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Anisotropies in magnetic field evolution and local Lyapunov exponents
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The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a
magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local
Lyapunov exponents along the various local characteristic~un!stable directions for the Lagrangian
flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of
Lagrangian coordinates and time, which are completely determined once the flow field is specified.
The characteristic directions that are associated with the spatial anisotropy of the problem, are
prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are
employed to relate the spatial distributions of the magnetic field, the induced current density, and the
Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov
exponents, which are naturally defined in Lagrangian coordinates. ©2000 American Institute of
Physics.@S1070-664X~00!00804-1#
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I. INTRODUCTION

Under the usual assumptions that the displacement
rent is negligible and the plasma obeys the generali
Ohm’s LawE1v3B5h j , the evolution of a magnetic field
in a plasma flow is described by the induction equation,1

]B

]t
5¹3v3B1

h

m0
¹2B, ~1!

wherev(x,t) is the flow field of a plasma with resistivityh,
andm0 is the permeability of free space. The solution to th
equation for a given flow field would provide an answer
the kinematic dynamo problem and further constrain the s
consistent magnetohydrodynamic~MHD! dynamo theory.
The Ohmic heating of a plasma (h j 2, with j5¹3B) can
also be understood from the solution to this equation.

Traditional2 and helicity conserving3–5 dynamo theories
presume a turbulent background conducting flow. A t
scale approach6 is applied, which decomposes the flow fie
and the magnetic field into a mean and a fluctuating com
nent. A quasilinear approximation then gives rise to an a
lytic closed form for the time evolution of the mean field, th
so-calleda –b turbulent dynamo theory. If the mean field o
the flow velocity is spatially nonuniform, like the differentia
rotation envisioned on the sun, another effect, the so-ca
V term, presents and plays the role of converting a polo
field into a toroidal one.

Phenomenologically speaking, the build-up of a lar
scale magnetic field by dynamo action corresponds
stretching the magnetic flux tubes and piling them up in
non-cancellating manner. This was pictorially illustrated
Alfvén’s twist model.7 The condition for exponential mag
netic field growth in the dissipationless limit is made rigo
ous mathematically by the criteria that the flow has chao

a!Electronic mail: xtang@pppl.gov
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Lagrangian trajectories, a point that was first made precise
Arnold et al..8 The so-called chaotic dynamo has since th
received much attention and attempted by many authors~for
a list, see Ref. 9!.

There are a number of aspects that distinguish a cha
dynamo from a turbulent one. First, although turbulent flo
generally have chaotic Lagrangian trajectories, chaotic flo
need not be turbulent. Smooth laminar flows with veloc
field of the spatial scale of the system size are well-known
have chaotic or nonintegrable trajectories. By an analog
theorem in Hamiltonian mechanics, it is indeed an exc
tional case for a divergence-free Laminar flow to be in
grable. Second, the shift of emphasis to smooth laminar fl
precludes the two-scale analysis like the one in thea –b
turbulent dynamo theory. On the other hand, the we
behaveness of the flow field allows some rigorous result
the dissipationless limit for a general flow, the so-call
Cauchy solution. The connection to dynamical system the
provides a new set of tools to characterize the problem.9

The chaotic and turbulent dynamo theories share a c
mon challenge that complicates a fundamental understan
of the problem, which is the natural concentration of ma
netic energy growth in small scale fields. In thea –b turbu-
lent dynamo theory, this effect comes in by imposing a mu
shorter time for the range of validity of the theory than wh
originally had been hoped.10 The reason is that the sma
scale fluctuating field reaches energy equipartition with
flow much earlier than the mean field.11 In other words, it
manifests itself as a violation of the~quasilinear! approxima-
tion. In the chaotic dynamo problem, no approximation w
made but one faces even more obvious difficulties. For
ample, the eigenmode expansion series for the magnetic
in the case of a perfectly conducting chaotic divergence-f
flow, diverges at the high wavenumber end of the spectr
at large time, an example of the so-called ‘‘ultraviolet’’ c
tastrophe. A finite resistivity would in principle provide
3 © 2000 American Institute of Physics
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cutoff for this ‘‘ultraviolet’’ divergence. A straightforward
scaling argument shows that the smallest structure, or
inverse of the largest wave-vector of the cutoff eigenmo
scales asRm

21/2, with Rm[m0LV/h the magnetic Reynolds
number (L is the characteristic spatial scale,V is the typical
flow speed, andh is the resistivity!. In astrophysical situa-
tions where the dynamo theory is primarily applied, the m
netic Reynolds number is of the order 108 or higher. Just like
the fully-developed fluid turbulence problem, it is still b
yond the reach of a direct numerical simulation.

The causes of small scale structures in a turbulent
namo and a chaotic one appear to be different. In a turbu
dynamo, the small scale structures for the magnetic field
usually said to be associated with the small scale struct
of the fluctuating flow velocity field. This is certainly not
viable explanation for a chaotic dynamo in which the flo
field can be laminar and possesses a spatial scale compa
to system size. Instead the fine structures and the extr
anisotropies are entirely determined by the kinematics of
flow trajectories. The purpose of this paper is to illustra
how the complicated spatial structures in the magnetic fi
evolution can be understood in terms of the finite tim
Lyapunov exponent that describes the behavior of neigh
ing points in a chaotic flow.

The basic features can be illustrated by following t
relative motion between two nearby flow elements in
ideal evolution, i.e., the frozen flux limit. By definition, in
chaotic flow, neighboring flow elements generally separ
exponentially apart in time. If the two flow elements alig
perfectly along the so-called stable direction, they would
tually converge exponentially in time. The conjugacy of e
ponential convergence and divergence can be trivially
plained in a divergence-free flow. It actually holds true f
any flow as long as the divergence of the flow field does
diverge exponentially. If the initial fields carried by the flo
elements are different, exponential convergence implies
exponentially increasing gradient of the magnetic fie
which is equivalent to an exponential reduction of the spa
scale of the magnetic field along the stable direction. Si
larly along the unstable direction, exponential divergen
would imply that the field would be smoothed out and d
velop an exponentially increasing spatial scale.~We will
show later this actually does not happen in a typical flow d
to the spatial anisotropies of the local Lyapunov exponen!
The so-called coordinate contraction~dilation! effect is one
of the two ways to significantly alter the spatial scales of
magnetic field and the current density distribution in a c
otic flow. The other effect is the so-called differenti
growth.

The flow elements, while undergo a relative motion, a
simultaneously distorted by the flow motion. In a chao
flow, initial blobs would be stretched into thin stripes. T
frozen flux is therefore squeezed and gives rise to an ex
nential growth of the magnetic field strength. The grow
rate of the field is also given by the local Lyapunov exp
nent. Since the local Lyapunov exponent is a function
position~where the fiducial Lagrangian trajectory starts! and
time ~how long the fiducial trajectory is traced!. The spatial
variation of the local Lyapunov exponent, more specifica
he
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the time dependence of the spatial gradient of the lo
Lyapunov exponent, plays an equally, if not more importa
role, in determining the field structure and current distrib
tion. Along the unstable direction, the local Lyapunov exp
nent varies wildly, differential growth dominates coordina
dilation, and leads to an algebraic variation of the field s
tial scales. In the stable direction, the local Lyapunov ex
nent varies smoothly and the scale reduction rate remain
be the local Lyapunov exponent. However, even if the init
field is uniform, the differential growth, with the help o
coordinate contraction, still induces an exponential scale
duction.

