
Parallel computing aspect in TRANSP
with PT-SOLVER

Xingqiu Yuan, Stephen Jardin, Greg Hammett, Robert Budny, and
Brian Grierson

Princeton Plasma Physics Laboratory

Gary Staebler
General Atomics

Presented at APS 2013, 55th Annual Meeting of the APS Division of
Plasma Physics Denver, Colorado. Poster No. JP8.00119

Abstract

• We describe a new parallel predictive profile time-advance in the TRANSP code,

 PT-SOLVER, which has been developed during last two-years. A multilevel
parallelization paradigm is implemented in PT-SOLVER, with the computationally
intensive transport routines (such as NEO and TGLF) treated as independent
components with their own communicators. The SOLVER component, which
advances the transport equations, controls the other components for
synchronization and communication. A communication layer is dynamically
established to exchange the data from the SOLVER component to the turbulent
and neoclassical transport components, and to collect the neoclassical and
turbulent fluxes from their respective components. We demonstrate the parallel
computational aspect of TRANSP by presenting results using over 1,000 cores on
NERSC supercomputers. Parallel scaling properties are illustrated. PT-SOLVER is
fully compatible with utilizing parallel versions of NUBEAM (for neutral beam
and fusion products heating) and TORIC (for RF heating) in the same TRANSP
simulation.

TRANSP solver (PT-SOLVER)

1): PT-SOLVER is modular, parallel, multi-regional solver for TRANSP.

2): Integrates the highly nonlinear time-dependent equations for electron and ion

temperatures, densities, and angular momentum.

3): multilevel parallelization (over flux-surface and wave number in TGLF). No

longer limited by the number of zones in flux-surface. Flexible number of CPUs
can used depending on the problem.

4): Inputs to PT-SOLVER are provided by “plasma state” file.

5): Upto 10 kinetic species can be used for TGLF.

6): available turbulent and neoclassical models are:
 TGLF, GLF23, MMM, RLW, NEO, NCLASS, Chang-Hinton, and PALEO classical

Model.

Current status of PT-SOLVER development

1): Stand-alone version of PT-SOLVER with TGLF for Te, Ti, ne and ω prediction
with two-level parallelization (over flux-surface and wave number in TGLF)

2): Implementation of PT-SOLVER into TRANSP for Te, Ti, ne & ω prediction

(maximum 3 regions, axial, confinement, and edge region)

3): Ni prediction
 a): predict total thermal ion density or inidividual thermal ion density, ne
 & nimp derived.
 b): predict total thermal ion density or inidividual thermal ion density,
 predicted ne, nimp & Zeff derived.

4): Impurity density prediction (in progress).

5): Calculation of fluxes (growth rate and frequency as appropriate) from

TGLF, and NEO in PT_SOLVER (in progress).

Governing equations (1)
• Electron density

[] ()[] [] VSnVnDvnVnV
t eeeeeee ′=′

∂
∂

−∇−∇′
∂
∂

+′
∂
∂ ρ

ρ
ξρ

ρ
2

dt
d lim

limlim 2
1; Φ
Φ

=Φ
Φ= ξρ

where

limΦand is toroidal flux enclosed by plasma

q
jie ssS ,, is source terms, which includes neutral gas source, edge source,

Nubeam contributed source, and fusion reaction source terms.

is particle diffusivity is pinch velocity

• Total thermal plasma density
VsnVnDvnVnV

t i
i

i
i

i
ii

i
ii

i
i ′=







 ′
∂
∂

−















∇−∇′

∂
∂

+






 ′
∂
∂ ∑∑∑∑∑ ρ

ρ
ξρ

ρ
2

• Total impurity plasma density

VsnVnDvnVnV
t qj

q
j

qj

q
j

qj

q
j

q
j

qj

q
j

q
j

qj

q
j ′=








′

∂
∂

−



















∇−∇′

∂
∂

+







′

∂
∂ ∑∑∑∑∑

,,,,

2

,
ρ

ρ
ξρ

ρ

q
jie DDD ,, q

jie vvv ,,

Governing equations (2)

Constraints:

Assumptions:
(a): constant fraction (for thermal plasma and impurities)

......21 ++++
=ℜ

i

i
i nnn

n

......... 2
2

1
2

2
1

1
1 +++++++

=ℜ q
j

q
jq

j nnnnn
n

(b): local thermodynamic equilibrium (LTE) (for impurity plasmas)
qq

j

qq
j

q
j

q
j

R
I

n
n

→+

+→+

= 1

11

(a): charge neutrality: ∑∑ +=
qj

q
j

i
ie qnnn

,

(b): effective Z: ∑∑ +=
qj

q
j

i
ieffe nqnZn

,

2

for thermal plasmas:

for impurity plasmas:

Assumptions are used to derive individual species density when total number of
thermal plasma density and/or impurity density are predicted.

