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A Lagrangian analysis of advection-diffusion equation for a three
dimensional chaotic flow
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The advection-diffusion equation is studied via a global Lagrangian coordinate transformation. The
metric tensor of the Lagrangian coordinates couples the dynamical system theory rigorously into the
solution of this class of partial differential equations. If the flow has chaotic streamlines, the
diffusion will dominate the solution at a critical time, which scales logarithmically with the
diffusivity. The subsequent rapid diffusive relaxation is completed on the order of a few Lyapunov
times, and it becomes more anisotropic the smaller the diffusivity. The local Lyapunov time of the
flow is the inverse of the finite time Lyapunov exponent. A finite time Lyapunov exponent can be
expressed in terms of two convergence functions which are responsible for the spatio-temporal
complexity of both the advective and diffusive transports. This complexity gives a new class of
diffusion barrier in the chaotic region and a fractal-like behavior in both space and time. In an
integrable flow with shear, there also exist fast and slow diffusion. But unlike that in a chaotic flow,
a large gradient of the scalar field across the KAM surfaces can be maintained since the fast
diffusion in an integrable flow is strictly confined within the KAM surfaces. ©1999 American
Institute of Physics.@S1070-6631~99!02106-6#
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I. INTRODUCTION

A. Motivation

The transport of a passive scalarf embedded in a fluid
flow is governed by the advection-diffusion equation,1

]f/]t1v•¹f52~¹•Gd!/r ~1!

with v(x,t) the fluid velocity, r the fluid density, andGd

52rD¹f the diffusive flux. In its most primitive form,D
is just the molecular diffusivity which is typically a sma
number, giving rise to a long characteristic diffusive tim
scaleL2/D. Being a linear equation, the non-triviality of th
advection-diffusion equation comes from the flow veloc
field v(x,t). The purpose of this paper is to illustrate th
general properties of the solution to the advection-diffus
equation in the case of a three dimensional chaotic flow.
method2 is based on a global Lagrangian coordinate trans
mation, which rigorously couples the dynamical syste
theory3 into the solution of the advection-diffusion equatio
The finite time Lyapunov exponent and the geometry of
so-calledŝ lines play the central roles in our theory,2 which
is a distinct feature from other works in this area.

A flow with chaotic fluid trajectories gives fundamen
tally different solutions to the advection-diffusion equati
than a nonchaotic, or integrable, flow. Existing literature
chaotic mixing largely concerns with the ideal advecti
equation@D50 in Eq. ~1!# whose solution is found by fol-

a!Electronic mail: xtang@pppl.gov
1411070-6631/99/11(6)/1418/17/$15.00
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lowing the Lagrangian trajectories. The diffusive effect, i.
right-hand-side of Eq.~1!, is usually treated as an add-on o
the Lagrangian trajectory picture. For example, it has b
modeled by a stochastic perturbation to the Lagrangian
jectories ~i.e., a Langevin equation!, or by a Gaussian
smoothing kernel on the Lagrangian trajectories.

Working directly with the Lagrangian description of
fluid flow enables the utilization of dynamical system theo
particularly the multiplicative ergodic theorem4 and the geo-
metrical method, which leads to new insights unavailable
the usual Eulerian picture. A numerical solution of Eq.~1!
using an Eulerian partial differential equation~PDE! solver
has no obvious connection with the crucial features l
KAM islands, chaotic components, or Lyapunov exponen
On the other hand, the efficiency and reliability of numeric
PDE solvers for following the global solution for a long tim
requires an understanding of the properties of the solu
and the features that define the range of validity of the
merical scheme. This is the primary motivation for our pr
vious work in the two dimensional case and the current tre
ment for the three dimensional case.

The basic difference between our approach and thos
chaotic advection is that we directly solve the advectio
diffusion equation including the effects of a finite diffusivity
The need to keep the diffusion term, despite the smallnes
D, will become obvious once we obtain the full solution. T
most obvious requirement for keeping a smallD comes from
the time for diffusion @the right-hand side of Eq.~1!# to
dominate the solution, which has a logarithmic depende
on D. In a general context, the diffusion term is a singu
8 © 1999 American Institute of Physics
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perturbation to the pure advection equation. Mathematic
it changes the characteristics, or type, of the underlying P
Physically it is responsible for removing the time reversib
ity of the physical process. This can be quantitatively e
plained by examining the mean variance of the passive sc
f,S[2*(f2/2)d3x. For a bounded system, the entropy-li
quantity S would increase or saturate only ifD does not
vanish, see Eq.~11!.

In the next section we will briefly review some relate
work on chaotic mixing. Neither the list of topics nor th
literature cited can be exhaustive, but they give a reason
perspective for contrasting our approach and results.
those familiar with the literature, Sec. I B can be skipped
its entirety.

B. A brief review of related work

As one of the primary physical applications of the cha
theory, it was recognized5 in the 1980s that smooth~laminar!
flow could also lead to efficient mixing, as long as the flo
trajectories are nonintegrable or chaotic~for a sampling of
experimental work, see Refs. 6–8!. Despite the variants in
name~chaotic advection or Lagrangian turbulence,5 Hamil-
tonian transport theory,9 these treatments make the same
sumption of ignoring the right-hand-side~diffusion! term in
Eq. ~1! and are, therefore, concerned with an ideal advec
equation:

]f/]t1v~x,t !•¹f50, or df/dt50. ~2!

Since the passive scalar is frozen into the fluid element,
distribution functionf at arbitrary time is found by follow-
ing the trajectory of each fluid element,

dx~j,t !/dt5v~x,t !, ~3!

with the initial conditionx(j,t50)5j. After integrating Eq.
~3! to obtainx(j,t) the solution to the ideal advection equ
tion is f(x(j,t),t)5f(j,t50).

Reducing the solution of the advection equation to
integration of flow trajectories not only simplifies the pro
lem, but also allows the theory of dynamical systems to
utilized for classifying the trajectories and the associa
mixing properties.10 The crudest estimate is entirely based
topology and the intuitive criteria that ergodicity implie
good mixing. A plot of the Poincare´ section of the flow then
becomes the standard tool. For example, on the Poin´
section of a two-dimensional time-periodic flow, integrab
trajectories lie on topological circles~so-called regular com
ponent, or KAM tori in Hamiltonian mechanics! but nonin-
tegrable or chaotic trajectories fill a finite area~so-called ir-
regular component!. Integrable trajectories can divide th
space into an infinite set of ergodic subregions. The in
grable or regular regions consist of closed lines or surfa
so they are poor for mixing. Only chaotic regions, i.e., t
irregular components, occupy a finite volume, which is
quired for good mixing. It is still an unresolved mathematic
problem whether the irregular component occupies a fi
measure. The difficulty lies in the fact that numerous regu
components are embedded in an irregular component an
summation of those infinitely many small regular regio
ly
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may not be small. However, this subtlety is not crucial f
physical applications. If one goes back to the origin
advection-diffusion equation, any small but finite diffusivi
would impose a cutoff for the smallest spatial scale on wh
one needs to worry about the regular islands. This effectiv
guarantees that a chaotic zone occupies finite volume for
purpose of passive scalar transport.

It is interesting to note that the rich structure revealed
a Poincare´ section plot and its usefulness in understand
passive scalar transport are not limited to theoretical
computational studies. In fact, they have been verified i
number of two dimensional time-periodic flows. With th
help of laser fluorescence, it is now possible to slice throu
a three dimensional flow and visualize the islands ch
structure and the three dimensional chaos directly in a ph
cally stationary Poincare´ section.8

Although chaotic advection and Hamiltonian transp
theory in principle are entirely different subjects, they a
often mathematically equivalent. An example is
divergence-free, two dimensional time-periodic fluid flo
which is mathematically equivalent to a one and a half
gree of freedom Hamiltonian system. A major advance
understanding was the discovery of the cantorus,11 an invari-
ant curve or surface similar to a KAM surface but with th
crucial difference of its being on a cantor set. In other wor
a cantorus is a KAM-like structure but with numerous ho
so it can not separate an irregular component. The traje
ries ‘‘leak’’ through the cantori in an orderly fashion, muc
like going through a revolving door, hence the nam
turnstile.12 The cantori act as practical borders partitioni
one ergodic irregular component into different subcomp
nents which have fast mixing within but much slower adve
tive transport across. Motivated by this separation of ti
scales, a Markov tree model13 was introduced to describe th
slow mixing between the subcomponents separated by
cantori. Another less efficient but mathematically rigoro
approach, the so-called lobe dynamics,14 generalized the idea
of turnstiles for the advective transport across the bound
set by the invariant manifolds of any hyperbolic or norma
hyperbolic sets. In effect, it calculates the advective flux
following the trajectories through a sequence of ‘‘revolvin
doors’’ ~turnstiles! on the otherwise closed boundaries. T
boundaries are formed by the global invariant manifolds
hyperbolic sets, so they in principle could provide an ar
trarily fine partition of the space. In practice, the lobe d
namics become exponentially complicated as time proce
so it is usually thought to be applicable for only a short tim
The same argument also shows it is suitable for tracing
tially isolated distribution but not for following the time evo
lution of a spatially extended initial distribution. The relianc
on the invariant manifolds also limits the application sin
their existence is not obvious for time quasi-periodic or a
riodic flows.

C. Outline of our approach and results

The Lagrangian nature of the chaotic advection and
desire for a solution to advection-diffusion equation in Eu
rian frame imply the need for a method that relates the two
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the presence of a small but finite diffusivity. A straightfo
ward approach would be to solve the advection-diffus
equation in Lagrangian coordinates, the coordinate sys
directly associated with the Lagrangian description of flui
Although the Lagrangian description of a fluid flow is wide
known, global Lagrangian coordinates were not applied
the advection-diffusion problem until recently.2 The validity
of this approach is based on the general principle that
description of a physical phenomenon is independent of
choice of the coordinate system. The solution in Lagrang
coordinates is nontrivial due to the metric tensor, wh
arises in the¹2 operator of the diffusion term and is highl
anisotropic if the flow is chaotic. The metric tensor rigo
ously couples the solution of the advection-diffusion eq
tion to the dynamical system theory. It is also the met
tensor that bridges the Lagrangian picture and the Eule
solution.

