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The advection-diffusion equation is studied via a global Lagrangian coordinate transformation. The
metric tensor of the Lagrangian coordinates couples the dynamical system theory rigorously into the
solution of this class of partial differential equations. If the flow has chaotic streamlines, the
diffusion will dominate the solution at a critical time, which scales logarithmically with the
diffusivity. The subsequent rapid diffusive relaxation is completed on the order of a few Lyapunov
times, and it becomes more anisotropic the smaller the diffusivity. The local Lyapunov time of the
flow is the inverse of the finite time Lyapunov exponent. A finite time Lyapunov exponent can be
expressed in terms of two convergence functions which are responsible for the spatio-temporal
complexity of both the advective and diffusive transports. This complexity gives a new class of
diffusion barrier in the chaotic region and a fractal-like behavior in both space and time. In an
integrable flow with shear, there also exist fast and slow diffusion. But unlike that in a chaotic flow,
a large gradient of the scalar field across the KAM surfaces can be maintained since the fast
diffusion in an integrable flow is strictly confined within the KAM surfaces. 1©®99 American
Institute of Physicg.S1070-663(199)02106-4

I. INTRODUCTION lowing the Lagrangian trajectories. The diffusive effect, i.e.,
right-hand-side of Eq(1), is usually treated as an add-on on
the Lagrangian trajectory picture. For example, it has been
The transport of a passive scaairembedded in a fluid modeled by a stochastic perturbation to the Lagrangian tra-

A. Motivation

flow is governEd by the advection-diffusion equat?'on, jectories (i_e" a Langevin equati()n or by a Gaussian
smoothing kernel on the Lagrangian trajectories.
Iplot+v-V=—(V-Ta)lp (1) Working directly with the Lagrangian description of a

fluid flow enables the utilization of dynamical system theory,
particularly the multiplicative ergodic theorérand the geo-
metrical method, which leads to new insights unavailable in
the usual Eulerian picture. A numerical solution of Et)
using an Eulerian partial differential equatifDE) solver
. e . .. has no obvious connection with the crucial features like
advection-diffusion equation comes from the flow velocity : :

KAM islands, chaotic components, or Lyapunov exponents.

field v(x,t). The purpose of this paper is to illustrate the On the other hand, the efficiency and reliability of numerical

general properties of the solution to the advection-diffusionl:,DE solvers for following the global solution for a long time

equation in the case of a three dimensional chaotic flow. Our ~ . ; : .
. ; : requires an understanding of the properties of the solution
method is based on a global Lagrangian coordinate transfor- , L
. ) . : and the features that define the range of validity of the nu-
mation, which rigorously couples the dynamical system

theory’ into the solution of the advection-diffusion equation. ”.‘e”ca' sch_eme. This IS the primary motivation for our pre-
vious work in the two dimensional case and the current treat-

The finite time Lyapunov exponent and the geometry of the

. ) g ment for the three dimensional case.
so-calleds lines play the central roles in our thedryyhich The basic difference between our approach and those of
is a distinct feature from other works in this area.

) X : ' X X chaotic advection is that we directly solve the advection-
A flow with chaotic fluid trajectories gives fundamen- it sion equation including the effects of a finite diffusivity.
tally different solutions to the advection-diffusion equation The need to keep the diffusion term, despite the smallness of
than a nonchaotic, or integrable, flow. Existing literature ONp will become obvious once we obtain the full solution. The

chaoti_c mixing _Iargely concerns with_ the_ ideal advection <t obvious requirement for keeping a sniztomes from
equation[D=0 in Eq. (1)] whose solution is found by fol- {he time for diffusion[the right-hand side of Eq(1)] to
dominate the solution, which has a logarithmic dependence
dElectronic mail: xtang@pppl.gov on D. In a general context, the diffusion term is a singular

with v(x,t) the fluid velocity, p the fluid density, and 4

= —pDV ¢ the diffusive flux. In its most primitive formD

is just the molecular diffusivity which is typically a small

number, giving rise to a long characteristic diffusive time
scaleL?/D. Being a linear equation, the non-triviality of the
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perturbation to the pure advection equation. Mathematicallynay not be small. However, this subtlety is not crucial for
it changes the characteristics, or type, of the underlying PDEphysical applications. If one goes back to the original
Physically it is responsible for removing the time reversibil- advection-diffusion equation, any small but finite diffusivity
ity of the physical process. This can be quantitatively ex-would impose a cutoff for the smallest spatial scale on which
plained by examining the mean variance of the passive scalane needs to worry about the regular islands. This effectively
¢,S=— [(¢$?/2)d3x. For a bounded system, the entropy-like guarantees that a chaotic zone occupies finite volume for the
guantity S would increase or saturate only b does not purpose of passive scalar transport.
vanish, see Eq11). It is interesting to note that the rich structure revealed by
In the next section we will briefly review some related a Poincaresection plot and its usefulness in understanding
work on chaotic mixing. Neither the list of topics nor the passive scalar transport are not limited to theoretical and
literature cited can be exhaustive, but they give a reasonablomputational studies. In fact, they have been verified in a
perspective for contrasting our approach and results. Farumber of two dimensional time-periodic flows. With the
those familiar with the literature, Sec. | B can be skipped inhelp of laser fluorescence, it is now possible to slice through
its entirety. a three dimensional flow and visualize the islands chain
structure and the three dimensional chaos directly in a physi-
cally stationary Poincarsection®
B. A brief review of related work Although chaotic advection and Hamiltonian transport

As one of the primary physical applications of the chaostheory in principle are entirely different subjects, they are
theory, it was recogniz€dn the 1980s that smoottaminay ~ often mathematically equivalent. An example is a
flow could also lead to efficient mixing, as long as the flow divergence-free, two dimensional time-periodic fluid flow,
trajectories are nonintegrable or chaofior a sampling of which is mathematically equivalent to a one and a half de-
experimental work, see Refs. 6-®espite the variants in 9ree of freedom Hamiltonian system. A major advance in
name (chaotic advection or Lagrangian turbuleficamil-  understanding was the discovery of the cantdtum) invari-
tonian transport theorythese treatments make the same as@nt curve or surface similar to a KAM surface but with the
sumption of ignoring the right-hand-siddiffusion) term in crucial difference of its being on a cantor set. In other words,
Eq. (1) and are, therefore, concerned with an ideal advectio® cantorus is a KAM-like structure but with numerous holes

equation: so it can not separate an irregular component. The trajecto-
ries “leak” through the cantori in an orderly fashion, much
Il at+v(x,t)- V=0, or de/dt=0. (2 like going through a revolving door, hence the name

Since the passive scalar is frozen into the fluid element, thérnstile!” The cantori act as practical borders partitioning

distribution function¢ at arbitrary time is found by follow- one ergodic irregular component into different subcompo-
ing the trajectory of each fluid element, nents which have fast mixing within but much slower advec-

tive transport across. Motivated by this separation of time

dx(£.n/dt=v(x,1), (3) scales, a Markov tree mod@&Wwas introduced to describe the
with the initial conditionx(&,t=0)= &. After integrating Eq.  slow mixing between the subcomponents separated by the
(3) to obtainx(£,t) the solution to the ideal advection equa- cantori. Another less efficient but mathematically rigorous
tion is ¢(x(§,1),t) = ¢d(&,t=0). approach, the so-called lobe dynamitgeneralized the idea

