion density or inidividual thermal ion density, ne   
           & nimp derived. 
      b): predict total thermal ion density or inidividual thermal ion density,  
            predicted ne, nimp & Zeff derived. 
 
4): Impurity density prediction (in progress). 
 
5): Calculation of fluxes (growth rate and frequency as appropriate) from 

TGLF, and NEO in PT_SOLVER (in progress). 
 
 

 



Governing equations (1) 
• Electron density  
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where 

limΦand             is toroidal flux enclosed by plasma 

q
jie ssS ,, is source terms, which includes neutral gas source, edge source,  

Nubeam contributed source, and fusion reaction source terms. 

is  particle diffusivity is pinch velocity 

• Total thermal plasma density  
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• Total impurity plasma density  
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Governing equations (2) 

Constraints: 

Assumptions: 
(a): constant fraction (for  thermal plasma and impurities) 
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(b): local thermodynamic equilibrium (LTE) (for  impurity plasmas) 
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for thermal plasmas:  

for impurity plasmas:  

Assumptions are used to derive individual species density when total number of 
thermal plasma density and/or impurity density are predicted. 

Constraints are explicitly applied in density prediction which reduced the total number of 
unknowns. For example, if electron density is predicted,total thermal density,  
and impurity density can be derived when Zeff  is know. 



Governing equations (3) 
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Ion energy conservation equation 

electron energy conservation equation 

Angular momentum conservation equation 
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where ωSSS tite ,, is source terms, which includes radiation loss source, neutral gas source,  
edge source, Nubeam contributed source, and fusion reaction source  
terms, ICRF, ECRF, and LHW contributed source terms. 

is  thermal conductivity, and momentum diffusivity, respectively. 

is pinch velocity 
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Power-law scheme (1) 

1): Begin with a simple model equation 
 
2): It has analytic solution when 
 
3): If     and     are constant in region of 
 
4):  Assuming the boundary conditions are 
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5): The exact solution can be written: 
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Power-law scheme (2) 
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Discretize the model equation in jth CV, we have: 
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G.V.Pereverzev & G.Corrigan’s algorithm 

Governing equations can be written in general form as: 
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Using Power-Law scheme to discretize the convection-diffusion terms. 
 
 
 
For explicit numerical scheme, no change 
For implicit numerical scheme, difference arose due to non-cancellation of these two terms. 
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Apply G.V.Pereverzev & G.Corrigan’s algorithm to each of the governing equations 
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An artificial transport coefficient  is added: 
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S.Jardin & G. Hammett’s algorithm 

* Finite difference method used to discretize the governing equations 

• Newton iteration method developed by S.Jardin & G. Hammett (JCP 2008)  
  used to solve tri-diagonal finite difference equations 

* Hyper-conductivity term to damp short wave oscillations 
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Two-level parallelization 
(over flux-surface, and wavenumber in TGLF) 
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TGLF at COM 1 

TGLF at COM 2 

TGLF at COM n 
1: split MPI_COM_WORLD 
into several sub 
communicators, 
the number of sub 
communicators is dependent 
on the umber of node on 
which TGLF model will run. 
 
2: assign the TGLF model on 
the sub-communicators to 
calculate the transport 
coefficient 
 
3: collect the transport 
coefficients  for the Newton 
iteration solver. 
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Implementation in TRANSP 

lpredictive_mode = 3 
 
! choose predictive model 
lpredict_te    = 1  (Te predicted) 
lpredict_ti    = 1   (Ti predicted) 
lpredict_pphi  = 0 (omega prescribed) 
lpredict_ne    = 1   ( ne predicted) 
lpredict_nmain = 0 (thermal ion prescribed) 
lpredict_nimp  = 0  (impurities prescribed) 
 
NBI_PSERVE    = 1     (parallel nubeam) 
NPTR_PSERVE   = 1   (parallel pt-solver) 
NTORIC_PSERVE = 0 (serial toric) 