The observation of increasingly fine structures in ch
otic, high magnetic Reynolds number flows, is widely r
ported in numerical simulations. It is generally thought th
within the kinematic dynamo approximation, the kinema
magnetic fields would concentrate on a fractal set in spac
the limit of Rm→` and t→`. The most notable analysis i
support of this is due to Ottet al..12 More specifically, these
authors showed that a magnetic field, stretched accordin
the two dimensional baker’s map and folded back in a re
forcing manner with the help of field line cutting, woul
concentrate on a fractal set in a two dimensional space in
limit of t→`. Although this analysis is illuminating, particu
larly for understanding the long time limit of the idealize
so-called stretch–twist–fold kinematic dynamo model,
does suffer from two unphysical assumptions. First, the tw
dimensional baker’s map, like other hyperbolic systems, c
not be reduced from a physically realizable flow. Seco
field line cutting is an unphysical operation due to the a
sence of magnetic monopole. Since unphysical assumpt
could lead to unphysical results, more rigorous analysis w
out these unphysical assumptions is clearly desirable.

Our analysis removes the constraints of the two unph
cal assumptions, and also has a different emphasis. We
try to understand the time evolution of how structures a
anisotropies develop in a conducting flow, and what de
mines the time evolution, as supposed to the time asympt
limits of the kinematic approximation. The knowledge of th
field and current distribution also allows us to study the
fect of resistive diffusion and the back reaction of the Lore
force, i.e., the breakdown of the kinematic approximatio
Both the characteristic directions of the Lagrangian flow t
jectory and the finite time Lyapunov exponent are shown
be the central concepts that relate the flow to the magn
field evolution. Unlike many authors in the past,13 we go
beyond merely using finite time Lyapunov exponents a
statistical quantity to characterize transport. We will, for t
first time, use the spatial and temporal dependence of
finite time Lyapunov exponent to rigorously examine t
spatial and temporal evolution of the magnetic field and c
rent distribution. We discovered14,15 that the finite time
Lyapunov exponent can be described by two converge
functions with drastically different properties. The strong
anisotropic behavior of the convergence functions for
finite time Lyapunov exponent, is found to be crucial to u
derstand the spatial structures of the field and current di
bution. This is clearly demonstrated in the discussions wh
weigh the relative importance of coordinate contraction a
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differential growth for scale reduction in Sec. III.
The main body of the paper is organized as follows: T

mathematical background for the analysis is given in Sec
In particular, Sec. II A gives an interpretation of Oselede
multiplicative ergodic theory20 in terms of a mapping be
tween Lagrangian and Eulerian coordinates. The charact
tic directions that describe the spatial anisotropies in b
Lagrangian and Eulerian frames, are introduced in Sec. I
along with some basic calculus of coordinate transform
tions. Section II C summarizes some of the generic featu
of the local or finite time Lyapunov exponents, with an e
phasis on its spatial variation. Two special cases of the m
netic field evolution problem, the ideal evolution in thre
dimensions and the nonideal evolution in two dimensio
are then presented. One is the ideal evolution in three dim
sions, the other is the nonideal evolution of a tw
dimensional field. The ideal case, section III, is intended
illustrate the small scale field structures. The nonideal c
Sec. IV, is to demonstrate the time scale and the magni
of Ohmic dissipation. Ohmic heating in a chaotic plasm
naturally concentrates in either filaments, ribbon, or she
and the condition that determines which of these forms
curs is given in Sec. V. The competition between fie
growth, Ohmic dissipation, and the back-reaction of the L
entz force, is discussed in Sec. VI. The preferred direction
the Lorentz force is also pointed out there.

II. THE ANISOTROPIES OF LAGRANGIAN CHAOS

A. Lagrangian chaos in Lagrangian coordinates

The trajectoryx(j,t) of a flow point starting from posi-
tion j at initial time is followed by integrating

S ]x

]t D
j

5v~x,t !. ~2!

With the typical choice ofx(j,t50)5j, j is known as the
Lagrangian coordinates in fluid mechanics. The pract
definition of chaos, i.e., the sensitive dependence of the fi
state@x(j,t)# on its initial condition@j#, can be interpreted
in terms of a mapping between the Lagrangian coordinatej
and the ordinary position vectorx in the Eulerian frame
through the functional relationshipx(j,t), which is obtained
by integrating Eq.~2!.

The chaotic behavior is quantitatively described by
exponential rate at which an initial error or displacemen
amplified over time. This information is given by the metr
tensor of the Lagrangian coordinates, a point that can be
by expressing the differential distance in the Eulerian fra
(dl)25dx•dx in Lagrangian coordinates using the cha
rule,

~dl !25dx•dx5(
i

]x

]j i
dj i

•(
j

]x

]j j
dj j5(

i j
gi j dj idj j ,

with gi j [(]x/]j i)•(]x/]j j ) the metric tensor of the La
grangian coordinates. The matrix inverse ofgi j , which is
gi j [¹j i

•¹j j , is also called the metric tensor of the L
grangian coordinates. The two representations of the me
tensor are associated with the freedom of expressing an
e
I.
s

is-
h
,
-

es
-
g-

,
n-
-
o
e,
de
a
s,
-

-
f

l
al

e
s

en
e

ric
ar-

bitrary vector A in either covariant representationA
5( iAi¹j i or contravariant representation A
5(Ai(]x/]j i).

The description of the kinematics of chaos in Lagrang
coordinates becomes obvious once the metric tensor of
Lagrangian coordinatesgi j is interpreted using the languag
of dynamical systems as the Oseledec matrixL i j of Osele-
dec’s multiplicative ergodic theorem.20,19

Sincegi j is a positive definite and symmetric matrix,
can be diagonalized with positive eigenvalues and real eig
vectors,

gi j 5L leiej1Lmmimj1Lssisj , ~3!

with the three eigenvaluesL l>Lm>Ls.0. The metric ten-
sor determines the distance between neighboring flow po
so this tensor determines the three~finite time or local!
Lyapunov exponents,

l l~j,t ![
ln L l

t
,lm~j,t ![

ln Lm

2t
,ls~j,t ![

ln Ls

2t
, ~4!

which are functions of both position and time. A flow
chaotic if the largest Lyapunov exponentl l has a nonzero
limit as time goes to infinity. Otherwise it is said to be int
grable.

Chaotic motion of a flow point is said to be of Lagran
ian nature in that~1! it is most easily interpreted as a ma
ping between the Lagrangian coordinates and the ordin
position vector in Eulerian frame, and~2! the kinematics of
chaos, most notably the local Lyapunov exponents@see Eq.
~4!# and the characteristic~un!stable directions~see Sec.
II B !, are naturally defined as functions of the Lagrang
coordinates~initial conditions!. The physical observable, like
the magnetic field, induced current density, and Ohmic he
ing, however, are usually followed in an Eulerian frame. T
theory of coordinate transformations provides the link th
relates the Eulerian physical observable to the kinematic
chaos in Lagrangian coordinates, which is the main focus
this paper.

B. Lagrangian and Eulerian characteristic directions
for the anisotropic transport

As we will show, the magnetic field in a chaotic flow
evolves remarkably differently in the various characteris
directions of the flow. Here we introduce the characteris
directions that will be required to calculate quantities such
the magnetic flux concentration, the current channel, and
Ohmic heating in the magnetic field evolution problem. T
basic theory of general coordinates, upon which the la
sections will be heavily drawn, are also outlined here. As
title of the section suggests, two sets of characteristic dir
tions, one in Lagrangian frame and the other in the Euler
frame, will be introduced. The construction of characteris
directions in Eulerian frame is based on their Lagrang
counterparts, so we will start with the eigenvectors of t
metric tensor of the Lagrangian coordinates.