Reducing the solution of the advection equation to arof turnstiles for the advective transport across the boundary
integration of flow trajectories not only simplifies the prob- set by the invariant manifolds of any hyperbolic or normally
lem, but also allows the theory of dynamical systems to bdyperbolic sets. In effect, it calculates the advective flux by
utilized for classifying the trajectories and the associatedollowing the trajectories through a sequence of “revolving
mixing properties The crudest estimate is entirely based ondoors” (turnstiles on the otherwise closed boundaries. The
topology and the intuitive criteria that ergodicity implies boundaries are formed by the global invariant manifolds of
good mixing. A plot of the Poincarsection of the flow then hyperbolic sets, so they in principle could provide an arbi-
becomes the standard tool. For example, on the Poincaiearily fine partition of the space. In practice, the lobe dy-
section of a two-dimensional time-periodic flow, integrable namics become exponentially complicated as time proceeds,
trajectories lie on topological circlgso-called regular com- so it is usually thought to be applicable for only a short time.
ponent, or KAM tori in Hamiltonian mechanigbut nonin-  The same argument also shows it is suitable for tracing ini-
tegrable or chaotic trajectories fill a finite arés-called ir-  tially isolated distribution but not for following the time evo-
regular componeint Integrable trajectories can divide the lution of a spatially extended initial distribution. The reliance
space into an infinite set of ergodic subregions. The inteon the invariant manifolds also limits the application since
grable or regular regions consist of closed lines or surfacegheir existence is not obvious for time quasi-periodic or ape-
so they are poor for mixing. Only chaotic regions, i.e., theriodic flows.
irregular components, occupy a finite volume, which is re-
quired for good mixing. It is still an unresolved mathematicalC outli ; h and |
problem whether the irregular component occupies a finite™ utline of our approach and resuilts
measure. The difficulty lies in the fact that numerous regular ~ The Lagrangian nature of the chaotic advection and the
components are embedded in an irregular component and tliesire for a solution to advection-diffusion equation in Eule-
summation of those infinitely many small regular regionsrian frame imply the need for a method that relates the two in
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the presence of a small but finite diffusivity. A straightfor- diffusion which are determined by the Lyapunov time and
ward approach would be to solve the advection-diffusionthe dimensionless numbél, and the extreme anisotropy of
equation in Lagrangian coordinates, the coordinate systeitine diffusive relaxation. Of course, the increase of spatial
directly associated with the Lagrangian description of fluids.dimension from two to three does introduce new subtleties in
Although the Lagrangian description of a fluid flow is widely the solution, some of which will be discussed in the main
known, global Lagrangian coordinates were not applied tdext.
the advection-diffusion problem until recenfiythe validity The main body of the paper is organized as follows.
of this approach is based on the general principle that th&ection Il gives the basics of the Lagrangian coordinate
description of a physical phenomenon is independent of theransformation technique and an overview of the problem,
choice of the coordinate system. The solution in Lagrangiamwhich is the minimum amount of material necessary for un-
coordinates is nontrivial due to the metric tensor, whichderstanding the thesis of this paper. In Sec. lll, the
arises in thevV? operator of the diffusion term and is highly advection-diffusion equation is solved for a three dimen-
anisotropic if the flow is chaotic. The metric tensor rigor- sional flow in natural Lagrangian coordinates. The properties
ously couples the solution of the advection-diffusion equa-0f the finite time Lyapunov exponent and diffusion barriers
tion to the dynamical system theory. It is also the metricare discussed in Sec. IV. In Sec. VI transport in an integrable
tensor that bridges the Lagrangian picture and the Euleriafegion of a three dimensional flow is treated. Some models
solution. of chaotic flows and numerical illustrations are given in Sec.
One unique feature of the use of global Lagrangian coV.
ordinates is the ability to treat flow fields that are far from
integrable and thus highly chaotic, an area where less . LAGRANGIAN COORDINATE TRANSFORMATION
known but which is of great importan¢® Although the in-  AND PASSIVE SCALAR TRANSPORT

tegrable case is rigorously treated in Sec. VI, we will center  chaos and its effect on diffusive transport in a fluid flow
our discussion on highly chaotic flows because of their praccan  be conveniently examined using Lagrangian

tical importance. By definition, a flow is chaotic if the dis- coordinate$®>~” The motion of a fluid element is described
tance 6 between neighboring fluid elements tends to varypy the differential equation

(diverge or convergeexponentially in time,oe« &y exp@t),

with \ the Lyapunov exponent. In advection-diffusion prob- dx/dt=v(x1). )

lems, the Lyapunov time 1/associated with the most nega- The trajectory in real space is the solutios x(&,t) with &

tive Lyapunov exponent defines a natural characteristic time=x(&,t=0) the Lagrangian coordinates. The distance be-

scale for a chaotic flow. The characteristic diffusion timetween neighboring fluid points at timeis related to their

L?/D is determined by the diffusivitp and the typical spa- initial separation by dx~dx:gijd§‘d§j, where  gj;

tial scaleL of the initial gradient okp. Our previous analysis = (ax/d¢") - (9x/ &) is the metric tensor of the Lagrangian

illustrated that the characteristic dimensionless parameter @foordinates. The matrix inverse ofi is gi=veg.vel The

the chaotic transport problem in two dimensions is the ratiaJacobian of the Lagrangian coordinates is related with the

of the characteristic diffusion time and the Lyapunov time ofmetric tensor byd?=||g;;||=1/|g"|. For a divergence-free

the flow, i.e.,Q=\L?/D. The diffusivity is generally very flow J=1. The metric tensor is a positive definite, symmetric

small soQ>1. For )>1 the passive scalar undergoes amatrix, so it can be diagonalized with real eigenvectors and

pure advection period until the timg=In(2Q)/2\. A rapid  positive eigenvalues, i.e.,

diffusive relaxation removes the spatial gradient of the pas-

sive scalar during a period of a few Lyapunov tim& téen-

tered on the time, . This diffusion is one dimensional since with the three positive eigenvalues,=A ,=A>0. The

it only occurs along the, direction, which defines the stable Lyapunov characteristic exponents of the flow are given by

direction for_ n_eighboring streamlines to converge. In generic lim INA/2t=\7,  lim InA /2t=\7,

flows, the finite time Lyapunov exponent is a function of f o t—co

both time and position. It was found for two dimensional _ .

(2D) systems that the geometry of the field line of the lim INAg/2t=Ag,

vector determines the spatial variation of the finite time o

Lyapunov exponent along the lines, and hence the local and the eigenvectors, m and s have well defined time

diffusive transport. Diffusion is impeded at the sharp bends asymptotic limitse, , m., ands, (see Appendix A In those

of an s line, which has a peculiarly small finite time regions where there is a positive Lyapunov exponent, the

Lyapunov exponent. flow is said to be chaotic, otherwise it is said to be inte-
Mixing in a three dimensional3D) flow is clearly im-  grable.

portant for practical applications. The goal of this paperisto ~ For a three dimensional divergence-free flow that has a

carry out an explicit analysis in three dimensions and estatfime-independent velocity field, the set of Lyapunov charac-

lish a similar level of understanding as previously achievederistic exponents is symmetric with respect to zero, i.e.,

in two dimensiong. As we will show, the main physics re- A'=—Ag=A">0 and\;=0. The time asymptotic eigen-

sults obtained in two dimensions apply to 3D situations.vectors determine the asymptotic behavior of neighboring

These include the characteristic time scales for advection anftliid elements. AIongAsbc (éx) direction, neighboring points

gij =A|é+ Amr,hr’h‘*' Asé
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converge(diverge exponentially in time. But their separa- ordinatesg'. For simplicity we will assume that the initial
tion varies only algebraically with time alom.. direction. ~ fluid density distributionpo(£) is a constant. The diffusion
We note thas, defines the stable direction in a chaotic flow €auation, Eq(7), can then be written in Lagrangian coordi-
(see Appendix A Thes, is a smooth function of position so nates as
it gives rise to a vector field. The field lines of the vector aplot=—Vg-y with y=—-D-Vye (9
are calleds lines. It should be pointed out that time-
dependent flows might not always have the middle
Lyapunov exponent zero. Although our analysis is presente
in the case oh,,=0 for the sake of clarity, the more com-
plicated case with an arbitrary combination of positive and . P
negative Lyapunov exponents can also be treated. In fact, a S=_f (¢/2)d%¢
clear understanding of the simple case makes the physics of . . . I .
the more complicated case transpar@ot details, see Ap- while holding f ¢d3¢ constant. The time derivative &is
pendix B. 3

Although the infinite time Lyapunov exponents are bet- dSdt= _j (7-Vog)d“¢. 1D
ter known in mathematics, their finite time analogies are of

greater interests in physics. The finite time Lyapunov expo-SO the entropy production rate per unit volume is positive

definite and given by

andD the tensor diffusivityD'!. HereV, denotes gradient in
agrangian coordinates. Equati® maximizes an entropy-
ke quantity

(10

nents,
MED=(NADRL, Np(ED)=(InA,)/2t, s(§t)=—vy-Voo. (12
M(ED=(InAg/2L, ®) Only diffusion creates entropy and removes the time revers-

ibility of the system. Even a tiny diffusivitp leads to an

are functions of positiof and time. The position and time jnevitable rapid entropy production in a chaotic flow. To see
dependence is not surprising since the finite time Lyapunoyhat’ let us substitutg’l =&/ A, +mm/A,,+S¥A into Eq.
exponent is a concept that measures the exponential rate f2),
“error” propagation along a fiducial trajectory for a finite _ . A
period of time. It is a function depending on where the fidu-  s=D(e-Vy¢)2e 2N+ D(m-Vyp)2e P nt
cial trajectory starts and how long in time one follows this .
trajectory. The initial position that labels a trajectory has a +D(s Vo) e (13
name in fluid mechanics, the Lagrangian coordinates. Th%ince)\ <0 and\ =
specification of the Lagrangian coordinateand time dura- °
tion t are equivalent to giving the full path of the trajectory
segment, which can be found by integrating the flow figld
dx/dt=v from some initial positior¢ for some finite timet.