Constraints are explicitly applied in density prediction which reduced the total number of
unknowns. For example, if electron density is predicted,total thermal density,
and impurity density can be derived when Zeff is know.

Governing equations (3)

()[] VSkTnVTvTknVkTnV
t tiiiiiiiiii ′=



 ′

∂
∂

−∇−∇′
∂
∂

+



 ′

∂
∂

2
3

2
3 2 ρ

ρ
ξχρ

ρ


()[] VSkTnVTvTknVkTnV
t teeeeeeeeee ′=



 ′

∂
∂

−∇−∇′
∂
∂

+



 ′

∂
∂

2
3

2
3 2 ρ

ρ
ξχρ

ρ


Ion energy conservation equation

electron energy conservation equation

Angular momentum conservation equation

[] () [] 






 ′=′
∂
∂

−∇−∇′
∂
∂

+′
∂
∂ ∑∑∑ VSRmnVvRmnVRmnV
t iiiiii ωϕϕ ωρ

ρ
ξωχωρ

ρ
ω 2222 

where ωSSS tite ,, is source terms, which includes radiation loss source, neutral gas source,
edge source, Nubeam contributed source, and fusion reaction source
terms, ICRF, ECRF, and LHW contributed source terms.

is thermal conductivity, and momentum diffusivity, respectively.

is pinch velocity

ϕχχχ ,, ie

ϕvvv tite ,,

Power-law scheme (1)

1): Begin with a simple model equation

2): It has analytic solution when

3): If and are constant in region of

4): Assuming the boundary conditions are

() 0=∇Γ−⋅∇+
∂
∂ TvT

t
T

0=
∂
∂

t
T

v Γ Lx ≤≤0

LxatTT
xatTT

L ==
== 00

5): The exact solution can be written:

() 1
1

0

0

−
−

=
−
−









P

L
Px

L e
e

TT
TT

Γ
=

vLP is the Peclet number

Power-law scheme (2)

j-1
j j+1

j-1/2 j+1/2

() 2/1−jxδ () 2/1+jxδ

Discretize the model equation in jth CV, we have:

0
2/12/1

1
2/1

1
2/1

1

=
−

−
+

∆

−

−+

+
−

+
+

+

jj

n
j

n
j

n
j

n
j

xx
FF

t
TT

2/1
2/12/12/12/1

+
++++ 







∂
∂

Γ−=
j

jjjj x
TTvFwhere

From the exact solution, we have

() () 1
1

2/1

2/1

2/12/1)(

12/1
−

−
−+=

+

+

++









 −

++ j

j

jjj

P

x
xxP

jjjj e
eTTTT

δ

() () 1
1

2/1

2/1

2/12/1)(

1
2/1

2/1

2/1 −
−

−









=







∂
∂

+

+

++









 −

+
+

+

+
j

j

jjj

P

x
xxP

jj
j

j

j e
eTT

x
P

x
T δ

δ

Replace and , then we have 2/1+jT
2/1+








∂
∂

jx
T










−

−
+=

+

+
++ 12/1

1
2/12/1 jP

jj
jjj e

TT
TvF

G.V.Pereverzev & G.Corrigan’s algorithm

Governing equations can be written in general form as:

() STT
T
Tv

t
T

artart =







∇Γ+Γ−






 ∇

Γ+⋅∇+
∂
∂

No change in the equation,
however, the Peclet number is different:

()

2/1,2/1

2/1
2/1

2/1
2/1,2/1

2/1
++

+
+

+
++

+ Γ+Γ










 ∇
Γ+

=
jartj

j
j

j
jartj

j

x
T
T

v
P

δ

Using Power-Law scheme to discretize the convection-diffusion terms.