! Only 1 region applied 
XIMIN_CONF = 0.0 
XIMAX_CONF = 0.8 
XIBOUND        = 0.8 

! turbulent model selected 
TR_TURB_AXIAL = 'NONE' 
TR_NC_AXIAL   = 'NONE' 
TR_EXB_AXIAL  = 'NONE' 
 
TR_TURB_EDGE = 'NONE' 
TR_NC_EDGE   = 'NONE' 
TR_EXB_EDGE  = 'NONE' 
 
TR_TURB_CONF = 'TGLF' 
TR_NC_CONF   = 'NEOCH' 
TR_EXB_CONF  = 'DMEXB' 

axial region 

edge region 

conf. region 

And namelists for TGLF switches (not show here) 



Two-level parallelization chooses automatically parallel or serial 
version of TGLF 

Parallel PT-SOLVER 
and serial TGLF 
nzones = 42 

Parallel PT-SOLVER  
and parallel TGLF 
nzones = 20 

Parallel TGLF 
nky = 21 

1): parallel PT-SOLVER and serial 
TGLF when nzones  > ncpus  

•TGLF parallelized over ky spectrum. 
•Parallel TGLF shows good scaling  
 using upto nky CPUs 

2): parallel PT-SOLVER and parallel 
TGLF when nzones < ncpus 



PT_SOLVER run on NERSC using upto 800 cores in standalone mode 
or in TRANSP Good scaling for standalone  

PT_SOLVER upto 800 cores. 

PT_SOLVER in TRANSP  
D3D153283 
3 kinetic species in TGLF 

Standalone PT_SOLVER 
D3D153283 
3 kinetic species in TGLF 

PT_SOLVER in TRANSP 
ITER20102 
8 kinetic species in TGLF 

•TRANSP run using NUBEAM and PT_SOLVER 
 to predict ne,te and ti. 
•NUBEAM component uses fixed 32 cores, approximately 
50% total CPU time. 
•Use different number of cores for PT_SOLVER  
•High communication over computing time in PT_SOLVER 
•TRANSP performance optimized at 336 cores, when 
PT_SOLVER not the main CPU time-consuming 
component. TRANSP run used about 12 hours to finish 5 
seconds discharge with ne,Te,Ti,and ω predicted. 

Good scaling when PT_SOLVER is the Main CPU time-
consuming component 
Low communication over computing time in PT_SOLVER  



Comparison between time-dependent TRANSP predictive modeling 
of D3D discharge and steady-state TGYRO 

•TGYRO with TGLF used  to predict ne, Te and Ti in steady-state solutions  
  (time-independent) 
•Time-dependent TRANSP with PT_SOLVER-TGLF used to predict  
  time-dependent variation of ne, Te, Ti and ω 
 
 
 
 
•ITER baseline with dominant 
  e-heating 
•Two methods give similar  
  results at many times in  
  evolving discharges. 
 
 



Comparison between standalone PT_SOLVER and TGYRO  
Modeling of D3D discharge 
•TGYRO with TGLF used  to predict ne, te and ti in steady-state solutions  (time-independent) 
•Standalone PT_SOLVER-TGLF used to predict ne, te, ti in steady-state solutions   (time-
independent) 
 
 

•Good agreement  
Between TGYRO  
And standalone 
PT_SOLVER 
 

•Good agreement  
with  experimental  
data. 



Summary 

• A modular, parallel, multi-regional, implicit transport equation 
solver built over the Plasma State and other publicly available 
(NTCC) libraries has been developed. 

• Several turbulent, neoclassical, or data driven choices models, 
including GLF23, TGLF, NEO, NCLASS, and Chang-Hilton 

• Two level parallelization has been implemented in PT_SOLVER 
with MPI library 

• PT-SOLVER has been successfully implemented in TRANSP.  

• Standalone PT-SOLVER run on NERSC shows good performance 
upto 800 cores. 

• TRANSP run with PT_SOLVER/TGLF shows good scaling when PT-
SOVER is the main CPU time-consuming component. 



More info? Please leave your email… 
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