The real eigenvectors of the matrixgi j , Eq. ~3!, defines
two sets of vectors: three orthonormal vectorsê[$ei%,m̂
[$mi%,ŝ[$si% in Lagrangian frame and three orthogon
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vectorse[ei¹j i ,m[mi¹j i ,s[si¹j i in the Eulerian frame.
The orthonormal vectorsê,m̂,ŝ in Lagrangian frame have
well-defined time-asymptotic limits that are generally po
tion dependent, ề (j)5$ei

`(j)%,m̂`(j)5$mi
`(j)%, ŝ̀ (j)

5$si
`(j)%. In the case ofl l

`52ls
`.0 andlm

`50, neigh-
boring points diverge~converge! exponentially in time if ini-
tially separated alongề ( ŝ̀ ) direction, but their distance
varies at most algebraically in time if initially separate
along them̂` direction. The convergence ofê,m̂,ŝ to their
time asymptotic limitsề ,m̂` , ŝ̀ is usually exponential in
chaotic regions. In the case of a two dimensional divergen
free chaotic flow, one can write14

ê} ề 1~s/L! ŝ̀ ; ŝ} ŝ̀ 2~s/L! ề , ~5!

with L>1 the eigenvalue of the metric tensor ands an
algebraic function measuring the convergence rate.

The contravariant representation of the metric tens
gi j [¹j i

•¹j j , is the matrix inverse ofgi j and has the diag
onal form, gi j 5L l

21EiEj1Lm
21MiM j1Ls

21SiSj . The
eigenvectors of the matrixgi j are exactly the same as tho
of gi j , so the orthonormal vectorsÊ[$Ei%,M̂[$Mi%,Ŝ
[$Si% in Lagrangian frame are identical toê,m̂,ŝ. The or-
thogonal vectorsE[Ei]x/]j i ,M[Mi]x/]j i ,S[Si]x/]j i in
the Eulerian frame are parallel toe,m,s.

Using the time asymptotic limitssi
`(j) and E`

i (j) one
can construct three new orthogonal vectors in Euler
frame,

S[si
`¹j i , E[E`

i ]x/]j i , M[S3E. ~6!

The vectors e(E),m(M ),s(S) converge exponentially to
E,M, and S in directions. The three vector directions
given by$ ề ,m̂` , ŝ̀ % in the Lagrangian frame and$E,M,S%
in the Eulerian frame are useful to understand the extre
spatial anisotropy of the chaotic transport of a scalar or v
tor field. Along with the finite time Lyapunov exponent
they determine much of the physics of the magnetic fi
evolution.

Next we give two explicit demonstrations that are he
ful to those who wish to reproduce the details of the cal
lations in the later sections. In particular, we show h
quantities in Eulerian frame are related to those express
in Lagrangian coordinates. For example the inner produc
E with itself is

E•E5Ei]x/]j i
•Ej]x/]j j5Eigi j E

j

5Ei~L leiej1Lmmimj1Lssisj !E
j5L l , ~7!

which grows exponentially in time for a chaotic flow.
common expression that will be evaluated in later section
of the form E•¹ f with f some function of position. By the
chain rule, one has

¹ f 5~] f /]j i !¹j i .

The orthogonal relation

]x

]j i
•¹j j5d i

j

-

e-

r,

n

e
c-

d

-
-
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of

is

is another trivial result of the chain rule. Combining the
two, one finds

E•¹ f 5E`
i ~]x/]j i !•~] f /]j j !¹j j

5E`
i d i

j~] f /]j j !5E`
i ~] f /]j i !5 ề •¹0f , ~8!

where¹0 denotes a gradient in Lagrangian coordinates.

C. Properties of the local Lyapunov exponents

The local Lyapunov exponents are defined in Eq.~4!
through the metric tensor of the Lagrangian coordinat
which are properties of the flow field alone. In other word
once the flow field is specified, the local Lyapunov exp
nents are completely determined, as functions of the ini
position ~i.e., the Lagrangian coordinates! and time. Al-
though an explicit calculation is required for a quantitati
understanding, there are generic features for the lo
Lyapunov exponents that are independent of the partic
form of the flow field.

The simplest case, where the local Lyapunov expone
are spatially independent constants, occurs only for pu
hyperbolic systems. An example is the Arnold’s cat map.
physically relevant chaotic systems found to date have n
hyperbolic points in which case the local Lyapunov expon
varies significantly over space and time. In the tim
asymptotic limit, the local Lyapunov exponent converges
the infinite time Lyapunov exponent, which is a constant
a given ergodic region. The spatial and time dependenc
the local Lyapunov exponent are contained in the so-ca
convergence functions of the expressions for the lo
Lyapunov exponents.

With exponential accuracy, the finite time Lyapunov e
ponent is characterized by two convergence functionsl̃(j)
and f (j,t),14,15

l~j,t !5l̃~j!/t1 f ~j,t !/At1l`, ~9!

wherel` is the infinite time Lyapunov exponent, i.e.,

lim
t→`

l~j,t !5l`. ~10!

The first term in Eq.~9! vanishes ast→` since l̃(j) is a
function of position alone. Equation~10! then implies that
f (j,t) is bounded byAt so

lim
t→`

f ~j,t !/At50.

An analytical argument for this decomposition of the conv
gence functions was given in Ref. 14 for a two-dimensio
divergence-free flow. Numerical evidence was provided
three-dimensional systems in Ref. 15.

The spatial anisotropy of the convergence functio
plays a large role in determining the anisotropies of the m
netic field evolution in a chaotic plasma flow. Since the loc
Lyapunov exponent and the convergence functions are fu
tions of Lagrangian coordinates, the anisotropies will be
plained using the characteristic directions in Lagrang
frame. As we will show, the spatial anisotropies in Euleri
frame are straightforwardly related to the spatial anisotrop
of the local Lyapunov exponents in Lagrangian frame.
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The first characteristic direction we will consider is th
ŝ̀ , the so-called stable direction along which neighbor
point converge exponentially in time. Both convergen
functions are well-behaved along this direction, so is
variation of the local Lyapunov exponent. In particula
f (j,t) does not vary along this direction,

ŝ̀ •¹0f ~j,t !50.

The variation ofl̃(j) along theŝ̀ direction is smooth and
related to the divergence ofŝ̀ ,14,15

ŝ̀ •¹0l̃~j!1¹0• ŝ̀ 50. ~11!

Another way to look at Eq.~11! is that the vector field
el̃(j) ŝ̀ (j) is divergence-free, which itself may be describ
by a Hamiltonian.21 The smoothness ofŝ̀ implies thatl̃(j)
is a smooth function of position.

It is actually more widely known that the loca
Lyapunov exponent varieswildly over space and time, whic
makes the smooth variation along theŝ̀ a counterintuitive
result. The requirement forl(j,t) to vary wildly comes from
the fact that the higher spatial derivatives of the Jacobian~or
the metric tensor of the Lagrangian coordinates!, or equiva-
lently the local Lyapunov exponent, can be used to define
most positive infinite time Lyapunov exponents of a smo
dynamical system~see, for example, Ref. 16!. That is to say,

lim
t→`

ln~¹0l!2

2t
5l`. ~12!