One unique feature of the use of global Lagrangian
ordinates is the ability to treat flow fields that are far fro
integrable and thus highly chaotic, an area where les
known but which is of great importance.10 Although the in-
tegrable case is rigorously treated in Sec. VI, we will cen
our discussion on highly chaotic flows because of their pr
tical importance. By definition, a flow is chaotic if the di
tanced between neighboring fluid elements tends to va
~diverge or converge! exponentially in time,d}d0 exp(lt),
with l the Lyapunov exponent. In advection-diffusion pro
lems, the Lyapunov time 1/l associated with the most neg
tive Lyapunov exponent defines a natural characteristic t
scale for a chaotic flow. The characteristic diffusion tim
L2/D is determined by the diffusivityD and the typical spa-
tial scaleL of the initial gradient off. Our previous analysis2

illustrated that the characteristic dimensionless paramete
the chaotic transport problem in two dimensions is the ra
of the characteristic diffusion time and the Lyapunov time
the flow, i.e.,V[lL2/D. The diffusivity is generally very
small soV@1. For V@1 the passive scalar undergoes
pure advection period until the timeta[ ln(2V)/2l. A rapid
diffusive relaxation removes the spatial gradient of the p
sive scalar during a period of a few Lyapunov time 1/l cen-
tered on the timeta . This diffusion is one dimensional sinc

it only occurs along theŝ̀ direction, which defines the stabl
direction for neighboring streamlines to converge. In gene
flows, the finite time Lyapunov exponent is a function
both time and position. It was found for two dimension

~2D! systems that the geometry of the field line of theŝ̀
vector determines the spatial variation of the finite tim

Lyapunov exponent along theŝ lines, and hence the loca
diffusive transport.2 Diffusion is impeded at the sharp bend

of an ŝ line, which has a peculiarly small finite tim
Lyapunov exponent.

Mixing in a three dimensional~3D! flow is clearly im-
portant for practical applications. The goal of this paper is
carry out an explicit analysis in three dimensions and es
lish a similar level of understanding as previously achiev
in two dimensions.2 As we will show, the main physics re
sults obtained in two dimensions apply to 3D situatio
These include the characteristic time scales for advection
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diffusion which are determined by the Lyapunov time a
the dimensionless numberV, and the extreme anisotropy o
the diffusive relaxation. Of course, the increase of spa
dimension from two to three does introduce new subtletie
the solution, some of which will be discussed in the ma
text.

The main body of the paper is organized as follow
Section II gives the basics of the Lagrangian coordin
transformation technique and an overview of the proble
which is the minimum amount of material necessary for u
derstanding the thesis of this paper. In Sec. III, t
advection-diffusion equation is solved for a three dime
sional flow in natural Lagrangian coordinates. The proper
of the finite time Lyapunov exponent and diffusion barrie
are discussed in Sec. IV. In Sec. VI transport in an integra
region of a three dimensional flow is treated. Some mod
of chaotic flows and numerical illustrations are given in S
V.

II. LAGRANGIAN COORDINATE TRANSFORMATION
AND PASSIVE SCALAR TRANSPORT

Chaos and its effect on diffusive transport in a fluid flo
can be conveniently examined using Lagrang
coordinates.15–17 The motion of a fluid element is describe
by the differential equation

dx/dt5v~x,t !. ~4!

The trajectory in real space is the solutionx5x(j,t) with j
5x(j,t50) the Lagrangian coordinates. The distance
tween neighboring fluid points at timet is related to their
initial separation by dx•dx5gi j dj idj j , where gi j

[(]x/]j i)•(]x/]j j ) is the metric tensor of the Lagrangia
coordinates. The matrix inverse ofgi j is gi j [¹j i

•¹j j . The
Jacobian of the Lagrangian coordinates is related with
metric tensor byJ25igi j i51/igi j i . For a divergence-free
flow J51. The metric tensor is a positive definite, symmet
matrix, so it can be diagonalized with real eigenvectors a
positive eigenvalues, i.e.,

gi j 5L l êê1Lmm̂m̂1Lsŝŝ

with the three positive eigenvaluesL l>Lm>Ls.0. The
Lyapunov characteristic exponents of the flow are given

lim
t→`

lnL l /2t5l l
` , lim

t→`

lnLm/2t5lm
` ,

lim
t→`

lnLs/2t5ls
` ,

and the eigenvectorsê, m̂ and ŝ have well defined time
asymptotic limits:ề , m̂` andŝ̀ ~see Appendix A!. In those
regions where there is a positive Lyapunov exponent,
flow is said to be chaotic, otherwise it is said to be in
grable.

For a three dimensional divergence-free flow that ha
time-independent velocity field, the set of Lyapunov char
teristic exponents is symmetric with respect to zero, i
l l

`52ls
`5l`.0 andlm

`50. The time asymptotic eigen
vectors determine the asymptotic behavior of neighbor
fluid elements. Alongŝ̀ ( ề ) direction, neighboring points
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converge~diverge! exponentially in time. But their separa
tion varies only algebraically with time alongm̂` direction.
We note thatŝ̀ defines the stable direction in a chaotic flo
~see Appendix A!. The ŝ̀ is a smooth function of position s
it gives rise to a vector field. The field lines of theŝ̀ vector
are called ŝ lines. It should be pointed out that time
dependent flows might not always have the mid
Lyapunov exponent zero. Although our analysis is presen
in the case oflm50 for the sake of clarity, the more com
plicated case with an arbitrary combination of positive a
negative Lyapunov exponents can also be treated. In fa
clear understanding of the simple case makes the physic
the more complicated case transparent~for details, see Ap-
pendix B!.

Although the infinite time Lyapunov exponents are b
ter known in mathematics, their finite time analogies are
greater interests in physics. The finite time Lyapunov ex
nents,

l l~j,t ![~ ln L l !/2t, lm~j,t ![~ ln Lm!/2t,
~5!

ls~j,t ![~ ln Ls!/2t,

are functions of positionj and time. The position and tim
dependence is not surprising since the finite time Lyapu
exponent is a concept that measures the exponential ra
‘‘error’’ propagation along a fiducial trajectory for a finit
period of time. It is a function depending on where the fid
cial trajectory starts and how long in time one follows th
trajectory. The initial position that labels a trajectory has
name in fluid mechanics, the Lagrangian coordinates.
specification of the Lagrangian coordinatesj and time dura-
tion t are equivalent to giving the full path of the trajecto
segment, which can be found by integrating the flow fieldv,
dx/dt5v from some initial positionj for some finite timet.

We find that the finite time Lyapunov exponentls and
its associatedŝ̀ vector play the most important role in dif
fusive transport. This can be seen by transforming
advection-diffusion equation, Eq.~1!, into Lagrangian coor-
dinates. For the simplicity of notation, we define

l~j,t ![2ls~j,t !. ~6!

The inverse ofl, 1/l, is the Lyapunov time of the flow. We
wish to point out again that the most negative Lyapun
exponent~l! defines the characteristic Lyapunov time of t
flow for advection-diffusion problems.

In Lagrangian coordinates, the advection-diffusion eq
tion becomes an ordinary diffusion equation with a ten
diffusivity Di j 5Dgi j ,2

S ]f

]t D
j

5
1

r0
(

]

]j i
r0Di j

]f

]j j
, ~7!

where r0(j) is the initial fluid density profile,r0(j)
5r(j,t50). The magnitude of the gradient off is given by

~¹f!25( ~]f/]j i !gi j ~]f/]j j !. ~8!

The effect of the flow on the evolution of a passive scalar
therefore, determined by the metric tensor of Lagrangian
d

d
, a
of

-
f
-

v
of

-

a
e

e

v

-
r

,
o-

ordinatesgi j . For simplicity we will assume that the initia
fluid density distributionr0(j) is a constant. The diffusion
equation, Eq.~7!, can then be written in Lagrangian coord
nates as

]f/]t52¹0•g with g[2DI•¹0f ~9!

andDI the tensor diffusivityDi j . Here¹0 denotes gradient in
Lagrangian coordinates. Equation~9! maximizes an entropy-
like quantity

S[2E ~f2/2!d3j ~10!

while holding*fd3j constant. The time derivative ofS is

dS/dt52E ~g•¹0f!d3j. ~11!

So the entropy production rate per unit volume is posit
definite and given by

ṡ~j,t ![2g•¹0f. ~12!

Only diffusion creates entropy and removes the time reve
ibility of the system. Even a tiny diffusivityD leads to an
inevitable rapid entropy production in a chaotic flow. To s
that, let us substitutegi j 5êê/L l1m̂m̂/Lm1 ŝŝ/Ls into Eq.
~12!,

ṡ5D~ ê•¹0f!2e22l l t1D~m̂•¹0f!2e22lmt

1D~ ŝ•¹0f!2e2lt. ~13!

Sincels,0 andl[2ls.0, ṡ would grow exponentially in
time without bound unless the diffusion intervenes a
quickly removes the coordinate dependence off along theŝ
lines. This result holds independent of the smallness ofD, as
long as it does not vanish. Such a conclusion can also
obtained by examining the tensor diffusivity. The effecti
diffusivity along theề direction is negligible since

Dee[ ề •DI• ề 'D/exp~2l l t !

with l l.0. The effective diffusivity along them̂` direction,

Dmm[m̂`•DI•m̂`'D/Lm ,

is small if D is small. In contrast, the effective diffusivity
along theŝ̀ direction grows exponentially in time,

Dss[ ŝ̀ •DI• ŝ̀ 'D/Ls'D exp~2lt !.

The exponential amplification of the effective diffusivit
along theŝ̀ direction in Lagrangian coordinates correspon
to an exponentially growing gradient of the passive scala
real space. It is easy to see that the diffusion become
dominant process in a chaotic flow forlt@1 regardless of
how small D may be. Furthermore, the diffusion, once
becomes important, is highly anisotropic.

The strong anisotropy of the diffusion process dema
care in the choice of coordinates. The rapid diffusion, wh
occurs only along anŝ line, can be confined to one coord
nate if the coordinate system is chosen appropriately.
named such a coordinate system natural Lagrangian coo
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nates and showed how to construct them in two dimensio
in Ref. 2. In Sec. III, we give a form of natural Lagrangia
coordinates in three dimensional space, which then allow
to obtain the general properties of the solution to
advection-diffusion equation in a three dimensional chao
flow. The findings agree with our earlier results in tw
dimensions.2 In summary, the characteristic dimensionle
parameterV for the chaotic transport of a passive scalar
the ratio of the characteristic diffusion time and t
Lyapunov time of the flow,

V[lL2/D, ~14!

with L the typical spatial scale andl the Lyapunov exponen
@Eq. ~6!#. If the characteristic diffusion timeL2/D is much
longer than the Lyapunov time 1/l of the flow, i.e.,V@1,
the chaotic transport is given by ideal advection~the scalar is
carried by the fluid element along its trajectory! for time less
than ta21/2l with ta[(ln 2V)/2l. The ideal advection
causes the gradient of the scalar field to increase by a fa
of V. Then a rapid diffusion occurs and causes the flatten
of the gradient and associated entropy production durin
relatively short interval 1/l centered onta . This rapid diffu-
sive relaxation occurs only along theŝ lines, which is a spe-
cial feature for chaotic flows.