We find that the finite time Lyapunov exponext and
its associated, vector play the most important role in dif-
fusive transport. This can be seen by transforming th
advection-diffusion equation, El), into Lagrangian coor- Dec=6,-D-e,~D/exp2\t)
dinates. For the simplicity of notation, we define

AED=—N(ED). (6)
The inverse of\, 1/\, is the Lyapunov time of the flow. We
wish to point out again that the most negative Lyapunovis small if D is small. In contrast, the effective diffusivity
exponent(\) defines the characteristic Lyapunov time of the along thes, direction grows exponentially in time,
flow for advection-diffusion problems. A

In Lagrangian coordinates, the advection-diffusion equa- ~ Dss=S.-D-s.~D/As~D exp(2At).
tion becomes an Qr(ZJImary diffusion equation with a €nsofrhe exponential amplification of the effective diffusivity
diffusivity D"=Dg", L . .

along thes,, direction in Lagrangian coordinates corresponds

—\s>0,s would grow exponentially in
time without bound unless the diffusion intervenes and

quickly removes the coordinate dependence@flong thes
lines. This result holds independent of the smallned3,ds

long as it does not vanish. Such a conclusion can also be
obtained by examining the tensor diffusivity. The effective

ediffusivity along thee, direction is negligible since

with X\, >0. The effective diffusivity along then., direction,

Dim=Ms-D-Me~D/A,,

e 1 9 0 to an exponentially growing gradient of the passive scalar in
a5t T on 2 —PoD J—j, (7 real space. It is easy to see that the diffusion becomes a
¢ Po 43 43 dominant process in a chaotic flow fat>1 regardless of

where pg(€) is the initial fluid density profile, po(&) how smallD may be. Furthermore, the diffusion, once it
=p(£,t=0). The magnitude of the gradient gfis given by ~ becomes important, is highly anisotropic.
The strong anisotropy of the diffusion process demands
(V)2=2, (dplaE) g (alagl). (8)  care in the choice of coordinates. The rapid diffusion, which
occurs only along as line, can be confined to one coordi-
The effect of the flow on the evolution of a passive scalar isnate if the coordinate system is chosen appropriately. We
therefore, determined by the metric tensor of Lagrangian conamed such a coordinate system natural Lagrangian coordi-
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nates and showed how to construct them in two dimensionaliffusive transport in chaotic flows while the functidé(¢,t)

in Ref. 2. In Sec. Ill, we give a form of natural Lagrangian characterizes the fractal nature of the chaotic advettfon

coordinates in three dimensional space, which then allows usnd the chaotic diffusive transpdrt.

to obtain the general properties of the solution to the  Fast diffusion occurs along trelines and entropy pro-

advection-diffusion equation in a three dimensional chaotigy,ction rates is given by the finite time Lyapunov exponent

SPW- The éi”dmgs agree ‘;]V“h our earlier fg?“'ts in WO N(£,1). Equations(15~(17) imply that (1) varies lite i
imensions. In summary, the characteristic dimension eSSthe’é line is straight(hence smallvoéw). But A(&,t) will

arameter) for the chaotic transport of a passive scalar is L ~
P P P have a strong variation where tisdine has a sharp bend.

the ratio of the characteristic diffusion time and the X )
Lyapunov time of the flow, Our numerical resultsA show that¢,t) makes a sharp dip at
the sharp bends of thelines, for an illustration(see Fig. 7.
Q=\L%D, (14 Small \ leads to a smalk). Hence diffusive transport is
) ] ) impeded on the sharp bends of thdines and a class of
with L the typical spatial scale andthe Ly_apuznov exponent  itfysion barriers is created inside the chaotic region of the
[Eq. (6)]. If the characteristic diffusion tim&*/D is much 4, Oyr results on diffusion barriers in 2D chaotic flows,

longer than the Lyapunov timeXof the flow, i.e..Q0>1,  harefore, have been reestablished in three dimensional
the chaotic transport is given by ideal advectitre scalaris  fq,/s.

carried by the fluid element along its trajectpfyr time less We find that there are also spatially separated fast diffu-
than t,—1/2x with t;=(In2Q)/2\. The ideal advection gjon and slow diffusion in an integrable region of a shear

causes the gradient of the scalar field to increase by a fact@,,, The fast diffusion is confined to the KAM surfaces
of Q. Then a rapid diffusion occurs and causes the flatteningm|y while the slow diffusion occurs across the KAM sur-

of the gradient and associated entropy production during gyces. |t js the radial direction across the nested KAM sur-
relatively short interval IV centered or,. This rapid diffu-  ¢5065 in which a significant gradient of the scalar field can be
sive relaxation occurs only along tisdines, which is a spe- maintained. For a detailed analysis, see Sec. VI.
cial feature for chaotic flows.

The existence of a characteristic chaotic transport time
scalet, implies that the finite time Lyapunov exponent ratherlll. SOLVING THE ADVECTION-DIFFUSION EQUATION
than the infinite time Lyapunov exponent determines thdN NATURAL LAGRANGIAN COORDINATES
chaotic transport. The spatio-temporal complexity of the dif- o o A —1nn 1A
fusive transport, as reflected in the entropy production rate TTE tensor d|ffu5|v-|tyDg .W'th g'=A ee+/-\m mm
per unit volumes, is determined by the finite time Lyapunoy + /s “SSis strongly anisotropic due to the chaotic nature of
exponent\ (£,t). For example, the places with significantly the flow. By introducing a set of new Lagrangian coordinates

smaller \(¢,t) (hence Q) pose barriers for the diffusive in which the large component of diffusion affects only one
transport and entropy production.

coordinate, we can simplify the computation and understand
Numerical resultssee Sec. IV suggest that the finite the general properties of the chaotic transport of passive sca-
time Lyapunov exponerX(&,t) of a three dimensional con-

lars. A coordinate system that has this property is called
servative system can be decomposed into three parts, ~ hatural Lagrangian coordinatés. on

In two dimensions, the metric tensor g'=A; ee
MED=NENM+T(ED/EHN, (15 +AJ'ss, and the curl ofe, ands, will be orthogonal to
themselves. That is, if we write,=e,x+e,y ands,=s,x
+s,y, the curls will lie along thez axis. Hence natural La-

%x-VOf(g,t)=0 (16) grangian coordinates-B can be defined bg,=aVa and

s.=bV B with Jacobian]aﬁ=ab,2 using the orthonormality
and\” is the infinite time Lyapunov exponent. The spatial of e, ands,, s.-Va=0 ande,.-V3=0.
dependence of the finite time Lyapunov exponk(¢,t) is In three dimensions, we can establigtB-¢ coordinates
related to the geometry of theeline thl’OUgh)\ by such thatASw-VCY:ASJO-Vé’ZO, but in general one cannot
choose the other coordina@ such thate,.-VB=m.-V3
=0. To separate out the large component of diffusion sthe

vector must satisfys.-Va=0 ands,-V{=0. The coordi-
natesa-B-{ given by the following equations,

where

S.- VoA (é)+V4-5,=0, (17)

where X(¢) is a smooth function of position due to the
smoothness of the vector fiels, . Hence we have, once

again, directly related the geometry of afine to the diffu- Va=fe,+gm.,,
sive transport through (&,t). These new results for three . "
dimensional systems, Eq&l5)—(17), have the exactly same V{=pe.taqm.,, (18

form as what we found for two dimensional conservative
system$|[of course, the number of spatial coordinates is now
three in Eq(17)]. Just like in two dimensions, the functian ~ satisfy this requirement. The functiofisg, p, g, a, b and
in Eq. (15) is responsible for the description of barriers for ¢ are determined locally by the propertiesef,m., ands,

VB=ae,+bm.+cs,,
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FIG. 1. The finite time Lyapunov exponexts related to the largest eigen- +¢qDps, (28
value of the metric tensoA by In A=2\t (uptriangle$. 6 and ¢ are the . _
polar and azimuthal angles of thevector, In@lé/dt) (downtriangley and Da§_ Déa_ fPDeet 9aDmm* (fq+9gp)Dem. (29

In(d¢/dt) (circles. (a) Standard map wittk=1.5, at point (0.3,0.6)b) The diffusion coefficients are
extended standard map wiki+ 1.5 andA= J3, at point (0.3,0.6,0.8).

Dee=€.-D-€,; Dey=6.-D-m.; Dyy=m.-D-m.;
(30

from a set of first_ order differenti_al equatior(rk)_r a proof Dee=S.-D-€,; Dgy=S.-D-m,; De=S,-D-s.. (31
that such a coordinate system exists in the neighborhood of "~ ) ) ) )
an arbitrary point, see Appendix)CThe Jacobian of the In this set of natural Lagrangian coordinates, the anisotropic
a-f3-¢ coordinates is),= 1/(fq—gp)c. In both 2D and 3D  Properties of the metric tensor are inherited by the diffusive
cases, the coordinate gives the direction of rapid diffusion. flux in different coordinate directions, i.ey”>y* or y*.
Diffusion in the other coordinate) is either severaly sup- This can be illustrated by considering a chaotic divergence-
pressed or cannot be distinguished from that in an integrabiee flow in whicha/"=—Ag=\ and A,=0. Substituting
flow. g" =exp(—2\ t)ee+ exp(— 2\ )mm+ exp(—2\d)ss into the

The infinite time Lyapunov exponent is a constant in onetensor diffusivity and using the orthonormality efm, and
ergodic region. The finite time Lyapunov exponents, as deg e find that the diffusion coefficients satisfy the inequali-
flhed in Eq.(5), are fun-ctlons AoprosmE)n and time. The {jeg Dee~Dep~D exp(—2\t) <D, ~D<De~D0o(Dyns
eigenvectors of the metric tenserm ands also depend on  ~Dg,,)<De~Dexp(at) for A;~A;'>1. Consequently,
position and time. They converge to time-independent funcp ;,~Dexp(2t) is much greater thanD,,, D,
tions of Lagrangian position, the time asymptotic eigenvecDaB, D;s, and D,, which are at most bounded by,
torse. (&), m,.(¢&) ands,(§), for A;1>1. The convergence o=sup(oe,os), for A|~AS’1>1.

