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The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a
magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local
Lyapunov exponents along the various local characteristigstable directions for the Lagrangian

flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of
Lagrangian coordinates and time, which are completely determined once the flow field is specified.
The characteristic directions that are associated with the spatial anisotropy of the problem, are
prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are
employed to relate the spatial distributions of the magnetic field, the induced current density, and the
Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov
exponents, which are naturally defined in Lagrangian coordinates20@ American Institute of
Physics[S1070-664X00)00804-1

I. INTRODUCTION Lagrangian trajectories, a point that was first made precise by
. . Arnold et al.® The so-called chaotic dynamo has since then
Ulnder th_e.usual assumptions that the dlsplacement.cup-eceived much attention and attempted by many auttiors
rent is negligible and the plasma obeys the generahzeg list, see Ref. P
Ohm’s LawE+vXB= 5j, the evolution of a magnetic field ’

) ) . ) . : There are a number of aspects that distinguish a chaotic
in a plasma flow is described by the induction equation, b 9

dynamo from a turbulent one. First, although turbulent flows

JB 7 generally have chaotic Lagrangian trajectories, chaotic flows

EZVXVX B+ M—VZB, (1) need not be turbulent. Smooth laminar flows with velocity
0 field of the spatial scale of the system size are well-known to

wherev(x,t) is the flow field of a plasma with resistivity, have chaotic or nonintegrable trajectories. By an analog to a
and u is the permeability of free space. The solution to thistheorem in Hamiltonian mechanics, it is indeed an excep-
equation for a given flow field would provide an answer totional case for a divergence-free Laminar flow to be inte-
the kinematic dynamo problem and further constrain the selfgrable. Second, the shift of emphasis to smooth laminar flow
consistent magnetohydrodynami®HD) dynamo theory. precludes the two-scale analysis like the one in dheB
The Ohmic heating of a plasmay|?, with j=VxB) can turbulent dynamo theory. On the other hand, the well-
also be understood from the solution to this equation. behaveness of the flow field allows some rigorous results in
Traditionaf and helicity conserviny® dynamo theories the dissipationless limit for a general flow, the so-called
presume a turbulent background conducting flow. A twoCauchy solution. The connection to dynamical system theory
scale approaéhis applied, which decomposes the flow field provides a new set of tools to characterize the protlem.
and the magnetic field into a mean and a fluctuating compo-  The chaotic and turbulent dynamo theories share a com-
nent. A quasilinear approximation then gives rise to an anamon challenge that complicates a fundamental understanding
lytic closed form for the time evolution of the mean field, the of the problem, which is the natural concentration of mag-
so-calleda—g turbulent dynamo theory. If the mean field of netic energy growth in small scale fields. In the 3 turbu-
the flow velocity is spatially nonuniform, like the differential |ent dynamo theory, this effect comes in by imposing a much
rotation envisioned on the sun, another effect, the so-calleghorter time for the range of validity of the theory than what
() term, presents and plays the role of converting a poloidabriginally had been hopelf. The reason is that the small
field into a toroidal one. scale fluctuating field reaches energy equipartition with the
Phenomenologically speaking, the build-up of a largefiow much earlier than the mean fieltlin other words, it
scale magnetic field by dynamo action corresponds tonanifests itself as a violation of tHguasilinear approxima-
stretching the magnetic flux tubes and piling them up in &jon, In the chaotic dynamo problem, no approximation was
non-cancellating manner. This was pictorially illustrated bymade but one faces even more obvious difficulties. For ex-
Alfvén’s twist model’ The condition for exponential mag- ample, the eigenmode expansion series for the magnetic field
netic field growth in the dissipationless limit is made rigor- i, the case of a perfectly conducting chaotic divergence-free
ous mathematically by the criteria that the flow has chaotlcﬂow, diverges at the high wavenumber end of the spectrum
at large time, an example of the so-called “ultraviolet” ca-
dElectronic mail: xtang@pppl.gov tastrophe. A finite resistivity would in principle provide a
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cutoff for this “ultraviolet” divergence. A straightforward the time dependence of the spatial gradient of the local
scaling argument shows that the smallest structure, or thkeyapunov exponent, plays an equally, if not more important