The existence of a characteristic chaotic transport t
scaleta implies that the finite time Lyapunov exponent rath
than the infinite time Lyapunov exponent determines
chaotic transport. The spatio-temporal complexity of the d
fusive transport, as reflected in the entropy production r
per unit volumeṡ, is determined by the finite time Lyapuno
exponentl(j,t). For example, the places with significant
smaller l(j,t) ~hence V! pose barriers for the diffusive
transport and entropy production.

Numerical results~see Sec. IV! suggest that the finite
time Lyapunov exponentl(j,t) of a three dimensional con
servative system can be decomposed into three parts,

l~j,t !5l̃~j!/t1 f ~j,t !/At1l`, ~15!

where

ŝ̀ •¹0 f ~j,t !50 ~16!

and l` is the infinite time Lyapunov exponent. The spat
dependence of the finite time Lyapunov exponentl(j,t) is
related to the geometry of theŝ line throughl̃ by

ŝ̀ •¹0l̃~j!1¹0• ŝ̀ 50, ~17!

where l̃(j) is a smooth function of position due to th
smoothness of the vector fieldŝ̀ . Hence we have, onc
again, directly related the geometry of anŝ line to the diffu-
sive transport throughl(j,t). These new results for thre
dimensional systems, Eqs.~15!–~17!, have the exactly sam
form as what we found for two dimensional conservat
systems2 @of course, the number of spatial coordinates is n
three in Eq.~17!#. Just like in two dimensions, the functionl̃
in Eq. ~15! is responsible for the description of barriers f
al

us
e
c

s

tor
g
a

e
r
e
-
te

l

diffusive transport in chaotic flows while the functionf (j,t)
characterizes the fractal nature of the chaotic advection5,18

and the chaotic diffusive transport.2

Fast diffusion occurs along theŝ lines and entropy pro-
duction rateṡ is given by the finite time Lyapunov exponen
l(j,t). Equations~15!–~17! imply thatl(j,t) varies little if
the ŝ line is straight~hence small¹0• ŝ̀ ). But l(j,t) will
have a strong variation where theŝ line has a sharp bend
Our numerical results show thatl(j,t) makes a sharp dip a
the sharp bends of theŝ lines, for an illustration~see Fig. 7!.
Small l leads to a smallV. Hence diffusive transport is
impeded on the sharp bends of theŝ lines and a class o
diffusion barriers is created inside the chaotic region of
flow. Our results on diffusion barriers in 2D chaotic flow
therefore, have been reestablished in three dimensi
flows.

We find that there are also spatially separated fast di
sion and slow diffusion in an integrable region of a she
flow. The fast diffusion is confined to the KAM surface
only, while the slow diffusion occurs across the KAM su
faces. It is the radial direction across the nested KAM s
faces in which a significant gradient of the scalar field can
maintained. For a detailed analysis, see Sec. VI.

III. SOLVING THE ADVECTION-DIFFUSION EQUATION
IN NATURAL LAGRANGIAN COORDINATES

The tensor diffusivityDgi j with gi j 5L l
21êê1Lm

21m̂m̂
1Ls

21ŝŝ is strongly anisotropic due to the chaotic nature
the flow. By introducing a set of new Lagrangian coordina
in which the large component of diffusion affects only o
coordinate, we can simplify the computation and underst
the general properties of the chaotic transport of passive
lars. A coordinate system that has this property is cal
natural Lagrangian coordinates.2

In two dimensions, the metric tensor isgi j 5L l
21êê

1Ls
21ŝŝ, and the curl ofề and ŝ̀ will be orthogonal to

themselves. That is, if we writeề 5exx̂1eyŷ and ŝ̀ 5sxx̂
1syŷ, the curls will lie along theẑ axis. Hence natural La-
grangian coordinatesa-b can be defined byề 5a¹a and
ŝ̀ 5b¹b with JacobianJab5ab,2 using the orthonormality
of ề and ŝ̀ , ŝ̀ •¹a50 andề •¹b50.

In three dimensions, we can establisha-b-z coordinates
such that ŝ̀ •¹a5 ŝ̀ •¹z50, but in general one canno
choose the other coordinateb such thatề •¹b5m̂`•¹b

50. To separate out the large component of diffusion, theŝ̀
vector must satisfyŝ̀ •¹a50 and ŝ̀ •¹z50. The coordi-
natesa-b-z given by the following equations,

¹a5 f ề 1gm̂` ,

¹z5pề 1qm̂` , ~18!

¹b5aề 1bm̂`1cŝ̀ ,

satisfy this requirement. The functionsf , g, p, q, a, b and
c are determined locally by the properties ofề ,m̂` and ŝ̀
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from a set of first order differential equations~for a proof
that such a coordinate system exists in the neighborhoo
an arbitrary point, see Appendix C!. The Jacobian of the
a-b-z coordinates isJn51/( f q2gp)c. In both 2D and 3D
cases, theb coordinate gives the direction of rapid diffusio
Diffusion in the other coordinate~s! is either severaly sup
pressed or cannot be distinguished from that in an integr
flow.

The infinite time Lyapunov exponent is a constant in o
ergodic region. The finite time Lyapunov exponents, as
fined in Eq. ~5!, are functions of position and time. Th
eigenvectors of the metric tensorê, m̂ and ŝ also depend on
position and time. They converge to time-independent fu
tions of Lagrangian position, the time asymptotic eigenv
tors ề (j), m̂`(j) and ŝ̀ (j), for Ls

21@1. The convergence
of the ŝ vector is of most importance, and the finite timeŝ is
related to the asymptotic eigenvectors by

ŝ} ŝ̀ 1smLsm̂`1seLsề , ~19!

where sm(t) and se(t) depend algebraically on time an
measure the rate of convergence~for a numerical illustration,
see Fig. 1!.

The a-b-z coordinate system with JacobianJn51/( f q
2gp)c simplifies the diffusion equation, Eq.~9!. In these
coordinates one has

FIG. 1. The finite time Lyapunov exponentl is related to the largest eigen
value of the metric tensorL by ln L52lt ~uptriangles!. u and f are the

polar and azimuthal angles of theŝ vector, ln(du/dt) ~downtriangles! and
ln(df/dt) ~circles!. ~a! Standard map withk51.5, at point (0.3,0.6);~b!
extended standard map withk51.5 andD5A3, at point (0.3,0.6,0.8).
of
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]f

]t
52

1

Jn

]

]a
~Jnga!2

1

Jn

]

]b
~Jngb!2

1

Jn

]

]z
~Jng z!, ~20!

wherega, gb andgz are the fluxes in thea, b andz direc-
tions,

ga52Daa

]f

]a
2Dab

]f

]b
2Daz

]f

]z
, ~21!

gb52Dba

]f

]a
2Dbb

]f

]b
2Dbz

]f

]z
, ~22!

gz52Dza

]f

]a
2Dzb

]f

]b
2Dzz

]f

]z
, ~23!

with

Daa5 f 2Dee1g2Dmm12 f gDem, ~24!

Dbb5a2Dee1b2Dmm1c2Dss12abDem12acDes

12bcDms, ~25!

Dzz5p2Dee1q2Dmm12pqDem, ~26!

Dab5Dba5a f Dee1~b f1ag!Dem1bgDmm1c f Des

1cgDms, ~27!

Dzb5Dbz5apDee1~bp1aq!Dem1bqDmm1cpDes

1cqDms, ~28!

Daz5Dza5 f pDee1gqDmm1~ f q1gp!Dem. ~29!

The diffusion coefficients are

Dee[ ề •DI• ề ; Dem[ ề •DI•m̂` ; Dmm[m̂`•DI•m̂` ;
~30!

Dse[ ŝ̀ •DI• ề ; Dsm[ ŝ̀ •DI•m̂` ; Dss[ ŝ̀ •DI• ŝ̀ . ~31!

In this set of natural Lagrangian coordinates, the anisotro
properties of the metric tensor are inherited by the diffus
flux in different coordinate directions, i.e.,gb@ga or g z.
This can be illustrated by considering a chaotic divergen
free flow in which l l

`52ls
`5l and lm

`50. Substituting
gi j 5exp(22ll t)êê1exp(22lmt)m̂m̂1exp(22lst)ŝŝ into the
tensor diffusivity and using the orthonormality ofê, m̂, and
ŝ, we find that the diffusion coefficients satisfy the inequa
ties Dee'Dem'D exp(22lt)!Dmm'D<Des'Dse(Dms

'Dsm)!Dss'D exp(2lt) for L l'Ls
21@1. Consequently,

Dbb'Dexp(2lt) is much greater thanDaa , Dzz ,
Dab , Dzb , and Daz which are at most bounded byDs,
s5sup(se ,ss), for L l'Ls

21@1.
The diffusion in a chaotic flow is one dimensional. Th

property of Eq.~20! can be illustrated by an exact solutio
for a chaotic flow modeled by a simple extension of Arnold
cat map,19

xn115xn1yn ; yn115xn12yn ; zn115zn .

It is easy to check that gi j 5L21ề ề 1m̂`m̂`

1L ŝ̀ ŝ̀ , l5(ln L)/2t a constant, andf 5q5c51,g5p
5a5b50. The diffusion Eq.~20! now takes the simple
form
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]f

]t
52Dexp~22lt !

]2f

]a2
2D

]2f

]z2
2D exp~2lt !

]2f

]b2
.

This equation can be solved by the method of separatio
variables. As an example, for such a flow in an infinite
extended space an initial distribution of the scalar fieldf(t
50)5c0(12coska)(12coskb)(12coskz ) relaxes as

f5c0$12exp@2~12e22lt!/2V#coska%

3$12exp@2~e2lt21!/2V#coskb%

3$12exp~2Dk2t !coskz% ~32!

with V5l/k2D the ratio of the characteristic diffusion tim
of the passive scalar (1/k2D) and the Lyapunov time of the
flow (1/l). One might be concerned that the construction
ŝ lines and finite time Lyapunov exponents in the exam
was based on a map but the solution was given in the c
tinuous time. There are two ways to interpret this res
neither affects the essential physics. One is to regard Eq.~32!
as the solution for a time periodic flow field which has t
form of the cat map if sampled at the periods of the flo
This is justified since the map and the flow field from whi
it is reduced have the same spatial dependence of theŝ lines
and finite time Lyapunov exponents in Lagrangian coor
nates. In the other approach one simply interprets Eq.~32! as
the diffusive relaxation for a map by takingt at discrete time
intervals. We also note that a solution of similar form to E
~32! was given in Ref. 20 to illustrate the effect of turbule
strains on the small scale variation of passive scalars.