For explicit numerical scheme, no change
For implicit numerical scheme, difference arose due to non-cancellation of these two terms.

() STT
T
Tv

t
TT n

art
n

n

n

art

nn

=







∇Γ+Γ−







 ∇
Γ+⋅∇+

∆
− ++

+
11

1

11 ++ ∇Γ≠
∇

Γ n
art

n
n

n

art TT
T
Tsince

Apply G.V.Pereverzev & G.Corrigan’s algorithm to each of the governing equations

[] STvT
t
T

=∇Γ−⋅∇+
∂
∂

An artificial transport coefficient is added:

0
01

1

2221

1211

2221

1211

1

1

2221

1211 =







+








Θ








+








Θ








+








Θ









−

−

+

+ j

j

j

jj

j

jj

j

j

DT
CC
CCT

BB
BBT

AA
AA








 ′







′∂
∂

+Φ= −+
+++

Nin
jjj T

T
sA /)1(

2/12/12/111
χχ

2/12/112 ++Φ−= jjsA χα
121 =A 022 =A

121212 CAB −−=
111111 1 CAB −−−=

221 −=B 122 −=B








 ′







′∂
∂

+Φ= −+
−−−

Nin
jjj T

T
sC /)1(

2/12/12/111
χχ

2/12/112 −−Φ−= jj xsC α

121 =C 022 =C

()

() 





′∂
∂

−′Φ+







′∂
∂

−′Φ+∆+=

−+
−

−+−+
−−

−+
+

−+−+
++

T
TTTs

T
TTTstSTD

Nin
j

Nin
j

Nin
jj

Nin
j

Nin
j

Nin
jj

n
jj

χ

χ

/)1(
1

/)1(/)1(
2/12/1

/)1(
1

/)1(/)1(
2/12/1

S.Jardin & G. Hammett’s algorithm

* Finite difference method used to discretize the governing equations

• Newton iteration method developed by S.Jardin & G. Hammett (JCP 2008)
 used to solve tri-diagonal finite difference equations

* Hyper-conductivity term to damp short wave oscillations

()2/ ∆Φ∆= tswhere S is the source term Φ Metric elements in transport eqns
() () VTV ′′′

∂
∂

∆=Θ /2

ρ
ρ

…

PE0

PE1

PE2

PEn

…

PE0

PE1

PE2

PEn

…

PE0

PE1

PE2

PEn

Two-level parallelization
(over flux-surface, and wavenumber in TGLF)

M
PI

_C
O

M
M

_W
O

RL
D

M
PI

_G
RP

_1

M
PI

_G
RP

_2

M
PI

_G
RP

_n

…

G
lo

ba
l c

om
m

un
ic

at
or

su
b-

co
m

m
un

ic
at

or
s

TGLF at COM 1

TGLF at COM 2

TGLF at COM n
1: split MPI_COM_WORLD
into several sub
communicators,
the number of sub
communicators is dependent
on the umber of node on
which TGLF model will run.

2: assign the TGLF model on
the sub-communicators to
calculate the transport
coefficient

3: collect the transport
coefficients for the Newton
iteration solver.

Fl
ux

 s
ur

fa
ce

 1

Fl
ux

 s
ur

fa
ce

 2

Fl
ux

 s
ur

fa
ce

 n

…

k0

k1

k2

K
n

k0

k1

k2

K
n

k0

k1

k2

K
n

Implementation in TRANSP

lpredictive_mode = 3

! choose predictive model
lpredict_te = 1 (Te predicted)
lpredict_ti = 1 (Ti predicted)
lpredict_pphi = 0 (omega prescribed)
lpredict_ne = 1 (ne predicted)
lpredict_nmain = 0 (thermal ion prescribed)
lpredict_nimp = 0 (impurities prescribed)

NBI_PSERVE = 1 (parallel nubeam)
NPTR_PSERVE = 1 (parallel pt-solver)
NTORIC_PSERVE = 0 (serial toric)

! Only 1 region applied
XIMIN_CONF = 0.0
XIMAX_CONF = 0.8
XIBOUND = 0.8

! turbulent model selected
TR_TURB_AXIAL = 'NONE'
TR_NC_AXIAL = 'NONE'
TR_EXB_AXIAL = 'NONE'