The ŝ̀ component of¹0l certainly does not satisfy Eq.~12!.
The ề component of¹0l has to satisfy Eq.~12! since it is
the least constrained direction. Them̂` component of¹0l
may or may not satisfy Eq.~12!, as suggested by numeric
calculations. This uncertainty plays a large role in determ
ing the natural state of the concentration for the magn
field and current heating, which includes filaments, ribb
and sheets. Sincel̃(j) is a smooth function of position an
¹0l̃(j) does not depend on time, it isf (j,t) that describes
the wild spatial variation of the local Lyapunov exponent

III. IDEAL EVOLUTION OF A MAGNETIC FIELD

Within the framework of MHD, the evolution of a mag
netic field embedded in a moving plasma is described by
induction equation, Eq.~1!. For a high temperature plasm
the resistivityh is small. Hence for times less than a diffu
sion time~to be specified later! the temporal behavior of the
magnetic field resembles an ideal evolution

]B/]t5¹3~v3B!.

It has been shown17,18 that in Lagrangian coordinates, th
vector potential of this field isA5(Ai(j)¹j i . The covariant
components of the vector potential,Ai(j), are independen
of time in Lagrangian coordinates. By taking the curl of t
vector potential to obtain the magnetic fieldB and the curl of
the magnetic field to obtain the current densityj , one finds
that the scalar quantitiesB2, j 2, and j•B can be evaluated
g
e
e

e
h

-
ic
,

e

given the initial magnetic fieldB(x,0) and the metric tenso
of the Lagrangian coordinates.18 For example,

B25( bi~j!gi j b
j~j!/J2, ~13!

m0
2 j 25( F ]

]jn e inm
gml

J
bl GF ]

]jp e jpq
gqk

J
bkGgi j

J2
, ~14!

m0j•B5( F ]

]jn e inm
gml

J
bl Ggi j

J2
bj . ~15!

Here J is the Jacobian of the Lagrangian coordinatesJ2

5igi j i), m0 is the permeability of free space, andbi(j)
5(e i jk(]Ak /]j j ). The quantitiesbi(j) are just the three
Cartesian components of the initial magnetic field using
initial condition for Lagrangian coordinatesx(j,0)5j.

In a region where the flow is chaotic (l l
`.0), both the

magnetic energy and the induced current density incre
exponentially in time

B25~B0• ề !2L l1O~Lm!'~B0• ề !2 exp~2l l t !, ~16!

m0
2 j 25L l

3~B0• ề !2@ ề •~¹03 ề !#21O~e4l l t!}exp~6l l t !.
~17!

The leading term in the current density has no depende
on the spatial derivative of the initial magnetic field wi
respect to Lagrangian coordinates, but the next order te
do include terms of that kind, see the appendix for det
The induced current density tends to align with the magn
field in a chaotic flow since

m0j•B5L l
2~B0• ề !2@ ề •~¹03 ề !#1O~L l !

which implies (j•B)2/ j 2B2'11exp(22llt). The alignment
of the magnetic field and the current density is fundament
dependent on the flow being truly three dimensional, wh
means thatề •¹03 ề does not identically vanish. For
two-dimensional flow of the form,v5 ẑ3¹c(x,y,t), ề is
confined to thex–y plane and¹3 ề lies along theẑ axis.
Henceề •¹03 ề identically vanishes and the current flow
along theẑ direction (j'B) with the leading terms inj 2 of
time dependence exp(4llt), see the appendix.

The exact spatial decomposition of the magnetic fi
and the current density requires the knowledge of vec
E,M,S, the Eulerian frame correspondences of vect
ề ,m̂` , ŝ̀ , see Sec. II B for precise definitions. The contr
variant representation of an ideally evolving magnetic field

B5
1

J (
i

bi~j!
]x

]j i
,

with bi[( jke i jk]Ak /]j j . This expression is equivalent t
the Cauchy solution to the ideal induction equation. The s
tial decomposition ofB can be found by dottingB with the
characteristic directions in the Eulerian frame.

The magnetic field lies essentially along theE direction
in the Eulerian frame or the real space,
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Be[
E•B

uEu
'~B0• ề !AL l ; ~18!

Bm[
M•B

uMu
'~B0•m̂`!ALm; ~19!

Bs[
S•B

uSu
'~B0• ŝ̀ !ALs, ~20!

sinceAL l5el l t@ALm5elmt@ALs5elst for l l.lm.ls .
The current density has a similar spatial anisotropy

suffices to note here thatj e}e3lt@ j m}e2lt. The exact time
dependence of theS componentj s can be either}elt or
}e2lt, depending on whetherm̂`•¹0l(j,t) exponentiates in
time or not. The detailed form of the current distribution w
be considered in Sec. V.

As time progresses, the magnetic field develops str
tures of different spatial scales along theE,M, andS direc-
tions. The gradient of the magnetic pressure alongS direc-
tion is

S•¹B2

uSu
5

ŝ̀ •¹0B2

ALs

1O~Ls
21/2!

5
B2

ALs

2ŝ̀ •¹0~l l t !1
B2

ALs

•

ŝ̀ •¹0@~B0• ề !2#

~B0• ề !2

1O~Ls
21/2!. ~21!

As before, ¹0 denotes gradient in the Lagrangian fram
Hence the magnetic pressure develops an exponentially
creasing spatial scale (ls,0) along theS lines,

l s[FS•¹B2

uSu B2 G21

' l s
0 exp~lst !. ~22!

The exact contribution forl s
0,

l s
05H 2ŝ̀ •¹0~l l t !1

ŝ̀ •¹0@~B0• ề !2#

~B0• ề !2 J 21

~23!

requires some clarification. The expressions in Lagrang
coordinates~frame! clarify two separate mechanisms fo
scale reduction of the magnetic field. The first is coordin
contraction, which is represented by the second term in
~23!. The other one comes from differential growth, whi
corresponds to the first term in Eq.~23!. The two mecha-
nisms are of comparable importance, or equivalently spe
ing, the two terms in Eq.~23! are of the same order onl
because the finite time Lyapunov exponent varies smoo
along the ŝ̀ direction so ŝ̀ •¹0l l t does not have a time
dependence. Physically the second term~coordinate contrac-
tion! describes the contribution from an initial field distrib
tion with spatial variation. The first term~differential
growth! is the contribution from the flow alone. The obviou
explanation is that a general chaotic flow withl l spatially
nonuniform can generate spatially nonuniform magnetic fi
even for a uniform initial seed field. A less obvious point
that l l does not vary wildly in theŝ̀ direction so this con-
tribution does not overshadow the second term. For exam
It

c-

.
e-

n

e
q.

k-

ly

d

le,

had ŝ̀ •¹0(l l t) behaved asề •¹0(l l t) does,l s would have
a time dependence of exp(ls2ll)t. This is a point that has
not been clarified in the literature.

Three limiting cases can occur. The first is that bothl l

and B0• ề are independent of position, then the magne
field can never develop exponentially decreasing spa
scales. The second case is that onlyl l is independent of
position, then the field structures shrink exponentially in tim
(elst) due to the converging Lagrangian trajectories bring
neighboring magnetic field of different magnitude expone
tially close along theŝ̀ direction, the so-called coordinat
contraction factor. The third case is that the initial magne
field is spatially uniform so coordinate contraction makes
contribution, the small scale structures for the magnetic fi
come from the~smooth! spatial variation ofl l along theŝ̀
direction, the so-called differential growth factor.