The solution has distinct characteristic dependence in
different coordinate directions. ForV@1, the functionf re-
tains its initial a dependence. Fort,ta21/2l with ta

[ ln(2V)/2l the solution is accurately approximated by t
initial distribution f0 . The b dependence off is damped
during a short interval 1/l centered on the timet5ta . De-
spite f retaining its initial a dependence
(]f/]a)gaa(]f/]a) becomes small fort greater thanta

due to the smallness of thegaa component of the metric
tensor. The asymptotic form for the gradient off is deter-
mined by the slow varying z dependence, (¹f)2

'(¹f0)2exp(22t/td) with td51/Dk2 the characteristic dif-
fusion time. Hence it is no different from that of an int
grable flow.

This can also be shown by examining the rate of
production of entropy-like quantityS which was defined in
Eq. ~10!. In natural Lagrangian coordinates

dS

dt
5E F 1

Dbb
~gb!21S Daa2

Dab
2

Dbb
D S ]f

]a D 2

1S Dzz2
Dbz

2

Dbb
D S ]f

]z D 2

12S Daz2
DabDbz

Dbb
D ]f

]a

]f

]z GJndadbdz. ~33!

The (gb)2 ~the diffusive flux inb coordinate! gives the main
pulse ofSproduction in the time interval 1/l centered on the
time ta . On a longer time scale, this term and the (]f/]a)2
of

f
e
n-
t;

.

i-

.

e

e

term give anSproduction that scales as exp(22lt), while the
(]f/]z)2 term makes the dominate contribution whic
scales as exp(22t/td) with td51/Dk2 the characteristic dif-
fusion time.

In 3D flows theề andm̂` vectors are generally mixed
in natural Lagrangian coordinatesa and z. Consequently,
diffusion in these two coordinate directions are dominated
the contribution fromm̂ direction and they have the chara
teristic time scale of an integrable flow, just like thez depen-
dence off in Eq. ~32!. It is the diffusion in theb coordinate
that distinguishes the transport of a passive scalar in a
otic flow from that in an integrable flow.

The ŝ lines give the most important information for con
structing the natural Lagrangian coordinate system, and
determine the evolution of a passive scalar. A singleŝ line
generically fills a chaotic region in bounded systems. T
implies that the asymptotic~i.e., on the time scale which is
much longer than the typical advection time! evolution of the
passive scalar in a generic chaotic flow is different from t
of the simplified solution given earlier, Eq.~32!. That is, the
final f distribution will not retain any coordinate dependen
in the region where the flow field is chaotic and the smoo
ing of the gradient off scales at a rate much faster tha
¹f0 exp(2t/td) with td5L2/D the characteristic diffusion
time.

It should be noted that the simple model based on
map is mixing in thex-y plane and has straightŝ lines due to
hyperbolicity. Generic flows are only ergodic and can ha
nonhyperbolic points. In other words, generic flows can ha
integrable regions and theirŝ lines have a complicated ge
ometry. The next two sections study the additional featu
of the properties of the solution to the advection-diffusi
equation which were missing from the simple model flo
based on cat map.

IV. FINITE TIME LYAPUNOV EXPONENT AND
BARRIERS FOR DIFFUSION

Unlike the infinite time Lyapunov exponent which is
constant in one chaotic zone, the finite time Lyapunov ex
nent for any given timel(j,t0) can, and generally does, var
significantly over space for a generic chaotic flow. T
strong spatial dependence of the finite time Lyapunov ex
nent produces a large spread in the time during which di
sion is important. Such effect can be examined both crud
and exactly, corresponding to a study of the statistical pr
erties and the exact spatial dependence of the finite t
Lyapunov exponent, respectively.

To understand the termination of the enhanced diffus
transport at a crude level, one can convolute the timeta with
the corresponding probability distribution function of the
nite time Lyapunov exponent. The probability distribution
the finite time Lyapunov exponentsl(j,t5t0)[2 lnLs(j,t
5t0)/2t0 is approximately Gaussian with respect to variati
in space, and so will be the spread in timeta . Since the
difference between the distribution of the finite tim
Lyapunov exponents and a Gaussian distribution beco
smaller as one samples the finite time Lyapunov exponen
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a longer time interval~larger t0), the spread inta becomes
more Gaussian-like for systems with longer characteri
diffusion time scaleL2/D. Furthermore, the spread in th
time during which the main entropy pulse occurs is smal
the characteristic diffusion time is long. This is due to t
fact that the standard deviation of the distribution of the
nite time Lyapunov exponent scales as 1/At0. Numerical il-
lustration of these properties are given in Figs. 2–5.

A detailed examination of the diffusive transport r
quires the knowledge of the exact spatial-temporal dep
dence of the finite time Lyapunov exponent in a given c
otic flow, especially the spatial variation ofl(j,t) along the
ŝ lines, since that is the line along which the rapid diffusi
relaxation occurs. This information is given by Eqs.~15!–
~17!. In Ref. 2 we derived Eqs.~15!–~17! for two dimen-

FIG. 2. The distribution of finite time Lyapunov exponents peaks around
infinite time Lyapunov exponent. The finite time Lyapunov exponen
l(j,t), are evaluated at fixedt, but for differentj. Extended standard ma
with k53.0 andD5A3, t520 iterations.

FIG. 3. The residue, or difference, between the distribution of finite ti
Lyapunov exponents and a Gaussian distribution, decreases ast increases.
Circles are for extended standard map withk510.0 andD253. Triangles
are for standard map withk510.0. Dashed and solid lines are given b
Residue50.347/At10.018 and Residue50.31/At10.0026.
ic

f

-

n-
-

sional conservative systems by applying the constraint t
the Riemann-Christoffel curvature tensor must vanish in
flat space on which the Lagrangian coordinates are defin
A similar calculation in three dimensions is currently n
feasible, so we instead resort to a numerical resolution.

The key to Eqs.~15!–~17! is to show

lim
t→`

@ ŝ̀ ~j!•¹0l~j,t !t1¹0• ŝ̀ ~j!#50. ~34!

Once this relationship is established, one can immedia
see that limt→` ŝ̀ •¹0l(j,t)t cannot have a time depen
dence. Let

lim
t→`

ŝ̀ •¹0l~j,t !t5 ŝ̀ •¹0l̃~j! ~35!

e
,

e

FIG. 4. The standard deviation of the distribution of finite time Lyapun
exponents decreases the further the flow is from being integrable~largerk!.
Uptriangles and circles are for extended standard map witht540 and 20
iterations, respectively. Downtriangles are for standard map witht540 it-
erations.

FIG. 5. The standard deviation of the distribution of finite time Lyapun
exponents scales as 1/At. Uptriangles are for standard map withk510.0.
Circles are for extended standard map withk510.0 andD5A3. Dashed
and solid lines are given bys50.785/At ands50.382/At.



n

tr
s

t
i

is
-

nc

w

o-
e

e

it

o-

o-

the
arp

va-

nt

e
ite

cal

ent

-
ian

iled
s
rs

ion-

nt

he
ght
the

ria-

i-
a

g

1426 Phys. Fluids, Vol. 11, No. 6, June 1999 X. Z. Tang and A. H. Boozer
with l̃ a time-independent smooth function of positio
Equation~35! allows a functionf (j,t) satisfying

ŝ̀ •¹0 f ~j,t !50 ~36!

to be included in the decomposition ofl(j,t). The function
f (j,t) is bounded by aAt dependence in Eq.~15!. The ob-
vious reason is that limt→` f (j,t)/At has to vanish to satisfy
the definition limt→`l(j,t)5l`. The exact choice ofAt
comes from the fact that the standard deviation of the dis
bution of the finite time Lyapunov exponent over space ha
1/At dependence. Deviation from this 1/At dependence a
finite time is captured by the weak time dependence
f (j,t).

We have numerically evaluated

D~j,t ![uŝ•¹0l0t1¹0• ŝu ~37!

for two different models of three dimensional flows~Sec. V!.
Similar to what we did in Ref. 2, a finite difference scheme
avoided by expressingD(j,t) in terms of the spatial deriva
tives of the metric tensor~Appendix E!. We find thatD(j,t)
converges exponentially in time to zero. The converge
rate is approximately equal to that of theŝ vector, i.e., twice
the Lyapunov exponent, as can be seen in Fig. 6. Hence
have numerically validated Eq.~34!, which is the basis for
Eqs.~15!–~17!.

The spatial derivative of the finite time Lyapunov exp
nent along anŝ line is proportional to the divergence of th
ŝ̀ vector. For straight segments of anŝ line, the divergence
of ŝ̀ is small, and so is the variation in the finite tim
Lyapunov exponent. At the sharp bends of anŝ line, the
finite time Lyapunov exponent makes a large swing in
magnitude in accordance with the large oscillation of¹

• ŝ̀ . Analytically speaking, the finite time Lyapunov exp
nent attains a local minimum along anŝ line where

¹• ŝ̀ 50 and ŝ̀ •¹~¹• ŝ̀ !,0

and reaches a local maximum along anŝ line where

¹• ŝ̀ 50 and ŝ̀ •¹~¹• ŝ̀ !.0.

FIG. 6. D(j,t)[uŝ•¹0(lt)1¹0• ŝu exponentially converges to zero. Uptr
angle:D(j,t) is evaluated at point (0.3,0.6,0.8) for extended standard m
with k51.5. Circles:D(j,t) is evaluated at point (0.1,0.2,0.75) for ABC
map withA5B5C51.
.
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e
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In terms of simple geometry, the finite time Lyapunov exp
nent has a maximum where the neighboringŝ lines are
squeezed and has a minimum where the neighboringŝ lines
are bulged outward. In the cases that we have studied,
finite time Lyapunov exponent has a sharp dip at the sh
bends of anŝ line. The bending of anŝ line can be charac-
terized by its local curvature. In three dimensions, the cur
ture of theŝ lines has anê and anm̂ component. Figure 7
shows the variation of the finite time Lyapunov expone
along anŝ line and the variation of theŝ line curvature.