of the s vector is of most importance, and the finite timis The diffusion in a chaotic flow is one dimensional. This

related to the asymptotic eigenvectors by property of Eq(ZO) can be illustrated by an exact solution
o . R for a chaotic flow modeled by a simple extension of Arnold’s
s%S, +omAsM,+ oA, (19 cat map®®

where o (1) and o4(t) depend aIgebraica_IIy on time_ and Xns1=Xn+tYnT  Yne1=Xnt+2Yp:
measure the rate of convergeriéar a numerical illustration, - R
see Fig. 1 It is easy to check thatg/=A"le.e.+m.m,

The a-B-¢ coordinate system with Jacobiah=1/(fq  +As.s., A=(InA)/2t a constant, and=q=c=1g=p
—gp)c simplifies the diffusion equation, Eq9). In these =a=b=0. The diffusion Eq.(20) now takes the simple
coordinates one has form

Zn+1= 2y
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i F P P term give arSproduction that scales as exg#\t), while the
— = —Dexp(—2\t) —D—-D exp(2At) — (9¢plaZ)? term makes the dominate contribution which
at da ¢ P scales as exp{2t/7y) with 7y=1/Dk? the characteristic dif-

This equation can be solved by the method of separation dHSion time. A .

variables. As an example, for such a flow in an infinitely ~ In 3D flows thee, andm,, vectors are generally mixed
extended space an initial distribution of the scalar fig{d  in natural Lagrangian coordinates and {. Consequently,
=0)=cy(1— coska)(1—coskB)(1—cosk{) relaxes as diffusion in these two coordinate directions are dominated by
the contribution fronm direction and they have the charac-

— _ _ _ a2\t
¢=Col1—ex —(1-e ")/20]coska} teristic time scale of an integrable flow, just like thdepen-

x{1—exd — (e?'—1)/2Q]cosk s} dence of¢ in Eq. (32). Itis the diffusion in theB coordinate
) that distinguishes the transport of a passive scalar in a cha-
X{1—exp(—Dk"t)cosk{} (32 otic flow from that in an integrable flow.
with Q=\/k?D the ratio of the characteristic diffusion time ~ Theslines give the most important information for con-

of the passive scalar (4JD) and the Lyapunov time of the structing the natural Lagrangian coordinate system, and thus
flow (1/\). One might be concerned that the construction ofdetermine the evolution of a passive scalar. A sirglme
s lines and finite time Lyapunov exponents in the examplegenerically fills a chaotic region in bounded systems. This
was based on a map but the solution was given in the corimplies that the asymptoti@.e., on the time scale which is
tinuous time. There are two ways to interpret this result;much longer than the typical advection tipevolution of the
neither affects the essential physics. One is to regard32y. passive scalar in a generic chaotic flow is different from that
as the solution for a time periodic flow field which has the of the simplified solution given earlier, E82). That is, the
form of the cat map if sampled at the periods of the flow.final ¢ distribution will not retain any coordinate dependence
This is justified since the map and the flow field from which in the region where the flow field is chaotic and the smooth-
it is reduced have the same spatial dependence cflihes ~ INg of the gradient of¢ scales at a rate much faster than
and finite time Lyapunov exponents in Lagrangian coordi-V $o €XP(~/7) with 74=L?/D the characteristic diffusion
nates. In the other approach one simply interprets(&2).as time. .
the diffusive relaxation for a map by takingt discrete time It should be noted that the simple model based on cat
intervals. We also note that a solution of similar form to Eq.map is mixing in thex-y plane and has straightines due to
(32) was given in Ref. 20 to illustrate the effect of turbulent hyperbolicity. Generic flows are only ergodic and can have
strains on the small scale variation of passive scalars. ~ nonhyperbolic points. In other words, generic flows can have
The solution has distinct characteristic dependence in thimtegrable regions and the# lines have a complicated ge-
different coordinate directions. F6>1, the function¢ re-  ometry. The next two sections study the additional features
tains its initial « dependence. Fot<t,—1/2» with t,  of the properties of the solution to the advection-diffusion
=In(2Q)/2\ the solution is accurately approximated by the equation which were missing from the simple model flow
initial distribution ¢o. The 8 dependence o is damped based on cat map.
during a short interval ¥ centered on the time=t,. De-
spite ¢ retaining its initial «  dependence,
(9] 9a)g*(9lda) becomes small fot greater thart, V- FINITE TIME LYAPUNOV EXPONENT AND
due to the smallness of thg** component of the metric BARRIERS FOR DIFFUSION

tensor. The asymptotic form for the gradient ofis deter- Unlike the infinite time Lyapunov exponent which is a
mined by the slow varying{ dependence, W¢)*>  constant in one chaotic zone, the finite time Lyapunov expo-
~(V ¢po) *exp(—2t/7y) with r4=1/Dk? the characteristic dif- nent for any given tima.(¢,t,) can, and generally does, vary
fusion time. Hence it is no different from that of an inte- Signiﬁcanﬂy over space for a generic chaotic flow. The
grable flow. strong spatial dependence of the finite time Lyapunov expo-
This can also be shown by examining the rate of thenent produces a large spread in the time during which diffu-
production of entropy-like quantit§§ which was defined in  sjon is important. Such effect can be examined both crudely

Eq. (10). In natural Lagrangian coordinates and exactly, corresponding to a study of the statistical prop-
ds 1 D2 Ib\2 erties and the exact spatial dependence of the finite time
_:f ——(y")2+| D~ “ﬁ) (_> Lyapunov exponent, respectively.
dt Dp Dppl\ da To understand the termination of the enhanced diffusive

Df;g a\2 transport at a c_rude level, one qan_coqvolute the timeith .
+| Dy D a_g) the corresponding probability distribution function of the fi-
BB nite time Lyapunov exponent. The probability distribution of
D.sD s\ I o the finitg time Lyf';lpunov expongnts(g,tzto)z—InAS(.g,t '
+2| D, D,y T JydadBds. (B3 =ty)/2t, is approximately Gaussian with respect to variation

in space, and so will be the spread in timg Since the
The (y#)? (the diffusive flux ing coordinaté gives the main  difference between the distribution of the finite time
pulse ofS production in the time interval 1/centered on the Lyapunov exponents and a Gaussian distribution becomes
timet,. On a longer time scale, this term and thiep(da)? smaller as one samples the finite time Lyapunov exponent at
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FIG. 2. The distribution of finite time Lyapunov exponents peaks around the™!G. 4. The standard deviation of the distribution of finite ime Lyapunov
infinite time Lyapunov exponent. The finite time Lyapunov exponents, €xponents decreases the further the flow is from being integaitgerk).

M(&,1), are evaluated at fixet) but for differenté Extended standard map UPtriangles and circles are for extended standard map wwith0 and 20
with k=3.0 andA = /3, t= 20 iterations. iterations, respectively. Downtriangles are for standard map withoO it-
erations.

a longer time intervallargert,), the spread iri, becomes

more Gaussian-like for systems with longer characteristisional conservative systems by applying the constraint that
diffusion time scaleL?/D. Furthermore, the spread in the the Riemann-Christoffel curvature tensor must vanish in a
time during which the main entropy pulse occurs is small ifflat space on which the Lagrangian coordinates are defined.
the characteristic diffusion time is long. This is due to theA similar calculation in three dimensions is currently not
fact that the standard deviation of the distribution of the fi-feasible, so we instead resort to a numerical resolution.

nite time Lyapunov exponent scales as'ty/ Numerical il- The key to Eqs(15)—(17) is to show
lustration of these properties are given in Figs. 2-5. - -~ _
A detailed examination of the diffusive transport re- tlfr:c[Sﬁ(g)'VO)‘(g’t)HVO'S”(g)]_O' (34)

quires the knowledge of the exact spatial-temporal depen- . _ o _ . _
dence of the finite time Lyapunov exponent in a given chaOnce this relatlonshlp is established, one can immediately
otic flow, especially the spatial variation af ¢,t) along the see that lim_.s.- VoA (&,t)t cannot have a time depen-
slines, since that is the line along which the rapid diffusivedence. Let

relaxation occurs. This information is given by E¢&5)— I A ~

(17). In Ref. 2 we derived Eq915—(17) for two dimen- tlmsx Vol (£,01=5.- VoA (£) (35

0.10 T T T

0.08

bor

0.04

0.02 ! - L ;
0.0 50.0 100.0 150.0 200.0

0 .
t (iterations) 10 100 1000
t(iterations)

FIG. 3. The residue, or difference, between the distribution of finite time

Lyapunov exponents and a Gaussian distribution, decreasemasases. FIG. 5. The standard deviation of the distribution of finite time Lyapunov
Circles are for extended standard map wkth 10.0 andA?=3. Triangles exponents scales as\i/ Uptriangles are for standard map withk=10.0.
are for standard map witk=10.0. Dashed and solid lines are given by Circles are for extended standard map witk 10.0 andA= 3. Dashed
Residue= 0.347At +0.018 and Residue0.31A/t+0.0026. and solid lines are given by =0.785A/t and o= 0.382A.
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FIG. 6. A(£,t)=|s Vo(At) +V,-§ exponentially converges to zero. Uptri- 10°
angle:A(,t) is evaluated at point (0.3,0.6,0.8) for extended standard mapx, 4¢°
with k=1.5. Circles:A(¢,t) is evaluated at point (0.1,0.2,0.75) for ABC Y
map withA=B=C=1. 10
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distance along an s line

with X a time-independent smooth function of position.