The field line lies basically along theE direction and
naturally has the least spatial structure in this direction. T
usual pictorial analysis says that Lagrangian trajectories
rying differentBs are exponentially separating apart in theề
direction so the characteristic scale of the field should
crease exponentially in time. An exact calculation shows t
is not the case in general after taking into account the spa
variation of the local Lyapunov exponent. To the leadi
order,

E•¹B2

uEuB2
5

ề •¹0~B0• ề !

el l t~B0• ề !
1

ề •¹0~2l l t !

el l t
.

The first term is the familiar contribution from the expone
tially divergence of neighboring trajectories, which can
analogously called coordinate dilation. It becomes expon
tially small in time. Except for the special case wherel l is
independent of position, the second term, the differen
growth factor, overtakes the first term in determining t
spatial structures of the field along theE direction. The rea-
son is thatề •¹0(l l t) has an exponential time dependenc
That is, to leading order, the characteristic scale in theE
direction is given by

l e[FE•¹B2

uEuB2 G21

'
AL l

2ề •¹~l l t !
. ~24!

The time evolution of the spatial scale of the magnetic fi
along theE direction has an algebraic dependence in ti
due to the fact that

lim
t→`

ln@ ề •¹~lt !#2/2t5l`,

which is generally true for flow fields with smooth spati
gradients.16 In general one has

AL l

ề •¹~l l t !
}tq. ~25!

If q,0, the spatial structure of the magnetic field along thE
direction becomes ever finer. Ifq.0, the spatial structure o
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the magnetic field along theE lines tends to diminish unde
chaotic advection. A flow field withq>0 could be favorable
for sustaining a magnetic dynamo.

The leading order terms that describes the time evolu
of the spatial scales of the magnetic field along theM direc-
tion has a similar breakdown as before. There is one t
associated with the initial gradient of the magnetic field, a
there is another term account for the spatial variation of
local Lyapunov exponent. Written out explicitly,

M•¹B2

uMuB2
5

m̂`•¹0~B0• ề !

ALm~B0• ề !
1

m̂`•¹0~2l l t !

ALm

.

In the most general case,lm[ ln Lm/2t can be any real num
ber since even for a divergence-free flow the most string
constraint is forl l1lm1ls50. Usuallyl l.0 for a chaotic
flow andls,0 so as to be practically relevant. For a tim
independent flow,lm

` always vanishes, but the same is n
always true if the flow field has a time dependence.

The spatial gradient of the initial magnetic field pla
less a role in determining the time evolution of the fie
structure iflm is positive. This case is similar to that of th
E direction, in that the second term always dominates
first term in determining the time asymptotic behavior of t
field structure. Equivalently speaking, differential grow
rather than coordinate dilation plays the more important r
if lm.0. In making this statement, we have assumed that
variation of the local Lyapunov exponent along the seco
unstable direction (m̂` associated with alm.0) is not
smooth andm̂`•¹0(2l l t) has an exponential time depe
dence. Although a proof is not available, we find it to be t
most plausible scenario, since otherwise one arrives at
peculiar result that the field structures would flatten out at
exponential rate, a case that is not even true for the m
unstable directionE.

If lm
` is less than zero, the flow has two contracti

directions and one expanding direction. The field scale al
the second stable direction (m̂` with lm

`,0) has qualita-
tively the same behavior as that ofl s along ŝ̀ , the primary
stable ~contracting! direction. Both the coordinate contrac
tion and differential growth contribute to an exponential d
cay in l m , so a uniform initial field would still develop ex
ponentially finer structure in space unlessl l is independent
of position, an event of little practical relevance. The exp
nential rate at whichl m decays provides final information i
determining the three dimensional spatial structures of
field distribution. Two factors require consideration. T
magnitude oflm in comparison withls and whetherm̂`

•¹0l l t has an exponential time dependence. Similar as
conjecture made earlier, we expect thatl l vary smoothly
along the second stable directionm̂` . Then the only decid-
ing factor is the relative magnitude ofls and lm . Unless
ls5lm , in which casel s' l m}exp(lst) so fields concentrate
in tubes, the strong field appears in ribbons sincel s

}exp(lst)!lm}exp(lmt) for larget. These conclusions utilize
the fact thatl e varies at most algebraically in time. It shou
also be noted that these results come from the differen
n
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growth mechanism, and are independent whether the in
field has a spatial dependence or not.

In a large class of flows such as the three dimensio
time-independent flows,lm

` strictly vanishes. Hencelm
`50

is a case of special interest. The characteristic directionm̂`

associated withlm
`50 is usually called the center~manifold!

direction. It is a direction along which the separation b
tween neighboring trajectories varies at most algebraicall
time, which meansLm is an algebraic function int if it has
any time dependence at all. The time dependence ofm̂`

•¹0(l l t) is difficult to generalize. Numerical calculation i
some cases has shown smooth variation ofl l along m̂` di-
rection over large distances but there are intermittent w
fluctuations. The intermittence can be real, but numer
round-off can not be ruled out at this stage due to the d
cacy of the calculation. There are three main scenarios
m̂`•¹0(l l t) varies algebraically in time,l m is comparable
with l e and the magnetic field accumulates in sheets. Ifm̂`

•¹0(l l t)}exp(llt) the flux concentrates in tubes sincel m is
now comparable withl s due to ls'2l l in a flow where
¹•v does not vary exponentially. Otherwise, the field ha
ribbon like concentration. It requires a dominant contributi
from the differential growth mechanism to achieve a tube
ribbonlike spatial distribution iflm

`50.
Although the characteristic scale of the magnetic fie

along theM direction decides whether the field structu
appears in tubes, ribbons, or sheets. It is the rich structur
the magnetic field in theS direction that inevitably leads the
magnetic field to have a fractal-like spiky distribution in
chaotic dynamo.22 The physical mechanisms responsible f
the fine scales are the coordinate contraction that brings
ferent initial fields close, and differential growth that com
from the spatial variation of local Lyapunov exponent in
general flow. The coordinate contraction mechanism is
sent without an initial spatial gradient of the seed field. B
differential growth always presents for a smooth flow. T
only reason that the differential growth mechanism does
dominate the coordinate contraction mechanism in gene
ing small scale structures is because the finite time Lyapu
exponentl l varies smoothlyalong the stable~contracting!
direction (ŝ̀ ), in contrast to the wild variation along theE
direction. The ever finer field concentration assures the
portance of a small but finite resistivity.

IV. NONIDEAL EVOLUTION OF A MAGNETIC FIELD:
2D CASE

The competition between field growth and Ohmic dis
pation has a clear resolution if the system is restricted to
dimensions. Although the lack of time-asymptotic dynam
action in two dimensions has a simple explanation, the ch
acteristics of the solution were not known from previo
antidynamo theorems. In particular, the nature of resis
dissipation was not known due to the lack of a full solutio

In this section we give a solution to the evolution of
two-dimensional magnetic field in a chaotic flow and illu
trate the time scale and magnitude of the Ohmic dissipat
We assume the initial magnetic energy is much smaller t
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the kinetic energy~specific requirements are discussed
Sec. VI!, so the back reaction of the magnetic field on t
flow field can be neglected.

A two-dimensional magnetic field can be represented
a scalar potentialc, i.e., B(x,y,t)5 ẑ3¹c(x,y,t). Substi-
tuting this relation into the induction equation, one obta
the advection-diffusion equation forc(x,y,t) which de-
scribes the magnetic field evolution in two dimensions,

]c/]t1v•¹c5~h/m0!¹2c.