The equations~15!–~17! have a surprisingly broad rang
of applications. It uncovers a direct link between the fin
time Lyapunov exponent and theŝ̀ vector field.~Note: ŝ̀
labels the stable direction. It is the tangent vector of the lo
stable manifold if the latter exists. Theŝ line is equivalent to
the Lagrangian stable foliation in a general time-depend
flow.! By relating geometry (ŝ lines! to a dynamical quantity
~Lyapunov exponent!, it provides new insights into the un
derstanding of chaotic systems in general and Hamilton
systems in particular.21 The importance of this discovery in
transport study is transparent. It forms the basis for a deta
examination of diffusive transport in a chaotic flow. A
shown in the last section, the rapid diffusion only occu
along theŝ lines. According to Eqs.~15!–~17! the finite time
Lyapunov exponent and hence the characteristic dimens
less parameterV vary little on a segment of theŝ lines which
is straight~small ¹0• ŝ̀ ). Consequently the spatial gradie
of the passive scalar on a straightŝ line segment would be
wiped out by a rapid diffusion during a short duration. T
situations are quite different on the two ends of this strai
ŝ line segment, which are identified as the sharp bends of
ŝ line. The finite time Lyapunov exponent has a sharp va

p

FIG. 7. The finite time Lyapunov exponent (l), theê andm̂ components of

the ŝ line curvature (ke andkm), are plotted as functions of distance alon

an ŝ line. The calculation was done for ABC map withA5B5C51. Only
the magnitudes of the curvature are used for the log-linear plots.
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tion in its magnitude at these sharp bends of theŝ lines.
Numerical results have consistently shown a sharp drop
the magnitude of the finite time Lyapunov exponent~see
Sec. V!. A peculiarly smalll leads to a significant reductio
in V, hence a form of local diffusion barrier is created.
simple analogy is the temperature relaxation in a line of i
rods bound together by some plastic chips. The tempera
gradient will be removed in each iron rod very quickly, b
the plastic chips would serve as a practical thermal barrie
this fast time scale. Of course, the whole system will reach
thermal equilibrium after a certain time if the system is is
lated from the surroundings. The exact time scale for this
happen is given by the thermal conductivity of the plas
chips.

The existence of diffusion barriers associated with
sharp bends of theŝ lines actually remedies a pathology
the natural Lagrangian coordinates in applications. The n
ral Lagrangian coordinates defined in the last section are
trinsically local coordinates. Natural Lagrangian coordina
are closely related to the Clebsch coordinates~see appendix
C!. It is well known that the Clebsch coordinates, which a
also called Euler potentials, are not generally single value
one attempts to extend them over large regions.22 However,
this pathology is not as important as it first appears since
presence of local diffusion barriers along theŝ line effec-
tively impose boundary conditions in the natural Lagrang
coordinates, and hence only local coordinates are relevan
describing the chaotic transport which has well separa
time scales.

If not for the second termf (j,t)/At in Eq. ~15!, the
finite time Lyapunov exponent would be a smooth functi
in space for arbitrary time. In fact, the finite time Lyapun
exponent becomes a fractal function of position across thŝ
lines for large t, since f (j,t) develops an exponentiall
growing spatial gradient in time along directions away fro
the ŝ̀ direction.2

For any given timet0 , this property is reflected in the
correlation length of the finite time Lyapunov exponent
different directions. The correlation length along theŝ line is
extremely long sincel is a smooth function along this direc
tion. Across theŝ line, the irregularity inf (j,t0) overwhelms
the regularity inl̃ and the correlation length forl is greatly
reduced. The richest structure, and hence the shortest c
lation length, lies along theê lines. The fractal nature o
function f (j,t) brings another degree of complexity to th
diffusive relaxation. That is, the entropy production in a ch
otic flow is a fractal function of space and time. In retrospe
the spread in the time during which the main entropy p
duction pulse occurs is actually determined byf (j,t), since
the standard deviations(t) of the distribution of finite time
Lyapunov exponents is given by

s~ t !5~A^ f 2&2^ f &2/l`!t21/21O~ t21!, ~38!

where^•••& denotes averaging over space.
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V. FLOW MODELS AND NUMERICAL ILLUSTRATION

To examine the transport problem quantitatively, one h
to model the chaotic flow. For simplicity, we have us
area~volume!-preserving maps to model a divergence-fr
flow. The standard map~SM!,19

xn115xn2~k/2p!sin~2pyn!,
~39!

yn115yn1xn11 ,

with k a constant, is a good choice for modeling a 2D tim
periodic divergence-free flow. We have devised an exten
3D version of the standard map~ESM!,

xn115xn2~k/2p!sin~2pyn!1D,

yn115yn2zn , ~40!

zn115yn2xn11 ,

with k andD constants, to model a 3D divergence-free flo
The ESM is attractive for studying the chaotic advectio
diffusion problem since it is a divergence-free map based
a well-studied standard map and a point spirals along a K
surface much the same as the motion of a fluid elem
trapped in a fluid vortex.

The ABC flow v5(vx ,vy ,vz) is another example of a
three dimensional divergence-free flow,23,24

vx5A sinz1C cosy,

vy5B sinx1A cosz, ~41!

vz5C siny1B cosx.

It satisfies the Beltrami condition¹3v5v and allows cha-
otic stream lines. The ABC flow has direct relevance in h
drodynamics since it is a solution to the Navier-Stokes eq
tion with a forcing term F linearly proportional to the
velocity field v.24 To increase computational efficiency, w
employed a discretized version of the ABC flow, the s
called ABC map,25

xn115xn1A sinzn1C cosyn , mod~2p!,

yn115yn1B sinxn111A coszn , mod~2p!, ~42!

zn115zn1C sinyn111B cosxn11 , mod~2p!,

to describe the fluid motion in a three dimension
divergence-free flow.

We find that the eigenvectors of the metric tensor of
Lagrangian coordinates converge exponentially in time
their time asymptotic limits in a chaotic region of the flow
In particular, theŝ vector converges with an exponent of 2l,
twice the Lyapunov exponent of the flow. Letu andw be the
polar and azimuthal angles of theŝ vector in spherical coor-
dinates. One finds thatdu/dt}exp(22lt) and dw/dt
}exp(22lt) ~Fig. 1!.

In Fig. 2, we show the probability distribution ofl(j,t
5t0) in a single chaotic region. This distribution is approx
mately Gaussian, but deviations from the Gaussian distr
tion always occur. The difference between the finite tim
Lyapunov exponent distribution and a Gaussian distribut
becomes smaller as one samples the finite time Lyapu
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exponent at a longer time interval~longer t0) ~Fig. 3!. Here
the difference is given by residue5*iP(x)
2Pn(x,1,s)idx, where x[l(t)/l`, P(x) is the distribu-
tion function of the finite time Lyapunov exponents a
Pn(x,1,s) is a normal distribution which is centered atx
51 and has the same standard deviations as that ofP(x).
The standard deviation of the distribution of finite tim
Lyapunov exponents decreases if the flow is further fr
being integrable~Fig. 4!. For largert0 ~compared with the
Lyapunov time! the standard deviation of the distribution
finite time Lyapunov exponents scales as 1/At0 ~Fig. 5!.

The distribution of the finite time Lyapunov exponent
sampled over space. In other words, an ensemble ofl(j,t) is
obtained by varyingj, the Lagrangian coordinates or th
initial condition, for fixedt. To characterize the distributio
of the finite time Lyapunov exponent, the positionj or
equivalently the initial conditions should be sampled u
formly over an ergodic component in the space. In syste
that are highly chaotic, the full space appears to be cha
and the sampling ofj for l(j,t) calculations can be approx
mated by the positions visited by a single long trajecto
Indeed for many of the calculations presented here, we h
truncated a single long trajectory into many segments w
the same time spanDt, and calculated the finite time
Lyapunov exponent for each individual segment. The res
ing finite time Lyapunov exponents arel(j,t) with t5Dt
and j is given by the position of the starting point of ea
segment. The validity of this approximation as a statisti
sampling ofl(j,t) over space is based on the ergodicity
the chaotic trajectories.~Obviously one has to integrate for
really long trajectory.! This approximation is usually though
to be very good in systems that are not nearly integra
~hence the sticky stochastic layer and associated long t
sients play less a role!. We have compared the results wi
those sampled from a uniform grid in space for systems
from integrable, and obtained good agreement. The samp
of j via a single chaotic trajectory is, in fact, also a practi
method even for systems that are not far from integrable.
reason is that in a weakly perturbed system, numerous i
grable islands and island chains are embedded in a ch
component. Defining the boundary of a chaotic compon
which has a fractal structure, may pose an even greater
ficulty in practical calculations.

Another note on Fig. 2 is that the distribution function
found through histogram. The smoothness of the distribu
curve can be severely affected by the histogram counts
ratio.

We evaluateD(j,t) defined by Eq.~37! for both the
extended standard map and the ABC map~Fig. 6!. It is easy
to see thatD(j,t) converges exponentially in time, a resu
that is essential to establish Eqs.~15!–~17! ~Sec. IV!. The
strong spatial variation and anisotropy off (j,t) in Eq. ~15!
are illustrated in Fig. 8. One can see that the correla

length is long along theŝ lines, while it is extremely short in
directions away from this orientation. The correlation leng

of the finite time Lyapunov exponent along theề represents
the characteristic correlation length in a chaotic flow. T

variation of the finite time Lyapunov exponent along anŝ
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line is examined again in Fig. 7. The geometry of theŝ line
is represented by theê andm̂ components of theŝ line cur-
vature. It is easy to see that there is a sharp dip in the m
nitude of the finite time Lyapunov exponent wherever theŝ
line makes a sharp bend. Peculiarly small finite tim
Lyapunov exponent leads to small localV number and gives
rise to effective diffusion barriers.

VI. TRANSPORT IN AN INTEGRABLE REGION OF
THE FLOW

In an integrable region of a divergence-free flow, neig
boring fluid points separate~or converge! at most algebra-
ically. Consequently, the largest eigenvalueL l ~or the small-
est eigenvalueLs) of the metric tensor of the Lagrangia

FIG. 8. Extended standard map withk52.0 andD5A3. ~a! The Lyapunov

exponents,l(t530), were sampled with equal spacing along anê line, an

m̂ line and anŝ line @all starting at~0.1,0.1,0.8!#. These values are plotted
against the distance along the lines.~b! The correlation function for the

Lyapunov exponents in theŝ direction ~solid!, in the m̂ direction ~dashed!

and in theê direction ~dotted!.
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coordinates increases~or decreases! at most algebraically.
The eigenvectors of the metric tensor still have well-defin
time asymptotic limits. Hence the natural Lagrangian co
dinates introduced in the last section are well defined in
integrable regions of a flow.