Equation(35) allows a functionf (¢,t) satisfying FIG. 7. The finite time Lyapunov exponert), thee andm components of
the s line curvature e and k), are plotted as functions of distance along
S.-Vof(&,1)=0 (36) ans line. The calculation was done for ABC map with=B=C=1. Only

. . L . the magnitudes of the curvature are used for the log-linear plots.
to be included in the decomposition ®f&,t). The function

f(&,t) is bounded by a/t dependence in Eq15). The ob-

vious reason is that lim... f(¢,t)/t has to vanish to satisfy In terms of simple geometry, the finite time Lyapunov expo-
the definition lim_.\(£t)=\". The exact choice ofit  nent has a maximum where the neighborigdines are
comes from the fact that the standard deviation of the dism'squeezed and has a minimum where the neighbaiitges
bution of the finite time Lyapunov exponent over space has @re pulged outward. In the cases that we have studied, the
1\t dependence. Deviation from this\1/ dependence at finite time Lyapunov exponent has a sharp dip at the sharp

finite time is captured by the weak time dependence ifyenqg of ars line. The bending of a line can be charac-

f(&0. . terized by its local curvature. In three dimensions, the curva-
We have numerically evaluated N - - .
ture of thes lines has are and anm component. Figure 7
A(E1)=|s Vohot+Vg-9 (37)  shows the variation of the finite time Lyapunov exponent

for two different models of three dimensional flog@ec. \j. ~ 20ng ansline and the variation of the line curvature.

Similar to what we did in Ref. 2, a finite difference scheme is Thg eq.uation$15)—(17) have.a surprisingly broad range
avoided by expressing (£,t) in terms of the spatial deriva- of applications. It uncovers a dLrect link between theA finite
tives of the metric tensappendix B. We find thatA(¢,t)  time Lyapunov exponent and the vector field. (Note: s,
converges exponentially in time to zero. The convergenc@bds the stable direction. It is the tangent vector of the local
rate is approximately equal to that of tReector, i.e., twice Stable manifold if the latter exists. Tisdine is equivalent to
the Lyapunov exponent, as can be seen in Fig. 6. Hence wi8€ Lagrangian stable folia}ion in a general time-dependent
have numerically validated E§34), which is the basis for flow.) By relating geometryglines) to a dynamical quantity
Egs. (15—(17). (Lyapunov exponent it provides new insights into the un-
The spatial derivative of the finite time Lyapunov expo- derstanding of chaotic systems in general and Hamiltonian
nent along ars line is proportional to the divergence of the Systems in particuld: The importance of this discovery in

S, vector. For straight segments of atine, the divergence transport_study is t.rans.,parent. It forms the baS|s_for a detailed
~ . L .. examination of diffusive transport in a chaotic flow. As
of s, is small, and so is the variation in the finite time

N shown in the last section, the rapid diffusion only occurs
Lyapunov exponent. At the sharp bends of atine, the

finite ti L ¢ K | g in it along thes lines. According to Eqs(15)—(17) the finite time
Inite time Lyapunov exponent makes a large swing In ISLyapunov exponent and hence the characteristic dimension-
magnitude in accordance with the large oscillation Yof

A . . N less paramete vary little on a segment of thelines which
-S, . Analytically speaking, the finite time Lyapunov expo- . i - , )
. . AL is straight(small V,-s.). Consequently the spatial gradient
nent attains a local minimum along arine where . .
of the passive scalar on a straightine segment would be
V.-s,=0 ands.-V(V-s,)<0 wiped out by a rapid diffusion during a short duration. The
situations are quite different on the two ends of this straight
s line segment, which are identified as the sharp bends of the
V-s5,=0 ands,-V(V-s,)>0. sline. The finite time Lyapunov exponent has a sharp varia-

and reaches a local maximum alongsline where
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tion in its magnitude at these sharp bends of ¢hknes. V. FLOW MODELS AND NUMERICAL ILLUSTRATION

Numerical results have consistently shown a sharp drop in
the magnitude of the finite time Lyapunov exponésée y, moqe| the chaotic flow. For simplicity, we have used

Sec. V). A peculiarly smallx Iea_ds t(_) a signi_fica_nt reduction aredvolume-preserving maps to model a divergence-free
in Q, hence a form of local diffusion barrier is created. A 5 The standard mafsMm), 19

simple analogy is the temperature relaxation in a line of iron

rods bound together by some plastic chips. The temperature Xn+1=Xa— (K/2m)sin(27y,),

gradient will be removed in each iron rod very quickly, but —v 4 (39

the plastic chips would serve as a practical thermal barrier on Yn+1=YnT Xn+ 1,

this fast time scale. Of course, the whole system will reach tavith k a constant, is a good choice for modeling a 2D time-
thermal equilibrium after a certain time if the system is iso-periodic divergence-free flow. We have devised an extended
lated from the surroundings. The exact time scale for this t@D version of the standard magSM),

zﬁir:)z?n is given by the thermal conductivity of the plastic Xp s 1= X~ (KI2m)SIN(27y,) + A,

The existence of diffusion barriers associated with the vy, 1=Y,—2,, (40
sharp bends of ths lines actually remedies a pathology of
the natural Lagrangian coordinates in applications. The natu-
ral Lagrangian coordinates defined in the last section are inwith k andA constants, to model a 3D divergence-free flow.
trinsically local coordinates. Natural Lagrangian coordinatestThe ESM is attractive for studying the chaotic advection-
are closely related to the Clebsch coordindtee appendix diffusion problem since it is a divergence-free map based on
C). It is well known that the Clebsch coordinates, which area well-studied standard map and a point spirals along a KAM
also called Euler potentials, are not generally single valued isurface much the same as the motion of a fluid element
one attempts to extend them over large regidridowever, trapped in a fluid vortex.
this pathology is not as important as it first appears since the The ABC flow v=(v,,vy,v,) is another example of a
presence of local diffusion barriers along thdine effec-  three dimensional divergence-free fIg#7
tively impose boundary conditions in the natural Lagrangian v,=Asinz+ C cosy,
coordinates, and hence only local coordinates are relevant for
describing the chaotic transport which has well separated vy=Bsinx+A cosz, (41)
time scales.

If not for the second ternf(&,t)/\t in Eq. (15), the
finite time Lyapunov exponent would be a smooth functionlt satisfies the Beltrami conditioN X v=v and allows cha-
in space for arbitrary time. In fact, the finite time Lyapunov otic stream lines. The ABC flow has direct relevance in hy-
exponent becomes a fractal function of position acrossthe drodynamics since it is a solution to the Navier-Stokes equa-
lines for larget, since f(&t) develops an exponentially tion with a forcing termF linearly proportional to the

growing spatial gradient in time along directions away fromVvelocity field v To. mcrease.computanonal efficiency, we
the S, direction? employed a discretized version of the ABC flow, the so-

For any given timety, this property is reflected in the called ABC map®
correlation length of the finite time Lyapunov exponent in Xnt+1=Xn+Asinz,+Ccosy,, mod2m),
different directions. The correlation length along tine is
extremely long sinca is a smooth function along this direc-

tion. Across thes line, the irregularity inf(&,t,) overwhelms Zni1=2,tCsiny,, 1 +Bcosx,, 1, mod2m),

the regularity in\ and the correlation length foris greatly iy yescribe the fluid motion in a three dimensional
reduced. The richest structure, and hence the shortest COM&ivergence-free flow.

lation length, lies along the lines. The fractal nature of We find that the eigenvectors of the metric tensor of the
function f(,t) brings another degree of complexity to the Lagrangian coordinates converge exponentially in time to
diffusive relaxation. That is, the entropy production in a cha-their time asymptotic limits in a chaotic region of the flow.
otic flow is a fractal function of space and time. In retrospect, particular, thes vector converges with an exponent of 2
the spread in the time during which the main entropy proice the Lyapunov exponent of the flow. Leand¢ be the

duction pulse occurs is actually determinedfify,t), since | d azimuthal | f thar . herical
the standard deviationr(t) of the distribution of finite time polar an a2|mut_ al angles of tisvector in spherical coor-
dinates. One finds thatd#/dtxexp(—2At) and de¢/dt

Lyapunov exponents is given by exp(—2\1) (Fig. 1)

In Fig. 2, we show the probability distribution af( £,t
- - =ty) in a single chaotic region. This distribution is approxi-
o(t) =) — (A H2+ 0ot ™), (38)  mately Gaussian, but deviations from the Gaussian distribu-
tion always occur. The difference between the finite time
Lyapunov exponent distribution and a Gaussian distribution
where(- - -) denotes averaging over space. becomes smaller as one samples the finite time Lyapunov

To examine the transport problem quantitatively, one has

Zn+1= Yn™ Xn+1,

v,=C siny+ B cosx.

Vn+1=Yn+tBsinx,,;+Acosz,, mod2m), (42
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exponent at a longer time intervdbngert,) (Fig. 3). Here (a)
the difference is given by  residad||P(x)
—P,(x,1,0)|dx, wherex=\(t)/\", P(x) is the distribu-
tion function of the finite time Lyapunov exponents and - B o N

P.(x,1,o) is a normal distribution which is centered mt = %[ T e
=1 and has the same standard deviatioas that ofP(x).