TR_TURB_EDGE = 'NONE'
TR_NC_EDGE = 'NONE'
TR_EXB_EDGE = 'NONE'

TR_TURB_CONF = 'TGLF'
TR_NC_CONF = 'NEOCH'
TR_EXB_CONF = 'DMEXB'

axial region

edge region

conf. region

And namelists for TGLF switches (not show here)

Two-level parallelization chooses automatically parallel or serial
version of TGLF

Parallel PT-SOLVER
and serial TGLF
nzones = 42

Parallel PT-SOLVER
and parallel TGLF
nzones = 20

Parallel TGLF
nky = 21

1): parallel PT-SOLVER and serial
TGLF when nzones > ncpus

•TGLF parallelized over ky spectrum.
•Parallel TGLF shows good scaling
 using upto nky CPUs

2): parallel PT-SOLVER and parallel
TGLF when nzones < ncpus

PT_SOLVER run on NERSC using upto 800 cores in standalone mode
or in TRANSP Good scaling for standalone

PT_SOLVER upto 800 cores.

PT_SOLVER in TRANSP
D3D153283
3 kinetic species in TGLF

Standalone PT_SOLVER
D3D153283
3 kinetic species in TGLF

PT_SOLVER in TRANSP
ITER20102
8 kinetic species in TGLF

•TRANSP run using NUBEAM and PT_SOLVER
 to predict ne,te and ti.
•NUBEAM component uses fixed 32 cores, approximately
50% total CPU time.
•Use different number of cores for PT_SOLVER
•High communication over computing time in PT_SOLVER
•TRANSP performance optimized at 336 cores, when
PT_SOLVER not the main CPU time-consuming
component. TRANSP run used about 12 hours to finish 5
seconds discharge with ne,Te,Ti,and ω predicted.

Good scaling when PT_SOLVER is the Main CPU time-
consuming component
Low communication over computing time in PT_SOLVER

Comparison between time-dependent TRANSP predictive modeling
of D3D discharge and steady-state TGYRO

•TGYRO with TGLF used to predict ne, Te and Ti in steady-state solutions
 (time-independent)
•Time-dependent TRANSP with PT_SOLVER-TGLF used to predict
 time-dependent variation of ne, Te, Ti and ω

•ITER baseline with dominant
 e-heating
•Two methods give similar
 results at many times in
 evolving discharges.

Comparison between standalone PT_SOLVER and TGYRO
Modeling of D3D discharge
•TGYRO with TGLF used to predict ne, te and ti in steady-state solutions (time-independent)
•Standalone PT_SOLVER-TGLF used to predict ne, te, ti in steady-state solutions (time-
independent)

•Good agreement
Between TGYRO
And standalone
PT_SOLVER

•Good agreement
with experimental
data.

Summary

• A modular, parallel, multi-regional, implicit transport equation
solver built over the Plasma State and other publicly available
(NTCC) libraries has been developed.

• Several turbulent, neoclassical, or data driven choices models,
including GLF23, TGLF, NEO, NCLASS, and Chang-Hilton

• Two level parallelization has been implemented in PT_SOLVER
with MPI library

• PT-SOLVER has been successfully implemented in TRANSP.

• Standalone PT-SOLVER run on NERSC shows good performance
upto 800 cores.

• TRANSP run with PT_SOLVER/TGLF shows good scaling when PT-
SOVER is the main CPU time-consuming component.

More info? Please leave your email…

	Parallel computing aspect in TRANSP �with PT-SOLVER
	Abstract
	TRANSP solver (PT-SOLVER)
	Current status of PT-SOLVER development
	Governing equations (1)
	Governing equations (2)
	Governing equations (3)
	Power-law scheme (1)
	Power-law scheme (2)
	G.V.Pereverzev & G.Corrigan’s algorithm
	Slide Number 11
	Two-level parallelization�(over flux-surface, and wavenumber in TGLF)
	Implementation in TRANSP
	Two-level parallelization chooses automatically parallel or serial version of TGLF
	PT_SOLVER run on NERSC using upto 800 cores in standalone mode or in TRANSP
	Slide Number 16
	Slide Number 17
	Summary
	Slide Number 19