This can be illustrated by considering a divergence-f
flow in a bounded integrable region. If there is no null po
in the region of interest, a globally divergence-free field a
mits a Hamiltonian structure26 to which the machineries in
Hamiltonian mechanics can be applied. Hence the integr
region of such a divergence-free flow consists of boun
constant ‘‘action’’ surfaces,27 the KAM surfaces. Parametriz
ing the integrable surfaces using ‘‘action’’ implies the ex
tence of an ‘‘action’’ functionC(x) such thatv•¹C50
with i¹Ci5” 0. Since the flow is also divergence-free (¹•v
50), one can treat it as a one degree of freedom, tim
dependent Hamiltonian system and write the flow field in
canonical representation, in analogy to the canonical re
sentation of the magnetic field.26 That is

v5¹C3¹Q1¹F3¹x~C!, ~43!

with the Hamiltonianx a function of the action-like quantity
C alone. The motion of the fluid element in theF coordinate
is determined by the JacobianJ of the C-F-Q coordinates,

dF/dt5v•¹F5~¹C3¹Q!•¹F5n~C,F,Q!51/J.
~44!

The JacobianJ is, in general, a function of all three coord
nates. The angle-like variablesQ and time-like variableF
are periodic and we set the period to be 2p. The topology of
the flow trajectory on a KAM surface is simple in canonic
coordinates, and it is given byQ5Q01i(C)F with i
5dx(C)/dC the winding number of the flow trajectory
The KAM surfaces can have rational and irrational windi
numbers. Surfaces with a rational winding number consis
closed lines. But a similar line cannot close on itself on
KAM surface with an irrational winding number.

Straightforward substitution shows that the transform
tion of F5w1%, Q5q1i% gives the same flow fieldv in
canonical form, Eq.~43!. Except for the arbitrary function%,
theC-F~f!-Q~u! coordinates are uniquely defined. This lim
ited arbitrariness, in return, allows one to make a trans
mation ofF→w andQ→q, such that the motion of the fluid
element on a KAM surface with irrational winding number
prescribed by

C5C0 ; w5w01n0~C!t; q5q01i~C!n0~C!t.
~45!

To prove the existence of Eq.~45!, we need to show tha
there exists a function%~C,F,Q! such that the Jacobian o
the new coordinatesC-w-q is a function ofC alone, i.e.,
(¹C3¹q)•¹w5n0(C). Expressing the Jacobian of th
C-F-Q coordinates in terms of the new Jacobian~function
of C only! of the transformed coordinates and the transf
mation function%, one has
d
-
e

e
t
-

le
d

-
e
e-

l

f
a

-

r-

-

]%

]w
1i

]%

]q
5

n~C,w,q!2n0

n0
. ~46!

The double periodicity inw andq implies that a scalar func
tion n can be written as

n5(
nm

nnm exp@ i ~nw2mq!#, ~47!

and the transformation function% can be written as

%5(
nm

%nm exp@ i ~nw2mu!#. ~48!

It is easy to show that the Fourier components of the tra
formation function% are %nm5 innm /(n2im)n0 . The de-
sired Jacobian of the new coordinatesC-w-q, 1/n0(C), is
the m50, n50 Fourier component ofn~C,w,q!, i.e.,
n0(C)5n00. This proves the existence ofC, w, q coordi-
nates in which the motion of fluid element on a KAM surfa
with irrational winding number satisfies Eq.~45!.

If the system is perturbed away from complete integ
bility, there exist remnant KAM surfaces which are para
etrized on a discontinuous set of action. The trajectory o
KAM surface still follows Eq.~45!, but the action coordinate
is generally on a Cantor set. Po¨schel showed that on thi
Cantor set, the KAM surfaces form a differentiable family
the sense of Whitney so one can speak of an integrable
tem on a Cantor set.28 The construction of the metric tenso
needs theC derivative of the Jacobiann0 and the rotational
transformi. By following Pöschel, theC0 derivative ofn0

and i can be properly defined~in the sense of Whitney! on
the remnant KAM surfaces. Except for this subtlety, the
sults presented in the next two paragraphs on the prope
of the metric tensor apply to the remnant KAM surfaces in
perturbed system.

In C-w-q coordinates, the Jacobi matrix of the Lagran
ian coordinatesC0-w0-q0 is simple,

JI5S 1 0 0

At 1 0

Bt 0 1
D

with A5]n0 /]C andB5](in0)/]C. Without losing gen-
erality, we write the metric tensor of theC-w-q coordinates
as

gI05S C D E
D F G
E G H

D ,

whereC, D, E, F, G andH are the covariant componentsgi j

of the metric tensorgI0 . The determinant ofgI0 in covariant
representation is

igI0i[J0
2[CFH12DEG2FE22CG22HD2. ~49!

The metric tensor of the Lagrangian coordinatesC0-w0-q0

is given by
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gI5JI T
•gI0•JI ~50!

with JI T the transpose ofJI.
For larget, the three eigenvalues of the metric tensor (gI)

of the Lagrangian coordinatesC0-w0-q0 are given by

L l5~FA21HB212GAB!t212~DA1EB!t1O~1!,

Lm5
HFA21FHB22G2B22G2A2

FA21HB212GAB
1O~ t21!, ~51!

Ls5
J0

2

HFA21FHB22G2B22G2A2

1

t2 1O~ t23!.

The three eigenvectors converge linearly in time to th
asymptotic limits, ề 5(1,0,0), m̂`}(0,i8n01in08 ,2n08),
and ŝ̀ }(0,n08 ,i8n01in08) ~see Appendix F!. Here the prime
denotes a derivative with respect toC. The ê line is perpen-
dicular to the KAM surfaces while theŝ line and m̂ line
always lie on a KAM surface with irrational winding num
ber. Oneŝ line or one m̂ line generically fills the whole
surface, as they do in a single chaotic region.

If n0 in Eq. ~45! is a constant, the flow is effectively tw
dimensional. The correspondingê and ŝ lines coincide with
the action-like variable and the angle-like variable axes. T
zero shear case is equivalent to the two dimensional t
map ~standard map at k50!.

The diffusion coefficients defined in Eqs.~30! and ~31!
can be found exactly,

Dee5c0D, ~52!

Dem5c1D, ~53!

Des52c0DÃt1c2D, ~54!

Dmm5c3D, ~55!

Dms52c1DÃt1c4D, ~56!

Dss5c0DÃ2t22c2DÃt1c5D, ~57!

whereci , i 50,5, are time-independent functions ofA, B, C,
D, E, F, G,H, and their explicit forms are given in Appendi
G. The shearing rate of the flow isÃ[AA21B2. The shear-
ing time 1/Ã is the characteristic time of a nontrivial inte
grable flow.
ir

is
st

For t large compared with the shearing time 1/Ã, the
tensor diffusivity is highly anisotropic,Dee'Dmm'Dem

'D!iDesi'iDmsi'DÃt!Dss'DÃ2t2. Hence there are
fast diffusion and slow diffusion directions in an integrab
flow with shear~n or i is a function ofC instead of a con-
stant!. The effective diffusivity inŝ̀ direction increases qua
dratically in time, so there is a fast diffusion along theŝ̀
lines, which lie on the KAM surface. Theề vector is per-
pendicular to the KAM surfaces and the effective diffusivi
in ề direction is the classical diffusivityD. Hence the dif-
fusion across the KAM surfaces is slow. The natural L
grangian coordinates defined by Eq.~18! separate these dif
ferent diffusion time scales and give the general propertie
the passive scalar transport in a generic integrable fl
SinceiDesi'DÃt and the diffusive flux across KAM sur
faces has the form of Eq.~21!, there is a period of enhance
diffusive flux across the KAM surfaces during the time
which the fast diffusion is accomplished on the KAM su
faces.

These transport properties can also be demonstrate
solving the diffusion equation~7! with the rough approxima-
tions thatC5F5H51 andD5E5G50. The metric tensor
in its contravariant component (gi j ) now takes the form

gI5S 1 2At 2Bt

2At 11A2t2 ABt2

2Bt ABt2 11B2t2
D .

For constantA andB, the diffusion equation can be writte
as

]f

]t
5D

]2f

]C0
2

22DAt
]2f

]C0]w0
22DBt

]2f

]C0]q0

12DABt2
]2f

]w0]q0
1D~11A2t2!

]2f

]w0
2

1D~11B2t2!
]2f

]q0
2

. ~58!

The general solution to this equation is

f~C0 ,w0 ,q0 ,t !5~2p!23/2E E E
2`

`

f̃~kC ,kw ,kq ,t !

3ei ~kCC01kww01kqq0!dkCdkwdkq ,

~59!

where
f̃~kC ,kw ,kq ,t !5f̃0~kC ,kw ,kq!e2DkC
2 t1At2DkCkw1Bt2DkCkq2~2ABt3/3!Dkwkq2~ t1A2t3/3!Dkw

2
2~ t1B2t3/3!Dkq

2
~60!

5f̃0~kC ,kw ,kq!e2Dt[kC
2

1kw
2

1kq
2

2AtkCkw2BtkCkq1~Atkw1Btkq!2/3] ~61!
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with f̃0(kC ,kw ,kq) given by the initial condition f0

[f(C0 ,w0 ,q0 ,t50),

f̃0~kC ,kw ,kq![f̃~kC ,kw ,kq ,t50!

5~2p!23/2E E E
2`

`

f0~C0 ,w0 ,q0!

3ei ~kCC01kww01kqq0!dC0dw0dq0 . ~62!

Let t i andt' be the characteristic diffusion times of th
initial passive scalar field in and across the KAM surfac
The characteristic dimensionless quantity is the ratio
tween the characteristic diffusion time and the shearing t
of the flow,V[Ãt i . For V@1, the scalar field is advecte
by the flow until time ta[V1/3/Ã, which is much shorter
than the characteristic diffusion time of the initial sca
field. In the KAM surface, the spatial dependence (w0 and
q0) of the passive scalar fieldf is damped after anotherta ,
i.e., ]f/]w0']f/]q0'0 for t.2ta . The asymptotic form
for the passive scalar fieldf is determined by the slow vary
ing C0 dependence, i.e., fort.2ta ,

f~C0 ,t !5~2p!21/2E
2`

`

f̃0~kC,0,0!eikCC02DkC
2 tdkC ,

~63!

with

f̃0~kC,0,0!5~2p!23/2E E E
2`

`

f0~C0 ,w0 ,q0!