The standard deviation of the distribution of finite time
Lyapunov exponents decreases if the flow is further from

being integrableFig. 4). For largert, (compared with the -
Lyapunov timg the standard deviation of the distribution of 5 * ﬁwmww M‘WMWMWWMW M/NYWWW

finite time Lyapunov exponents scales agt}/(Fig. 5).
The distribution of the finite time Lyapunov exponentis  °°
sampled over space. In other words, an ensemhid &t ) is
obtained by varyingé, the Lagrangian coordinates or the
initial condition, for fixedt. To characterize the distribution WWWWWMWWWMM
of the finite time Lyapunov exponent, the positighor
equivalently the initial conditions should be sampled uni- 0 r o 300
formly over an ergodic component in the space. In system Distance
that are highly chaotic, the full space appears to be chaotic )
and the sampling of for A (£,t) calculations can be approxi-
mated by the positions visited by a single long trajectory. 1,
Indeed for many of the calculations presented here, we hav
truncated a single long trajectory into many segments witt
the same time spamt, and calculated the finite time o8
Lyapunov exponent for each individual segment. The result
ing finite time Lyapunov exponents aig &,t) with t=At
and ¢ is given by the position of the starting point of each
segment. The validity of this approximation as a statistical
sampling of\(&,t) over space is based on the ergodicity of
the chaotic trajectorie$Obviously one has to integrate for a E
really long trajectony). This approximation is usually thought 02
to be very good in systems that are not nearly integrable
(hence the sticky stochastic layer and associated long trar
sients play less a roleWe have compared the results with 0o ‘
those sampled from a uniform grid in space for systems fa 00 02 05 0.8 10
from integrable, and obtained good agreement. The sampling Distance
of ¢ via a single chaotic trajectory is, in fact, also a practicalFIG. 8. Extended standard map wik-2.0 andA = 3. (a) The Lyapunov
method even for systems that are not far from integrable. Thexponents,\(t=30), were sampled with equal spacing alongedine, an
reason is that in a weakly perturbed system, numerous intem line and ans line [all starting at(0.1,0.1,0.8]. These values are plotted
grable islands and island chains are embedded in a chaofj@ainst the distance along the lingb) The correlation function for the
component. Defining the boundary of a chaotic COmponenf_yapunov exponents in the direction (solid), in the m direction (dashe
which has a fractal structure, may pose an even greater dif"d in theé direction (dotted.
ficulty in practical calculations.
Another note on Fig. 2 is that the distribution function is
found through histogram. The smoothness of the distributiofin€ IS €xamined again in Fig. 7. The geometry of fhine
curve can be severely affected by the histogram counts/bil$ represented by theandm components of the line cur-
ratio. vature. It is easy to see that there is a sharp dip in the mag-
We evaluateA (¢,t) defined by Eq.(37) for both the nitude of the finite time Lyapunov exponent wherever ghe
extended standard map and the ABC nfgjg. 6). It is easy line makes a sharp bend. Peculiarly small finite time
to see thatA(£,t) converges exponentially in time, a result Lyapunov exponent leads to small lodalnumber and gives
that is essential to establish Eq45)—(17) (Sec. IV). The rise to effective diffusion barriers.
strong spatial variation and anisotropy fq,t) in Eq. (15
are illustrated in Fig. 8. One can see that the correlation/l, TRANSPORT IN AN INTEGRABLE REGION OF
length is long along the lines, while it is extremely short in  THE FLOW

directions away from this orientation. The correlation length | 4 integrable region of a divergence-free flow, neigh-

of the finite time Lyapunov exponent along terepresents  horing fluid points separatéor converge at most algebra-
the characteristic correlation Iength in a chaotic flow. The|ca||y Consequenﬂy, the |argest eigenvame(or the small-
variation of the finite time Lyapunov exponent along ®in est eigenvalue\) of the metric tensor of the Lagrangian

Correlation Functions
=]
13
‘
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coordinates increase®r decreasgsat most algebraically. J0 do  v(V,p,9)—vg
The eigenvectors of the metric tensor still have well-defined £+ P S
time asymptotic limits. Hence the natural Lagrangian coor-
dinates introduced in the last section are well defined in thd he double periodicity inp and & implies that a scalar func-
integrable regions of a flow. tion » can be written as

This can be illustrated by considering a divergence-free
flow in a bounded integrable region. If there is no null point .
in the region of interest, a globally divergence-free field ad- V:;n vameXfi(ng—md)], (47)
mits a Hamiltonian structuf& to which the machineries in _ . _
Hamiltonian mechanics can be applied. Hence the integrab@"d the transformation functiom can be written as
region of such a divergegr;ce-free flow consists of bounded
constant “action” surfaces; the KAM surfaces. Parametriz- _ :
ing the integrable surfaces using “action” implies the exis- 9_% ComeXI(Ne=ma)]. 49

tence of an "action” functionW(x) such thatv-V¥=0 It to show that the Fouri ts of the t
with |[VW|# 0. Since the flow is also divergence-free-{ IS €asy fo show fhat the rourier components ot the frans-
formation functionp are ¢ n=ivyn/(N—tm)vy. The de-

=0), one can treat it as a one degree of freedom, time-; . ! )
dependent Hamiltonian system and write the flow field in thes're(j Jacobian of the new coordinatése- 3, 1/”0(\1’).’ IS
e m=0, n=0 Fourier component ofy(V,p,39), i.e.,

) . ) h
canonical representation, in analogy to the canonical repré— ! . ;
sentation of the magnetic fiefd.That is vo(W)=vg9. This proves the existence df, ¢, ¥ coordi-

nates in which the motion of fluid element on a KAM surface

with irrational winding number satisfies EGL5).
v=VUXVO+VPXVyx(V¥), (43 If the system is perturbed away from complete integra-
bility, there exist remnant KAM surfaces which are param-
with the Hamiltoniany a function of the action-like quantity etrized on a discontinuous set of action. The trajectory on a
W alone. The motion of the fluid element in tHecoordinate  KAM surface still follows Eq.(45), but the action coordinate
is determined by the Jacobidrof the W-®-0 coordinates, is generally on a Cantor set."&hel showed that on this
Cantor set, the KAM surfaces form a differentiable family in
dO/dt=v- VO =(V¥XVO)-Vd=p(¥,&,0)=1/]. the sense of Whitney so one can s.peak of an inte_grable Sys-
(44) tem on a Cantor séf The construction of the metric tensor
needs thel derivative of the Jacobiany and the rotational
The Jacobiad is, in general, a function of all three coordi- transform.. By following Paschel, theW, derivative of v,
nates. The angle-like variablé® and time-like variablep ~ and. can be properly definetin the sense of Whitngyon
are periodic and we set the period to be.ZThe topo|ogy of the remnant KAM surfaces. EXCGpt for this Subtlety, the re-
the flow trajectory on a KAM surface is simple in canonical Sults presented in the next two paragraphs on the properties
coordinates, and it is given bP=0,+(¥)P with ¢ of the metric tensor apply to the remnant KAM surfaces in a
=dy(¥)/d¥ the winding number of the flow trajectory. Perturbed system.
The KAM surfaces can have rational and irrational winding ~ In W-¢-9 coordinates, the Jacobi matrix of the Lagrang-
numbers. Surfaces with a rational winding number consist ofan coordinatest o-¢o-% is simple,
closed lines. But a similar line cannot close on itself on a
KAM surface with an irrational winding number. 1 00
Straightforward substitution shows that the transforma-  5_| 4t 1 o0
tion of ®=¢+ 0, @ =3+ 10 gives the same flow field in
canonical form, Eq(43). Except for the arbitrary functiop, Bt 0 1
the V-d(¢)-0(6) coordinates are uniquely defined. This lim- with A= gvy/d¥ and B=d(wve)/d¥. Without losing gen-
ited arbitrariness, in return, allows one to make a transforerality, we write the metric tensor of thE-¢-9 coordinates
mation of® — ¢ and®— 19, such that the motion of the fluid as
element on a KAM surface with irrational winding number is
prescribed by

(46)

Vo

T=V,; o=@otro(P)t; I=35+c(V)ve(W)t.
(49)
whereC, D, &, F, G and’H are the covariant componerdg
To prove the existence of E(5), we need to show that  of the metric tensog,. The determinant of, in covariant
there exists a functioe(¥,®,0) such that the Jacobian of representation is
the new coordinate¥’-¢-9 is a function of¥ alone, i.e.,
(VI XVY) -Ve=ry(¥). Expressing the Jacobian of the
V-d-0 coordinates in terms of the new Jacobid@mnction
of W only) of the transformed coordinates and the transfor-The metric tensor of the Lagrangian coordinates ¢q-9,
mation functiong, one has is given by

Gl =J2=CFH+2DEG— FE*—CGP— HD?. (49)
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<

g=3"-7y-J (50)

with JT the transpose ai.