The induced current density is given by the curl of the m
netic field

j5¹3B52¹2c ẑ

which strictly points in theẑ direction. Hencej•B50 for
two-dimensional magnetic evolution, which is clearly diffe
ent from the general three-dimensional case as discusse
the previous section. In a chaotic plasma flow, one finds

B2'B0
2 exp~2lt ! and m0

2 j 2'~B0 /L !2 exp~4lt !,

and j•B50, j3B}exp(3lt) before the resistivity become
important.

As shown in Ref. 14, the advection-diffusion equation
an ordinary diffusion equation with a tensor diffusivityDi j

[(h/m0)gi j in Lagrangian coordinates,

]c

]t
5

]

]j i Di j
]

]j j c.

For a two-dimensional divergence-free flow as discus
here,

Di j 5~h/Lm0!êê1~hL/m0!ŝŝ

with L5exp 2lt.1. The diffusion equation is simplified in
natural Lagrangian coordinate system (a –b) which can be
defined as

ề 5a¹a, ŝ̀ 5b¹b, and ề 5 ẑ3 ŝ̀ .

The Jacobian of thea –b coordinates isab.
In natural Lagrangian coordinatesa –b, the diffusion

equation is14

]c

]t
52

1

ab

]

]a
~abga!2

1

ab

]

]b
~abgb!,

wherega andgb are the fluxes in thea andb directions,

ga52
Dee

a2

]c

]a
2

Des

ab

]c

]b
,

gb52
Des

ab

]c

]a
2

Dss

b2

]c

]b
.

The diffusion coefficients areDee[ ề •DI• ề ,Dse[ ŝ̀ •DI
• ề , and Dss[ ŝ̀ •DI• ŝ̀ . For L@1, these coefficients sat
isfy the inequalitiesDee'(h/m0)e22lt!Dse'2s(h/m0)
!Dss'(h/m0)e2lt. The evolution of a two-dimensiona
magnetic field can be illustrated by making the rough
proximations thata5b51,l a constant, ands50 @s is de-
y

s

-

in
at

d

-

fined in Eq.~5! and it measures the convergence rate of
eigenvectors#. Then an initial magnetic flux functionc(t
50)5c0(12coska)(12coskb) relaxes as

c5c0$12exp@2~12e22lt!/2V#

3coska%$12exp@2~e2lt21!/2V#coskb%,

with V[m0l/k2h since 1/k is the characteristic length
scale. The magnetic field is then given by

B25¹0c•DJ •¹0c5~]c/]a!2 exp~22lt !

1~]c/]b!2 exp~2lt !

with

]c

]a
5c0$exp@2~12e22lt!/2V#k

3sinka%$12exp@2~e2lt21!/2V#coskb%;

]c

]b
5c0$12exp@2~12e22lt!/2V#

3coska%$exp@2~e2lt21!/2V#k sinkb%.

The two terms inB2 have completely different time depen
dence,

S ]c

]a D 2

e22lt5c0
2k2 sin2 ka$12exp@2~e2lt21!/2V#

3coskb%2 expF2
12exp~22lt !

V
22ltG ,

S ]c

]b D 2

e2lt5c0
2k2 sin2 kb$12exp@2~12e22lt!/2V#

3coska%2expF2
exp~2lt !21

V
12lt G .

For t,ta21/l with ta[(ln 2V)/2l andV[m0lL2/h,

B2'~B0• ề !2 exp 2lt.

The magnetic field is dissipated away for a relatively sh
period 1/l centered onta . This is due to the Ohmic dissipa
tion of the induced current,

m0
2 j 25F ]2c

]a]b
~e2lt2e22lt!2G2

5c0
2k4 sin2 ka sin2 kb h2~ t !exp@22h~ t !/V#, ~26!

with

h~ t !5exp~2lt !2exp~22lt !.

SinceB}explt, j }exp 2lt, and j•B50, the Lorentz force
on the flow grows exponentially in time withu j3Bu
}exp 3lt.

The production of heat by the Ohmic dissipation,h j 2, is
concentrated in a relatively short time interval 1/l, which
coincides with the diminution of the main magnetic energ
The total energy dissipated is larger by a factor ofV
[lL2m0 /h than the initial magnetic energy*(B0

2/2m0)d3x.
The additional energy comes from the flow during the adv
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tion period ta in which the field is frozen to the flow. In
actuality, the finite time Lyapunov exponent is not a const
and an energetic plasma flow tends to generate complic
dissipative structures given a small seed magnetic field.
spatial-temporal complexity of the Ohmic dissipation is d
termined by the spatial-temporal dependence of the fi
time Lyapunov exponent.

V. RESISTIVE DISSIPATION: FILAMENTS AND
SHEETS

In Sec. III, it was shown that the ideal evolution of
magnetic field in a chaotic plasma leads to an exponenti
growing magnetic field and induced current density. T
suggests that a finite resistivity, regardless of how sma
might be, will be important and changes the characteris
of the solution. In general, the magnetic field initial
evolves ideally and then dissipation dominates the solutio
the plasma flow is chaotic. The heating,h j 2, is concentrated
in the current channels at the end of an ideal evolution. T
cutoff time for ideal evolution is approximated bytc

5(ln 2V)/2ulu with V[m0uluL2/h. Since the dimension
less numberV is usually large (.108), the magnetic field,
which follows an ideal evolution beforeta , would have ob-
tained extreme spatial anisotropy and fine scales at the o
of efficient Ohmic dissipationta . For the same reason, th
spatial distribution of the Ohmic dissipation can be learn
by following the ideal evolution of the induced current de
sity, which is given by the curl of the magnetic field.

In the case of a two-dimensional magnetic field, the p
duction of heat by the Ohmic dissipation,h j 2, is concen-
trated in a relatively short time interval 1/l, which coincides
with the dissipation of the main magnetic energy. The to
energy dissipated is larger by a factor ofV[lL2m0 /h than
the initial magnetic energy*(B0

2/2m0)d3x. The additional
energy comes from the flow during the advection periodtc

in which the field is frozen to the flow.
In the general three-dimensional case, the current te

to flow along theE direction, just like the magnetic field. T
see this, we note that the current density has the form

j5( j i~]x/]j i !

with

m0 j i5(
jkl

e i jk

J

]

]j j Fgkl

bl~j!

J G .
The E component of the current density is

j e[ j•E/uEu5m0
21L l

3/2~ ề •B0! ề •¹03 ề 1O~L l !.

The S component of the current density is the smallest,

j s[ j•S/uSu5m0
21ALsL l@~ ề •B0! ŝ̀ •¹0

3 ề 2m̂`•¹0~ ề •B0!2~ ề •B0!m̂`

•¹0~2l l t !#1O~Ls!,

where we have used the conventionê3m̂5 ŝ. TheM com-
ponent of the current density is
t
ed
e

-
te

ly
s
it
s

if

e

set

d

-

l

ds

j m[ j•M/uMu5m0
21ALmL l~ ề •B0!@m̂`•¹03 ề 1 ŝ̀

•¹0 ln~ ề •B0!1 ŝ̀ •¹0~2l l t !#1O~Lm!.

In the case thatm̂`•¹0(2l l t) does not have an exponen
tial time dependence, the current density obeys

j e}e3l l t@ j m}e2l l t1lmt@ j s}e2l l t1lst.

In a time-independent flow,l l'2ls'l.0 andlm'0, one
has

j e}e3lt@ j m}e2lt@ j s}elt.

If m̂`•¹0(l l t)}el l t, one finds instead

j e}e3lt@ j m' j s}e2lt.

In either case, the natural state is for the induced curren
align with the magnetic field.