3eikCC0dC0dw0dq0 , ~64!

andf0(C0 ,w0 ,q0) the initial field. Hence the smoothing o
the gradient off across the KAM surfaces has a long tail a
is accurately described by the characteristic diffusion ti
t' , ]f/]C0}exp(2t/t').

In summary, the fast diffusion, which is the result
shearing between different KAM surfaces and the constr
of the flow being divergence-free, occurs only within t
KAM surfaces. Diffusion across the KAM surfaces is a
proximated by the characteristic diffusion time and is ve
slow.

VII. SUMMARY

The advection and diffusion of a passive scalar ha
been investigated in both chaotic and integrable flows. T
characteristic time scale of a chaotic flow is the Lyapun
time which measures the exponential convergence of ne
boring fluid elements. The characteristic dimensionless qu
tity for the chaotic transport problem is the ratio between
characteristic diffusion time of the scalar field and t
Lyapunov time of the flow. This number is, in general, ve
large. The scalar field is purely advected by the flow until
time ta21/2l with ta[ ln 2V/2l. There is a rapid diffusion
during a relatively short interval (1/l) centered on timeta .
This rapid diffusion occurs only along the field line of th
ŝ̀ , which defines the stable direction for the streamlin
The fast diffusion can be confined to one coordinate in na
.
-
e

e

nt

e
e
v
h-
n-
e

e

.
-

ral Lagrangian coordinates. The rapid diffusion removes
gradient of the scalar field in the entire chaotic region.

The finite time Lyapunov exponent varies smooth
along anŝ line and has sharp dips where theŝ line makes a
sharp bend. A large reduction inl leads to a peculiarly smal
V number. Hence the sharp bends of theŝ line define a class
of barriers for diffusion. This new class of diffusion barrie
are associated with the nonhyperbolicity of the syste
which is thought to be generic for chaotic systems.2

The characteristic time scale of an integrable flow w
shear is the time scale on which neighboring fluid poi
separate algebraically due to the shear. The character
dimensionless quantity for the transport of a passive scala
such flow is the ratio between the characteristic diffus
time of the scalar field and the shearing time of the flo
V[tdÃ. If the shearing time of the flow is much faster tha
the characteristic diffusion time, the scalar field is advec
by the flow until timeta[V1/3/Ã. The fast diffusion, which
is confined within the KAM surfaces, removes the gradie
of the scalar field in the KAM surfaces after time intervalta .
During the period (ta,t,2ta), there is an enhanced diffu
sive flux ~compared with the one predicted by the charact
istic diffusion time! across the KAM surfaces, but it is to
small to remove theC0 dependence. Fort.2ta , the scalar
field has onlyC dependence, and its decay is accurat
described by the characteristic diffusion time. Hence, acr
the KAM surfaces, the diffusion is distinctly slow and a larg
gradient of the scalar field can be maintained.
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APPENDIX A: CHAOTIC FLOW AND THE ERGODIC
THEOREM OF DYNAMICAL SYSTEMS

If a flow field is smooth, the equation of motion for th
fluid element, Eq.~4!, can be treated as a differentiable d
namical system to which the ergodic theorem of dynami
systems3 can be applied.

For simplicity, we consider a steady flow,dx/dt
5v(x), xPR3, or a time-periodic flow which can be re
duced to a map,xn115V(xn), xnPR3. We also assume tha
the flow is time reversible. The distance between neighb
ing points at timet is related to their initial separation b
dl25gi j dj idj j , with gi j the metric tensor of the Lagrangia
coordinates. The rate of the exponential divergence or c
vergence of neighboring trajectories is measured by
Lyapunov exponent,l5 limt→`(1/2t)ln(dl2/dl0

2). In vector
form,

l~j,u!5 lim
t→`

ln~u•gI•u!/2t. ~A1!

Here u specifies the direction along which the initial flui
points separate, i.e.,d̄05d0u.

In a single chaotic region~the region in which an ergodic
measure is preserved by the time evolution of the fluid eq
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tion!, the multiplicative ergodic theorem asserts that th
exist three characteristic directions in which three Lyapun
exponents reside, i.e.,

l i5l~j,êi !5 lim
t→`

ln~ êi
•gI•êi !/2t, i 51,2,3. ~A2!

The Lyapunov exponents are independent of positionj in a
single chaotic region. If there is no degeneracy in Lyapun
exponents,l1.l2.l3 , which is obviously true for a cha
otic divergence-free flow, the three-dimensional basisêi , i
51,2,3, which are functions of Lagrangian coordina
alone, are distinct and spanR3. For a rigorous mathematica
proof, see Refs. 4 and 29. For a general discussion, see
19. Generically,êi , i 51,2,3, are not orthogonal to eac
other. The eigenvectors of the metric tensor of the Lagra
ian coordinates are orthogonal to each other, and their t
asymptotic limits are uniquely related to the characteris
directionsêi by

ề }ê23ê3; m̂`}ê22~ ê2
•ê3!ê3; ŝ̀ 5ê3. ~A3!

The finite time eigenvectors converge exponentially to th
time asymptotic limit, Fig. 1.

In an integrable region of the flow, the Lyapunov exp
nents vanish. But for a nontrivial flow~flow with shear!,
there exist nondegenerate characteristic directions which
associated with the center unstable, center, and center s
manifolds.30 Hence the eigenvectors of the metric tensor s
have well-defined time asymptotic limits, but with an alg
braic convergence rate, as we showed in Sec. VI.

APPENDIX B: ADVECTION AND DIFFUSION IN A
FLOW WITH lm

`Þ0

The approach presented in this paper can be applie
flows with an arbitrary combination of positive and negati
Lyapunov exponents. The trajectory of a flow point, which
the solution to equationdx/dt5v(x,t), is characterized by a
most three Lyapunov exponents. For a general tim
dependent divergence-free flow, there are always one p
tive (l l.0) and one negative (ls,0). The middle onelm

might be nonzero. Iflm.0, the effective diffusivity inm̂`

direction,

Dmm[m̂`•DJ •m̂`'D/exp~2lmt !,

decreases exponentially in time, just like that in theề direc-
tion. Consequently, diffusion occurs only along the field li
of the ŝ̀ vector.

Even if lm,0, the rapid diffusion in a chaotic flow oc
curs only along theŝ line, as long aslm does not have a
value very close to that ofls . This can be seen by compa
ing the effective diffusivities inm̂` and ŝ̀ directions at time
ta[ ln(2V)/2ulsu with V[ulsuL2/D,

Dmm

Dss
'exp@2~ ulmu2ulsu!ta#5~2V!211ulmu/ulsu.

For V@1, which is the case for most practical problem
Dmm/Dss!1 if lmÞls . That is, the diffusion occurs only
e
v

v
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ef.
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e
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along theŝ line. If lm5ls , diffusion occurs in the (m̂` , ŝ̀ )
surfaces and diffusion barriers appear where bothlm andls

have peculiarly small values.

APPENDIX C: CONSTRUCTION OF NATURAL
LAGRANGIAN COORDINATES

If ŝ̀ is an arbitrary vector field, one can find a functio
g(j) such that e2g(j) ŝ̀ is divergence free, for¹

•(e2g(j) ŝ̀ )5(2 ŝ̀ •¹g(j)1¹• ŝ̀ )e2g(j) can be made to
vanish by solving for g(j) such that ŝ̀ •¹g5¹• ŝ̀ .
Divergence-free fields can be represented in Eu
potentials31 a and z, i.e., e2g(j) ŝ̀ 5¹z3¹a. Hence an ar-
bitrary field ŝ̀ can be written in the Clebsch representatio

ŝ̀ 5eg~j!¹z3¹a, ~C1!

where the Euler potentialsa~j! and z~j! are locally defined
functions such thatŝ̀ •¹a50 and ŝ̀ •¹z50.

Using the dual relations,26 we can relate the third coor
dinateb to the ŝ̀ field, i.e.,

ŝ̀ 5
eg~j!

J

]j

]b
~C2!

with J51/(¹a3¹b)•¹z the Jacobian of thea-b-z coordi-
nates. The choice of the Jacobian is free. One can letJ51 or
J5eg(j).

Sinceề 5m̂`3 ŝ̀ andm̂`5 ŝ̀ 3 ề , one can show

ề 52~m̂`•¹z!eg~j!¹a1~m̂`•¹a!eg~j!¹z, ~C3!

m̂`5~ ề •¹z!eg~j!¹a2~ ề •¹a!eg~j!¹z. ~C4!

The ŝ̀ vector can be written in the general covariant form

ŝ̀ 5a1¹a1a2¹b1a3¹z, ~C5!

where only a2 is constrained bya25J/eg(j). Equations
~C3!–~C5! have the required form to yield Eq.~18! of the
paper. It is interesting to note that one choice ofg(j) is l̃ in
Eq. ~15!.

APPENDIX D: THE EIGENVECTORS OF THE METRIC
TENSOR

For a general three dimensional flow, one has

gi j 5L leiej1Lmmimj1Lssisj ~D1!

and

gi j 5EiEj /L l1MiM j /Lm1SiSj /Ls ~D2!

with the eigenvaluesL l>Lm>Ls.0. Hereei , mi , si are
the covariant components of the vectorsê, m̂, ŝ, while
Ei , Mi , Si are the contravariant components of the vect
Ê, M̂ , Ŝ. They satisfy the relationseiej1mimj1sisj5d i j ;
EiEj1MiM j1SiSj5d i j ; (eiE

i5(miM
i5(siS

i51; and
(eiM

i5(eiS
i5(miE

i5(miS
i5(siE

i5(siM
i50. In

vector form, that isê•Ê5m̂•M̂5 ŝ•Ŝ51 and ê•M̂5ê•Ŝ
5m̂•Ê5m̂•Ŝ5 ŝ•Ê5 ŝ•M̂50.
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To find the dot product of two vectors, both of which a
in the same form~covariant or contravariant!, one has to
specify the metric tensor. In real space, the metric tenso
the Lagrangian coordinates is given in Eqs.~D1! and ~D2!,
hence one has ê•ê5(eig

i j ej51/L l , m̂•m̂5(mig
i j mj

51/Lm , ŝ• ŝ5(sig
i j sj51/Ls , Ê•Ê5(Eigi j E

j5L l , M̂
•M̂5(Migi j M

j5Lm , andŜ•Ŝ5(Sigi j S
j5Ls .