For larget, the three eigenvalues of the metric tensﬁ:)r (
of the Lagrangian coordinatek,-¢o-9 are given by

A= (FA?+HB?>+2GAB)t?>+ 2(DA+ EB)t+ O(1),

_ HFA*+ FHB? - GPB— G*A?
FA*+HB?+2GAB

+0(t™ Y, (51

m

- % : +O(t7%)
 HFAZ+ FHB? - GPB2— GPA2 1 '

S
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For t large compared with the shearing timewl/the
tensor diffusivity is highly anisotropicDee~Dmm~Dem
~D<|Dod|~|Dmd =Dwt<D ~Dw?t?. Hence there are
fast diffusion and slow diffusion directions in an integrable
flow with shear(v or ¢ is a function of ¥ instead of a con-
stan}. The effective diffusivity ins,, direction increases qua-
dratically in time, so there is a fast diffusion along the
lines, which lie on the KAM surface. The, vector is per-
pendicular to the KAM surfaces and the effective diffusivity
in e, direction is the classical diffusivitp. Hence the dif-
fusion across the KAM surfaces is slow. The natural La-
grangian coordinates defined by E8) separate these dif-
ferent diffusion time scales and give the general properties of
the passive scalar transport in a generic integrable flow.
Since||D.d|~Dwt and the diffusive flux across KAM sur-

asymptotic limits, e,=(1,0,0), m..(0' v+ v, — vp),
ands, = (0,v),¢' v+ trp) (see Appendix F Here the prime
denotes a derivative with respect{a Theeline is perpen-
dicular to the KAM surfaces while the line andm line

always lie on a KAM surface with irrational winding num-

ber. Ones line or onem line generically fills the whole
surface, as they do in a single chaotic region.

If v in Eq. (45) is a constant, the flow is effectively two

dimensional. The correspondiregands lines coincide with

the action-like variable and the angle-like variable axes. This
zero shear case is equivalent to the two dimensional twist

map (standard map at=*0).
The diffusion coefficients defined in Eq80) and (31)
can be found exactly,

Dee=cgD, (52
Dem=cD, (53
Des= —CoDwt+c,D, (549
Dmnm=c3D, (55
Dps=—cDwt+c,D, (56)
Ds=CoDw?t?—c,Dwt+cgD, (57)
wherec;, i =0,5, are time-independent functions.4f B, C,

D, &, F, G, H, and their explicit forms are given in Appendix

G. The shearing rate of the flowis= A%+ B%. The shear-

ing time 1/ is the characteristic time of a nontrivial inte-

grable flow.

~ ~ 2 2 2 3 2:3 2 2:3 2
DKy K, Ky 1) = Po(ky K, Ky) @ DKt ACDkyk+ BEDkyky = (2AB13)DK k= (t+ AZCIDKE ~(t+ B3 DK

= Bo(ky K kﬁ)e—Dt[k\zl,-%—ki-%—k%—Atkq,k¢—Btkq,k0+(Atk¢+8tk,9)2/3]
1 (PY

diffusive flux across the KAM surfaces during the time in
which the fast diffusion is accomplished on the KAM sur-
faces.

These transport properties can also be demonstrated by
solving the diffusion equatiofi7) with the rough approxima-
tions thatC=F=H=1 andD=E=G=0. The metric tensor
in its contravariant componeng¥) now takes the form

1 - At — Bt
g=| —At 1+.A4%* ABt?
-Bt  ABt? 1+B%?

For constantd and B, the diffusion equation can be written
as

b P P P
E_D_W_ZDA TV odee ZDBt—a‘I’o&ﬁo
5? &2
+opaBe 2 +D(1+A2t2)—(2
dpod Vo ey
82
+D(1+th2)—q§. (59
a0

The general solution to this equation is

#¥0,00.90.0=2m 2| [ [ ik, ko0

x @l (ke¥ot+keeotkydog qud k(pd kﬂ )

(59

where

(60)

(61)
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with ?ﬁo(kq,,k‘p,kﬁ) given by the initial condition ¢q
=¢(Vo,¢0,90,t=0),

EO(k‘P 1k<p 1k19)52)(k‘l’ 1k<,a 1k19 vtzo)
~2m [ [ | aot¥o.00.0

Xei(k\p\l’g‘* k¢¢o+kﬂ‘90)d\1f0d(‘pod 190. (62)

Let 7y and 7, be the characteristic diffusion times of the

initial passive scalar field in and across the KAM surfaces.
The characteristic dimensionless quantity is the ratio be

tween the characteristic diffusion time and the shearing tim
of the flow, Q=w 7. For (1> 1, the scalar field is advected
by the flow until timet,=QY¥w, which is much shorter
than the characteristic diffusion time of the initial scalar
field. In the KAM surface, the spatial dependenag, @nd
Up) of the passive scalar field is damped after anothey,
i.e., dpldpg~ddld,~0 for t>2t,. The asymptotic form
for the passive scalar fielg is determined by the slow vary-
ing ¥, dependence, i.e., far>2t,,

¢(~yo,t>=(2w)*1’2f Po(Ky,0,00elk¥ o~ PKutg

(63
with

Bokw00=2m 22 [ [ aoWo.00,00

x ekvr¥od W de,d 9y, (64)

and ¢o(Vq,90,70) the initial field. Hence the smoothing of
the gradient ofp across the KAM surfaces has a long tail and

€
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ral Lagrangian coordinates. The rapid diffusion removes the
gradient of the scalar field in the entire chaotic region.
The finite time Lyapunov exponent varies smoothly

along ans line and has sharp dips where théine makes a
sharp bend. A large reduction Mleads to a peculiarly small

Q number. Hence the sharp bends of $iime define a class
of barriers for diffusion. This new class of diffusion barriers
are associated with the nonhyperbolicity of the system,
which is thought to be generic for chaotic systeéms.

The characteristic time scale of an integrable flow with
shear is the time scale on which neighboring fluid points
separate algebraically due to the shear. The characteristic
dimensionless quantity for the transport of a passive scalar in
such flow is the ratio between the characteristic diffusion
time of the scalar field and the shearing time of the flow,
O =ryw. If the shearing time of the flow is much faster than
the characteristic diffusion time, the scalar field is advected
by the flow until timet,=0¥w. The fast diffusion, which
is confined within the KAM surfaces, removes the gradient
of the scalar field in the KAM surfaces after time intertal
During the period (,<t<2t,), there is an enhanced diffu-
sive flux (compared with the one predicted by the character-
istic diffusion time across the KAM surfaces, but it is too
small to remove théel, dependence. Fdr>2t,, the scalar
field has only¥ dependence, and its decay is accurately
described by the characteristic diffusion time. Hence, across
the KAM surfaces, the diffusion is distinctly slow and a large
gradient of the scalar field can be maintained.
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T, 0l IV jcexp(—t/7)).
In summary, the fast diffusion, which is the result of

shearing between different KAM surfaces and the constrainfPPENDIX A CHAOTIC FLOW AND THE ERGODIC

of the flow being divergence-free, occurs only within the
KAM surfaces. Diffusion across the KAM surfaces is ap-

THEOREM OF DYNAMICAL SYSTEMS

If a flow field is smooth, the equation of motion for the

proximated by the characteristic diffusion time and is veryfyid element, Eq(4), can be treated as a differentiable dy-

slow.

VIl. SUMMARY

namical system to which the ergodic theorem of dynamical
system3 can be applied.

For simplicity, we consider a steady flowgx/dt
=v(x), xeR3, or a time-periodic flow which can be re-
duced to a mapx,. 1=V (X,), X,€ R°. We also assume that

The advection and diffusion of a passive scalar havehe flow is time reversible. The distance between neighbor-
been investigated in both chaotic and integrable flows. Théng points at timet is related to their initial separation by
characteristic time scale of a chaotic flow is the Lyapunovd|2=gijdgid§1', with g;; the metric tensor of the Lagrangian
time which measures the exponential convergence of neigleoordinates. The rate of the exponential divergence or con-
boring fluid elements. The characteristic dimensionless quanrergence of neighboring trajectories is measured by the
tity for the chaotic transport problem is the ratio between the_yapunov exponentj =lim,_..(1/2t)In(dI?/dI2). In vector
characteristic diffusion time of the scalar field and theform,

Lyapunov time of the flow. This number is, in general, very

large. The scalar field is purely advected by the flow until the

time t,— 1/2x with t,=In 2Q/2\. There is a rapid diffusion
during a relatively short interval (1) centered on time, .
This rapid diffusion occurs only along the field line of the

éx, which defines the stable direction for the streamlines.

A(&U)= limIn(u-g-u)/2t.

t—oo

(A1)

Here u specifies the direction along which the initial fluid
points separate, i.efo= SyU.
In a single chaotic regiofthe region in which an ergodic

The fast diffusion can be confined to one coordinate in natumeasure is preserved by the time evolution of the fluid equa-
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tion), the multiplicative ergodic theorem asserts that therea|0ng thes line. If \,;=\, diffusion occurs in therfi, ,S.)

exist three characteristic directions in which three Lyapunovg, faces and diffusion barriers appear where hotrand
exponents reside, i.e., have peculiarly small values.