The spatial scale of the current density distribution h
strong anisotropy similar as the magnetic field. To see t
we calculate the spatial scale of the current density distri
tion along different characteristic directions. We consider
general case that the flow is truly three dimensional wh
meansề •¹03 ề does not vanish. In this case, the leadi
order contribution toj 2 is L l

3( ề •B0)2( ề •¹03 ề )2. The
gradient ofj 2 in the E direction is

E•¹ j 2

uEu j 2
5

6ề •¹~l l t !

AL l

1O~e2l l t!. ~27!

The spatial scale along theE direction always has an alge
braic dependence in time because ofề •¹0l l t}exp(llt),

l e[FE•¹ j 2

uEu j 2 G21

'
AL l

6ề •¹~l l t !
' l e

0tq. ~28!

Just like the magnetic field, the spatial scale of the curr
density distribution along theS direction tends to diminish a
an exponential rate (ls,0),

l s[FS•¹ j 2

uSu j 2 G21

' l s
0 exp~lst ! ~29!

with l s
0 determined by both the flow field and the initial ma

netic field configuration,

l s
05$6ŝ̀ •¹0~l l t !1 ŝ̀ •¹0 ln~B0• ề !2

1 ŝ̀ •¹0 ln~ ề •¹03 ề !221. ~30!

The spatial scale along theM direction, in leading order, is

l m[FM•¹ j 2

uMu j 2 G21

'$6~m̂`•¹0l l t !1m̂`•¹0 ln~B0• ề !2

1m̂`•¹0ln~ ề •¹03 ề !2%21ALm. ~31!

If the middle Lyapunov exponent is negative,l m is exponen-
tially reduced similar asl s so the current concentrates
elongated tubes or ribbonlike structures depending on
ratio betweenlm andls . When the middle Lyapunov expo
nent is positive, one expects thatm̂`•¹0(l l t) has an expo-
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nential time dependence so current distribution will not
smoothed out indefinitely. In this case, the asymptotic fo
for l m is given by

l m'
exp~lmt !

m̂`•¹0~6l l t !
.

In the case thatlm
` vanishes, which is always true for

time-independent flow,Lm varies at most algebraically in
time. l m varies algebraically in time ifm̂`•¹0l l t does not
blow up exponentially in time. In that case,l s! l m' l e ,
hence the Ohmic heating occurs in current sheets. On
other hand, ifm̂`•¹0l l t grows exponentially in time, one
finds l s' l m! l e and the Ohmic heating occurs in curre
filaments.

In general, the differential growth¹0(l l t) plays a domi-
nant role in determining the characteristic scales of the c
rent ~and magnetic field! distribution along them̂` and ề
directions, in comparison with the other factors such as
ordinate contraction, which operate only if the initial se
field has a spatial dependence. The current runs through
sheet, or ribbon-like structures if conditions on (l l ,lm ,ls)
and ¹0(l l t) are met in a particular flow. The analysis
(l l ,lm ,ls) and ¹0(l l t) is straightforward once the flow
field is specified. As a general result, we have found t
¹0(l l t) is well-behaved in theŝ̀ direction but ill-behaved in
the ề direction@i.e., ề •¹0(l l t) exponentiates in time#. The
m̂`•¹0(l l t) requires a case-by-case examination.

It should be stressed that the onset of Ohmic heating
a large spread in time due to the spatial variation of the lo
Lyapunov exponents. To understand the distribution
Ohmic heating power as a function of time, one can con
lute the timetc with the proper probability distribution func
tion of the finite time Lyapunov exponents for any give
flow under consideration.

The difference between the distribution of the finite tim
Lyapunov exponents and a Gaussian distribution beco
smaller as one samples the finite time Lyapunov exponen
a longer interval@larger t0 in l(j,t0)]. For large t0 ~com-
pared with the Lyapunov time!, the standard deviation of th
distribution of the finite time Lyapunov exponents scales
1/At0. This implies that if the plasma resistivity is small
and the flow is more chaotic, the histogram of the heatin
closer to Gaussian statistics and the spread in time for
main Ohmic heating is smaller.

Locations with peculiarly small finite time Lyapunov ex
ponents are barriers for the Ohmic dissipation. These reg
are where theŝ lines make sharp bends~see Ref. 14 for the
two dimensional case, the three dimensional case is
cussed in Ref. 15, additional numerical evidence is a
shown in Ref. 23!. The existence of transport barriers
highly chaotic plasma flows implies the strong intermitten
of the Ohmic dissipation of a magnetic field in a chao
conducting fluid. The parts of the chaotic region with flaŝ
lines will appear to be hot and dissipate most of the energ
the onset of the rapid Ohmic dissipation due to the ent
gling of magnetic field lines, while the transport barriers~re-
gions with largeŝ line curvature! have low dissipation and
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remain dark. On a longer time scale, the transport barrie
the location of strong dissipation and becomes bright wh
the vast chaotic region is dark. This brightness can last
nificantly longer than the initial main burst of Ohmic diss
pation in the chaotic region. A transport barrier in the chao
region can be easily distinguished from the regu
Kolmogorov–Arnold–Moser ~KAM ! islands since the
Ohmic dissipation in the regular islands is on a much lon
time scale. The regular islands are always dark on the t
scale in which the transport barrier in a chaotic region liv
and dies, i.e., from dark to bright and then back to da
again.

VI. BACK REACTION OF THE MAGNETIC FIELD ON
THE FLOW

To solve the magnetic field evolution problem se
consistently, one has to consider the back reaction of
magnetic field on the plasma flow field.9 There are a numbe
of unique features of this back reaction if the flow is chaot
We will first examine the two dimensional case which adm
a clear long time solution to the nonideal magnetic field e
lution just like the two dimensional passive scalar proble
~Sec. IV or Ref. 14!. Although a similar solution to the non
ideal evolution of a general three dimensional magnetic fi
in a chaotic flow is not available, the back reaction on t
flow has generic features which can be related to the sp
and temporal dependence of the finite time Lyapunov ex
nents.

There are essentially two issues. The first is whether
back reaction on the flow field is important before the Ohm
dissipation removes the magnetic energy~in two dimensions!
or suppress the transient growth of the magnetic field~as
could happen in three dimensions!. If the back reaction does
become important before dissipation, then the second iss
to resolve the effects of the Lorentz force on the flow fie

The magnetic field affects the flow field through the Lo
entz forcej3B on the plasma. In the two-dimensional cas
B5 ẑ3¹c(x,y,t) and j52¹2c ẑ. Hence the magnitude o
the Lorentz force is the product of the magnitudes of
current density and the magnetic field,

u j3Bu5 jB'~B0
2/L !exp~3lt !.

This force should be compared with the convective fo
rv2/L, where r is the density of the media andL is the
characteristic scale of the flow. The back reaction of
magnetic field on the plasma flow is negligible if the Loren
force is much smaller than the convective force which driv
the initial flow field. This is satisfied for timet,tb with

tb[~1/3l!ln~ek/e0
m!, ~32!

whereek is the kinetic energy densityrv2/2 ande0
m is the

initial magnetic energy densityB0
2/2m0 . The back reaction of

the magnetic field on the plasma flow with finite resistivity
negligible if tb.tc[(ln 2V)/2l with V[m0l l 2/h, i.e.,

V,~ek/e0
m!2/3. ~33!