In Lagrangian space, the metric tensorg0
i j of the La-

grangian coordinates~which are taken to be Cartesian coo
dinates! is the unit matrix. Henceê(m̂,ŝ) cannot be distin-
guished fromÊ(M̂ ,Ŝ) and one can label them withê0 , m̂0

and ŝ0 for clarity. It is easy to see thatê0•ê05(eig0
i j ej

51,m̂0•m̂05 ŝ0• ŝ051, andê0•m̂05ê0• ŝ05m̂0• ŝ050. Most
discussions in the paper are within Lagrangian space, so
drop the subscript for simplicity. Henceŝ in the main body
of the paper should be understood asŝ0 and ŝ̀ is the time
asymptotic limit ofŝ0 .

APPENDIX E: THE DERIVATIVES OF THE METRIC
TENSOR

The spatial derivative of the metric tensor in Lagrang
coordinates is

]gi j

]jk
5

]L l

]jk
eiej1L l

]ei

]jk
ej1L lei

]ej

]jk

1
]Lm

]jk
mimj1Lm

]mi

]jk
mj1Lmmi

]mj

]jk

1
]Ls

]jk
sisj1Ls

]si

]jk
sj1Lssi

]sj

]jk
. ~E1!

Using the various orthonormal relationships outlined in A
pendix D, one finds

Ŝ•
]gI

]jk
•Ŝ5

]Ls

]jk
; ~E2!

Ê•
]gI

]jk
•Ŝ5~L l2Ls!ê0•

] ŝ0

]jk
; ~E3!

M̂•

]gI

]jk
•Ŝ5~Lm2Ls!m̂0•

] ŝ0

]jk
, ~E4!

whereê0 ,m̂0 , andŝ0 are orthonormal vectors in Lagrangia
space~Appendix D!. The spatial derivative of vectorŝ0 is
given by

] ŝ0

]jk
5F Ê•

]gI

]jk
•Ŝ/~L l2Ls!G ê0

1F M̂•

]gI

]jk
•Ŝ/~Lm2Ls!Gm̂0 . ~E5!

The divergence of vectorŝ0 can be found from the variou
components of this equation. SinceLs5exp(2lst)
of

e

-

5exp(22lt), the spatial derivative of the finite time
Lyapunov exponent is related to the derivatives of the me
tensor by

]lt

]jk
52

1

2Ls
S Ŝ•

]gI

]jk
•ŜD . ~E6!

Henceŝ0•¹0lt1¹0• ŝ0 can be directly calculated using th
spatial derivatives of the metric tensor, which have analyti
expressions if the flow field is specified in the form of a
explicit function of space and time.

APPENDIX F: CONVERGENCE OF ê,m̂ AND ŝ
VECTORS IN AN INTEGRABLE REGION OF THE
FLOW

If we write the eigenvectors of the metric tensorgI @Eq.
~50!# of the Lagrangian coordinatesC0-w0-q0 in their cova-
riant components, i.e.,ê5(eC ,ew ,eq), m̂5(mC ,mw ,mq)
andŝ5(sC ,sw ,sq), one finds that in an integrable region o
the flow,

eC

eq
5
FA21HB212GAB

GA1HB t

1
2GDA22FEA21HEB212DHAB

~GA1HB!2
1O~ t21!;

~F1!

ew

eq
5
FA1GB
GA1HB1O~ t21!; ~F2!

mC

mq
5

2GA22HAB1FAB1GB2

2GA2B1HAB21FA3

1

t
1O~ t22!; ~F3!

mw

mq
52

B
A1O~ t21!; ~F4!

sC

sq
52

1

Bt
1O~ t22!; ~F5!

sw

sq
5
A
B1O~ t21!. ~F6!

Hence in the integrable region of the flow,ê, m̂ andŝ vectors
converge linearly in time to their time asymptotic limits,ề
}(1,0,0),m̂`}(0,B,2A) and ŝ̀ }(0,A,B).

APPENDIX G: DIFFUSIVITY COEFFICIENTS

c05~FH2G2!/J0
2; ~G1!

c15~BHD2BGE1AGD2AFE!/~J0
2AA21B2!; ~G2!

c25~2AHD1AGE1BGD2BFE!/~J0
2AA21B2!;

~G3!

c35
B2HC2B2E212BAGC22BADE1A2FC2A2D2

J0
2~A21B2!

;

~G4!
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c45
B2GC2A2GC1A2DE2BAHC2B2DE2ABD21BAE21ABFC

J0
2~A21B2!

; ~G5!

c55
B2FC2B2D21A2HC12BADE22 BAGC2A2E2

J0
2~A21B2!

. ~G6!
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HereJ0
2 is the determinant of the metric tensor of theC-w-q

coordinates, Eq.~49!.

1L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon, Oxford,
1959!, Chap. VI.

2X. Z. Tang and A. H. Boozer, ‘‘Finite time Lyapunov exponent an
advection-diffusion equation,’’ Physica D95, 283 ~1996!.

3J.-P. Eckmann and D. Ruelle, ‘‘Ergodic theory of chaos and strange
tractors,’’ Rev. Mod. Phys.57, 617 ~1985!.

4V. I. Oseledec, ‘‘A multiplicative ergodic theorem: Lyapunov character
tic numbers for dynamical systems,’’ Trans. Moscow Math. Soc.19, 197
~1968!.

5H. Aref, ‘‘Stirring by chaotic advection,’’ J. Fluid Mech.143, 1 ~1984!.
6R. R. Prasad, C. Meneveau, and K. R. Sreenivasan, ‘‘Multifractal natur
the dissipation field of passive scalars in fully turbulent flows,’’ Phys. R
Lett. 61, 74 ~1988!; J. C. Sommerer and E. Ott, ‘‘Particles floating on
moving fluid - a dynamically comprehensible physical fractal,’’ Scien
259, 335 ~1993!.

7T. H. Solomon and J. P. Gollub, ‘‘Passive transport in steady Rayle
Benard convection,’’ Phys. Rev. A38, 6280~1988!; R. P. Behringer, S. D.
Meyers, and H. L. Swinney, ‘‘Chaos and mixing in a geostrophic flow
Phys. Fluids A3, 1243 ~1991!; T. H. Solomon, E. R. Weeks, and H. L
Swinney, ‘‘Observation of anomalous diffusion and levy flights in
2-dimensional rotating flow,’’ Phys. Rev. Lett.71, 3975~1993!.

8G. O. Foutain, D. V. Khakhar, and J. M. Ottino, ‘‘Visualization of thre
dimensional chaos,’’ Science281, 683 ~1998!.

9J. D. Meiss, ‘‘Symplectic maps, variational principles, and transpor
Rev. Mod. Phys.64, 795 ~1992!.

10J. M. Ottino, ‘‘Mixing, chaotic advection, and mixing,’’ Annu. Rev. Fluid
Mech.22, 207~1990!; J. M. Ottino,The Kinematics of Mixing: Stretching
Chaos and Transport~Cambridge U.P., Cambridge, 1989!; S. Wiggins,
Chaotic Transport in Dynamical System~Springer-Verlag, New York,
1992!.

11I. C. Percival, ‘‘Variational principles for invariant tori and cantori,’’ in
Nonlinear dynamics and beam-beam interaction, edited by M. Month and
J. C. Herrera~AIP, New York, 1979!; S. Aubry, ‘‘The new concept of
transitions by breaking of analyticity in a crystallographic mode,’’ inSoli-
ton and condensed matter physics, Springer series in solid state physic
Vol. 8, edited by A. R. Bishop and T. Schneider~Springer-Verlag, New
York, 1978!.

12R. S. Mackay, J. D. Meiss, and I. C. Percival, ‘‘Transport in Hamiltoni
systems,’’ Physica D13, 55 ~1984!.

13J. D. Meiss and E. Ott, ‘‘Markov tree model of transport in are
preserving maps,’’ Physica D20, 387 ~1986!.
t-

of
.

-

’

14D. Beigie, A. Leonard, and S. Wiggins, ‘‘Invariant manifold templates f
chaotic advection,’’ Chaos Solitons Fractals4, 749 ~1994!.

15We note that previous analyses by others~Refs. 16 and 17! have employed
a Lagrangian approach, but they are only locally valid, in contrast to
global ~Lagrangian! coordinate transformation used in Ref. 2 and th
paper.

16J. M. Ottino, ‘‘Description of mixing with diffusion and reaction in term
of the concept of material interfaces,’’ J. Fluid Mech.114, 83 ~1982!.

17D. Beigie, A. Leonard, and S. Wiggins, ‘‘A global study of enhanc
stretching and diffusion in chaotic tangles,’’ Phys. Fluids A3, 1039
~1991!.

18E. Ott and T. M. Antonsen, Jr., ‘‘Chaotic fluid convection and the frac
nature of passive scalar gradients,’’ Phys. Rev. Lett.61, 2839~1988!; T.
M. Antonsen, Jr. and E. Ott, ‘‘Multifractal power spectra of passive s
lars convected by chaotic fluid flows,’’ Phys. Rev. A44, 851 ~1991!.

19A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion
~Spring-Verlag, New York, 1983!.

20G. K. Batchelor, ‘‘Small-scale variation of convected quantities like te
perature in turbulent fluid: part 1. General discussion and the case of s
conductivity,’’ J. Fluid Mech.5, 113 ~1959!.

21X. Z. Tang and A. H. Boozer, ‘‘Hamiltonian structure of Hamiltonia
chaos,’’ Phys. Lett. A236, 476 ~1997!.

22D. P. Stern, ‘‘Euler Potentials,’’ Am. J. Phys.38, 494 ~1970!.
23T. Dombre, U. Frisch, J. M. Greene, M. He´non, A. Mehr, and A. M.

Soward, ‘‘Chaotic streamlines in the ABC flows,’’ J. Fluid Mech.167,
353 ~1986!.

24G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov and A. A. Chernikov,Weak
Chaos and Quasi-Regular Patterns~Cambridge U.P., Cambridge, 1991!.

25M. Feingold, L. P. Kadanoff, and O. Piro, ‘‘Passive scalars, three dim
sional volume preserving maps, and chaos,’’ J. Stat. Phys.50, 529~1988!.

26A. H. Boozer, ‘‘Plasma Confinement’’ inEncyclopedia of Physical Sci-
ence and Technology~Academic, New York, 1992!, Vol. 13, p. 1.

27V. I. Arnold, Mathematical Methods of Classical Mechanics~Springer-
Verlag, New York, 1989!.
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