N=N(E€E)=limIn(eé-g-€)/2t, i=1,23. (A2)
t—oo

APPENDIX C: CONSTRUCTION OF NATURAL
The Lyapunov exponents are independent of posifigma  LAGRANGIAN COORDINATES
single chaotic region. If there is no degeneracy in Lyapunov - ) ] ] .
exponentsh\;>\,>\3, which is obviously true for a cha- If s, is an arbitrary vector field, one can find a function
otic divergence-free flow, the three-dimensional bais ~ 9(§) such that e"9¥s, is divergence free, forV
=1,2,3, which are functions of Lagrangian coordinates (€ 9¥s,)=(—s.-Vg(§)+V-s.)e 99 can be made to
alone, are distinct and spat®. For a rigorous mathematical vanish by solving forg(£) such thats,-Vg=V-s,.
proof, see Refs. 4 and 29. For a general discussion, see R@ivergence-free fields can be represented in Euler
19. Generically,e, i=1,2,3, are not orthogonal to each potentiald! « and¢, i.e., e 99s, =V X Va. Hence an ar-

other. The eigenvectors of the metric tensor of the Lagrangpitrary field s, can be written in the Clebsch representation,
ian coordinates are orthogonal to each other, and their time

asymptotic limits are uniquely related to the characteristic ~ S.=€%9V{xVa, (C1)
directionse’ by where the Euler potentials(£) and £(¢) are locally defined
Ba@xE: Mo (&) s-&. (A3)  functions such thas,-Va=0 ands,-V{=0.

Using the dual relation® we can relate the third coor-
The finite time eigenvectors converge exponentially to theirdinateﬁ to the s, field, i.e.,
time asymptotic limit, Fig. 1.
In an integrable region of the flow, the Lyapunov expo- - _eg(g) 23
nents vanish. But for a nontrivial flowflow with sheay, T3 9B
there exist nondegenerate characteristic directions which are.

associated with the center unstable, center, and center stat\)'Yéth J=1/(VaxVp)-V{ the Jacobian of the-- coordi-

manifolds3® Hence the eigenvectors of the metric tensor Sti”nates. The choice of the Jacobian is free. One ¢ or

(C2

=e9(9)
have well-defined time asymptotic limits, but with an alge—‘] € A s A A
braic convergence rate, as we showed in Sec. VI. Sincee,=m.,xs, andm.,,=s.Xe., one can show
e,=— (M. -V)eddVa+(m, Va)eddvy, (C3)
APPENDIX B: ADVECTION AND DIFFUSION IN A M.=(8,-V)eddVa— (&, -Va)eddVy. (Ca)

FLOW WITH A[;#0 . o .
The s, vector can be written in the general covariant form,
The approach presented in this paper can be applied to

flows with an arbitrary combination of positive and negative =~ S-=a1Va+taVB+asV{, (CH
Lyapunov exponents. The trajectory of a flow point, which isyyhere only a, is constrained bya,=J/e9®). Equations

the solution to equatiodx/dt=v(x,t), is characterized by at (c3)—(C5) have the required form to yield E418) of the

most three Lyapunov exponents. For a general tlmef_aaper. It is interesting to note that one choicey(f) is \ in

dependent divergence-free flow, there are always one pOSEq (15)
tive (\,>0) and one negativer(<0). The middle one\, S

might be nonzero. I\ >0, the effective diffusivity inm,,
direction, APPENDIX D: THE EIGENVECTORS OF THE METRIC
o TENSOR
Dym=m.,-D-m,~D/exp(2\t),
R For a general three dimensional flow, one has
decreases exponentially in time, just like that in ghedirec-

tion. Consequently, diffusion occurs only along the field line i = Ai€igj+ Anmim; + AsSis; (DD
of the s, vector. and
Even if A ,,<O, the rapid diffusion in a chaotic flow oc- gi=EEI/A,+ MMI/A ,+SS/A, (D2)

curs only along thes line, as long as\,, does not have a
value very close to that ofg. This can be seen by compar- _ cio U0 _
ing the effective diffusivities inm.. ands, directions at time ~ the covariant components of the vectoesm, s, while

with the eigenvalue\,=A,,=A>0. Heree;, m;, s; are

t,=I(2Q)/2I\ 4| with Q=|x LD E',M', S are the contravariant components of the vectors
S S| ’ ~ ~ ~
E, M, S. They satisfy the relations;e;+ mm; +s;s;= &j; ;
2 e 20\l — [hal tal = (260) LA E'E/+ MM/ +S9=46" ZeE'=SmM'=2sS=1; and
Dss momse SeMi=SeS=SmE=SmS=3sE=S5M'=0. In

For O>1, which is the case for most practical problems,vector form, that ise E=m-M=55=1 ande-M=e-S

Dim/Dss<1 if Ay#\g. That is, the diffusion occurs only =m-E=m-S=s.E=s-M=0.
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To find the dot product of two vectors, both of which are =exp(—2it), the spatial derivative of the finite time
in the same form(covariant or contravariaptone has to Lyapunov exponent is related to the derivatives of the metric
specify the metric tensor. In real space, the metric tensor aensor by
the Lagrangian coordinates is given in E¢81) and (D2), o

~on TP NN i INt 1 . 09 .
hence one hase-e=Xeg"e=1/A;,m-m=Zmg"'m, —=——5—="5|. (E6)
=LA, S-s= Eslg”s] 1As, E-E= EE‘g,]Ej A, M 29 2As\  9¢
‘M=3IM'g;MI=A,,, andS-S=3Sg;I=A,. Hencesy- Voat+ V-5 can be directly calculated using the

In Lagrangian space, the metric tens;ﬂ of the La-  spatial derivatives of the metric tensor, which have analytical
grangian coordinate@vhich are taken to be Cartesian coor- expressions if the flow field is specified in the form of an

dinates is the unit matrix. Henc&(m,s) cannot be distin- explicit function of space and time.
guished fromE(M,S) and one can label them witd, Mo

and 50 for clarity. It is easy to see tha%o eo Segle; APPENDIX F: CONVERGENCE OF €,m AND s

=1,My My=5H =1, andey- My=ey- =My 5=0. Most  VECTORS IN AN INTEGRABLE REGION OF THE
discussions in the paper are within Lagrangian space, so WeLOW

drop the subscript for simplicity. Hencein the main body
of the paper should be understoodsgsands, is the time
asymptotic limit ofs .

If we write the eigenvectors of the metric ten@[Eq.
(50)] of the Lagrangian coordinatei,-¢y-19, in their cova-

riant components, i.e.é=(eq,,e(p,ea), r?1=(m\p,m¢,,mﬂ)
ands=(sy ,S,,Sy), one finds that in an integrable region of

APPENDIX E: THE DERIVATIVES OF THE METRIC the flow,
TENSOR ey FA*+HB’+2GAB
The spatial derivative of the metric tensor in Lagrangian % gA+HB
coordinates is N ZgDAZ_FgAZJFHgBZJ“ZDHAB_,_O(t—l).
ag;;  IA ae; ae; + 2 '
i'k’z—k'eiej+A|—k'ej+A,ei—i (GA+HB)
o€ I3 713 9€ (F1)
&Am om; (9mJ €, _ FA+GB N
+_§k mimj+Am gk mj+Amm|é’_§k eﬁ_gA"‘HB—i_O(t ): (FZ)
—GgA? B+ FAB+GB* 1
s Si 9s; my AT HA +O(t72 F3
+(9—§kSiSj+AS gksj+ASS'o—,_§4<' (El) mg ZQAZB+HABZ+]-"A3 t ( ) ( )
Using the various orthonormal relationships outlined in Ap- M, 5 1.,
pendix D, one finds my A+O(t ); (F4)
. d9 . A Sy 1 ,
S Py S e (E2) s, Bt o™ ); (F5
= 2 A
. 09 ~ 0% S—‘P=—+(’)(t’1). (F6)
E-@'S_(A'_AS)%'a_gk’ (B3 sy B o
- . Hence in the integrable region of the flogy,m ands vectors
/ &_gk S=(Ay—Admg &_Sl'i, (E4)  converge linearly in time to tpeir time asymptotic limits,
Z3 Z3 «(1,0,0),m,=(0,3,— A) ands,«(0,4,B5).

wheree,,my, ands, are orthonormal vectors in Lagrangian
space(Appendix D. The spatial derivative of vectax, is ~APPENDIX G: DIFFUSIVITY COEFFICIENTS

given by CO=(.7:H—QZ)/J2; (Gl)
Z_zi [ : aé‘i SA—AY|& 1= (BHD— BGE+ AGD— AFE)(NNAZ+BD);  (G2)
. Co=(— AHD+ AGE+ BGD— BFE)I (I5\ A%+ B?);
~ 09 . R (G3)
+ M- —-SI(Ap—Ag) |Mg. (E5)
9€ BYHC— B2+ 2BAGC— 2BADE+ A2 FC— A?D?

~ Ca= ,

The divergence of vectag, can be found from the various 3 JS(A2+ B?)

components of this equation. Since\=exp(2A4) (G2
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B2GC— A?GC+ APDE— BAHC— B*DE— ABD?+ BAE*+ ABFC
Cy= 72 ; (GYH
J3( A%+ B?)
B2FC— B2D?+ APHC+ 2BADE— 2 BAGC— A2E2
C5: . (GG)

J5(A2+ B2

HereJ3 is the determinant of the metric tensor of tifeg-9
coordinates, Eq49).
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