If V.(ek/e0
m)2/3, the effect of the back reaction of th

magnetic field on the plasma flow will be important, and t
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flow field will be modified before the Ohmic dissipation r
moves the magnetic energy. Fort,tc , the exponentially
growing magnetic field lies along theÊ direction of the flow,
Be'(B0• ề )exp(lt)@Bs'(B0• ŝ̀ )exp(2lt). Since the cur-
rent density strictly lies along theẑ direction, j52¹2c ẑ,
the Lorentz force points at theS direction. Since¹2c
}exp(2lt), theS component of the Lorentz force is

~ j3B!•S/uSu5Be¹
2c} exp~3lt !.

The E component of the Lorentz force is much smaller w

~ j3B!•E/uEu52Bs¹
2c} exp~lt !.

Since

@~ j3B!•S/uSu#
@ j3B•E/uEu#

} exp~2lt !,

the Lorentz force primarily applies along theS line of the
flow.

The primary difference between the two-dimension
case and the generic three-dimensional magnetic field ev
tion is the alignment of the induced current density and
magnetic field in three dimensions. It was shown in Sec.
that the magnetic fieldB5(bi(]x/]j i) is along theE direc-
tion, Be[B•E/uEu'(B0• ề )explt@Bm[B•M/uMu'B0

•m̂`@Bs[B•Ŝ/uŜu5(B0• ŝ̀ )exp(2lt). The current density
j5( j i(]x/]j i) with

m0 j i5(
jkl

~e i jk /J!]/]j j@gklb
l~j!/J#

also lies along theE direction, as shown in Sec. III. As
consequence of the alignment betweenB and j , the Lorentz
force still scales exp(3llt), just as the two dimensional cas
despiteB}el l t and j }e3l l t.

The spatial breakdown of the Lorentz force can be illu
trated with the class of time-independent flows. In su
flows, the orientation of the Lorentz force depends on
spatial variation of the finite time Lyapunov exponent alo
the m̂` direction. If the finite time Lyapunov exponent has
gradient along theM direction which varies algebraically in
time, the Lorentz force points at theS direction with

f s[~ j3B!•S/uSu5 j eBm2 j mBe}exp~3lt !, ~34!

f m[~ j3B!•M/uMu5 j sBe2 j eBs}exp~2lt !, ~35!

f e[~ j3B!•E/uEu5 j mBs2 j sBm}exp~lt !. ~36!

If the finite time Lyapunov exponent develops an expon
tially increasing gradient along them̂` direction, one finds
f s' f m}exp(3lt)@fe}explt, i.e., the Lorentz force lies in
the (M,S) plane. It is interesting to note that the magne
field evolution in the first case leads to the formation
current sheets, while in the second case it generates cu
filaments.

VII. SUMMARY

The natural evolution of a magnetic field embedded i
chaotic conducting flow is to develop small scale structu
with extreme spatial anisotropy, which typically take t
l
lu-
e
I

-
h
e

-

f
ent

a
s

form of filaments, ribbons, and sheets. For a turbulent ba
ground flow, the small scale structures of the magnetic fi
and induced current density may be attributed to the sm
scale structures of the turbulent flow velocity field itself. T
same cannot be said for nonintegrable smooth laminar flo
Instead the explanation is found in the kinematics of
chaotic Lagrangian trajectories of the flow. It is the spat
anisotropy of the finite time or local Lyapunov exponen
along the various characteristic~un!stable directions, tha
causes the complicated structures for the magnetic field e
lution.

The local Lyapunov exponent and the characteris
~un!stable directions are naturally defined as functions of
grangian coordinates and time, in the same spirit as chao
flow trajectory means sensitive dependence on initial po
tion ~Lagrangian coordinates!. The spatial dependence of th
local Lyapunov exponent is described by two converge
functions l̃(j) and f (j,t). The first onel̃(j) is entirely
determined by the geometry of the stable foliation~the ŝ̀
lines! and is a well-behaved smooth function of positio
alone.f (j,t) is the one that has a strong spatial anisotropy
does not vary along theŝ̀ direction, but develops exponen
tially increasing gradient~in time! along the most unstable
direction ề . The property off (j,t) along them̂` , the di-
rection along which the middle Lyapunov exponentlm ~e.g.,
lm

`50 for a time-independent flow! resides, is not unique
Whetherf (j,t) develops exponentially growing spatial gr
dient in this direction helps determine the exact form of t
small scale structures, filaments, ribbons, or sheets.

We have identified three orthogonal directions@S,E,M,
as defined in Eq.~6!# in the Eulerian frame or real space th
characterize the spatial anisotropy of the physical observ
such as the magnetic field, induced current density, and
Lorentz force. For a chaotic plasma flow with a high ma
netic Reynolds number, the initial stage of the magnetic fi
evolution is ideal and an initial small seed field grows exp
nentially in time, so does the induced current density exc
at an rate two times faster than the magnetic field. The
duced current tends to align with the magnetic field, and b
of them point along theE direction. This is also the direction
along which the field and the current have the least struct
At the same time, both the magnetic field and the induc
current density develop exponentially decreasing spa
scales in theS direction, which is transverse to the magne
flux and current flow. The Lorentz force primarily acts alon
the S direction, which is transverse to the filament or she
where magnetic flux and induced current concentrate. Th
also the direction along with neighboring flow points co
verge exponentially in time. In other words, the Loren
force primarily counteracts the convective force~e.g., the
pressure gradient! that squeezes neighboring flow points t
gether. Consequently it suppresses Lagrangian chaos
regularizes the flow.
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APPENDIX A: THE ASYMPTOTIC EXPRESSION FOR
THE CURRENT DENSITY

We will work with the divergence-free flow case so th
Jacobian of the Lagrangian coordinates is unity. The m
general case has a similar expression. First we conside
expression,

]

]jn e inm
gml

J
bl ,

which is equal to

]

]jn $e inm@L lem~ ê•B0!1Lmmm~m̂•B0!1Lssm~ ŝ•B0!#%,

upon substituting the diagonal form of the metric tensor.
compact vector algebra form, the above expression is thei th
component of the curl,

¹03@L l~ ê•B0!ê1Lm~m̂•B0!m̂1Ls~ ŝ•B0!ŝ#.

The full expression form0
2 j 2 is then

m0
2 j 25¹03@L l~ ê•B0!ê1Lm~m̂•B0!m̂1Ls~ ŝ•B0!ŝ#

•~L l êê1Lmm̂m̂1Lsŝŝ!•¹0

3@L l~ ê•B0!ê1Lm~m̂•B0!m̂1Ls~ ŝ•B0!ŝ#.

~A1!

The leading order term is

L l
3~ ê•B0!2~ ê•¹3ê!2,

which has a time dependence of exp 6llt with l l.0 in a
chaotic region of the flow. The leading order would iden
cally vanish throughout space ifê•¹03ê50 strictly holds.
In the long time limit, that corresponds toề •¹03 ề 50.

The next order term has the form,

LmL l
2@~ ê•B0!ŝ•¹0~2l l t !1 ŝ•¹0~ ê•B0!

1~ ê•B0!m̂•¹03ê#2,
re
he

n

which has the time dependence of exp(4llt12lmt). In mak-
ing this statement we have invoke the result thatŝ̀
•¹0(l l t) is a function of position alone, orŝ•¹0(l l t) has a
very weak time dependence for larget.

There is one more term that might be of compara
magnitude if m̂•¹0(l l t) has an exponential time depen
dence,

LsL l
2@m̂•¹0~2l l t !#

2~ ê•B0!2.

The hope is forLs@m̂•¹0(2l l t)#2'Lm which is obviously
true if m̂•¹0(2l l t)}exp(llt).
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