inverse of the largest wave-vector of the cutoff eigenmoderole, in determining the field structure and current distribu-
scales aR;”z, with R,=uoLV/ 7 the magnetic Reynolds tion. Along the unstable direction, the local Lyapunov expo-
number L is the characteristic spatial scaljs the typical nent varies wildly, differential growth dominates coordinate
flow speed, andy is the resistivity. In astrophysical situa- dilation, and leads to an algebraic variation of the field spa-
tions where the dynamo theory is primarily applied, the mag+ial scales. In the stable direction, the local Lyapunov expo-
netic Reynolds number is of the orde®1dr higher. Just like  nent varies smoothly and the scale reduction rate remains to
the fully-developed fluid turbulence problem, it is still be- be the local Lyapunov exponent. However, even if the initial
yond the reach of a direct numerical simulation. field is uniform, the differential growth, with the help of
The causes of small scale structures in a turbulent dyeoordinate contraction, still induces an exponential scale re-
namo and a chaotic one appear to be different. In a turbulerduction.
dynamo, the small scale structures for the magnetic field are The observation of increasingly fine structures in cha-
usually said to be associated with the small scale structurestic, high magnetic Reynolds number flows, is widely re-
of the fluctuating flow velocity field. This is certainly not a ported in numerical simulations. It is generally thought that
viable explanation for a chaotic dynamo in which the flow within the kinematic dynamo approximation, the kinematic
field can be laminar and possesses a spatial scale comparabtagnetic fields would concentrate on a fractal set in space in
to system size. Instead the fine structures and the extrentbe limit of R,,— o andt—cc. The most notable analysis in
anisotropies are entirely determined by the kinematics of theupport of this is due to Ot al.? More specifically, these
flow trajectories. The purpose of this paper is to illustrateauthors showed that a magnetic field, stretched according to
how the complicated spatial structures in the magnetic fieldhe two dimensional baker's map and folded back in a rein-
evolution can be understood in terms of the finite timeforcing manner with the help of field line cutting, would
Lyapunov exponent that describes the behavior of neighboreoncentrate on a fractal set in a two dimensional space in the
ing points in a chaotic flow. limit of t—o0. Although this analysis is illuminating, particu-
The basic features can be illustrated by following thelarly for understanding the long time limit of the idealized,
relative motion between two nearby flow elements in anso-called stretch—twist—fold kinematic dynamo model, it
ideal evolution, i.e., the frozen flux limit. By definition, in a does suffer from two unphysical assumptions. First, the two-
chaotic flow, neighboring flow elements generally separatelimensional baker's map, like other hyperbolic systems, can-
exponentially apart in time. If the two flow elements align not be reduced from a physically realizable flow. Second,
perfectly along the so-called stable direction, they would acfield line cutting is an unphysical operation due to the ab-
tually converge exponentially in time. The conjugacy of ex-sence of magnetic monopole. Since unphysical assumptions
ponential convergence and divergence can be trivially exeould lead to unphysical results, more rigorous analysis with-
plained in a divergence-free flow. It actually holds true forout these unphysical assumptions is clearly desirable.
any flow as long as the divergence of the flow field does not  Our analysis removes the constraints of the two unphysi-
diverge exponentially. If the initial fields carried by the flow cal assumptions, and also has a different emphasis. We will
elements are different, exponential convergence implies atry to understand the time evolution of how structures and
exponentially increasing gradient of the magnetic field,anisotropies develop in a conducting flow, and what deter-
which is equivalent to an exponential reduction of the spatiamines the time evolution, as supposed to the time asymptotic
scale of the magnetic field along the stable direction. Simidimits of the kinematic approximation. The knowledge of the
larly along the unstable direction, exponential divergencdield and current distribution also allows us to study the ef-
would imply that the field would be smoothed out and de-fect of resistive diffusion and the back reaction of the Lorenz
velop an exponentially increasing spatial scald/e will force, i.e., the breakdown of the kinematic approximation.
show later this actually does not happen in a typical flow dueBoth the characteristic directions of the Lagrangian flow tra-
to the spatial anisotropies of the local Lyapunov expongnts.jectory and the finite time Lyapunov exponent are shown to
The so-called coordinate contractigdilation) effect is one  be the central concepts that relate the flow to the magnetic
of the two ways to significantly alter the spatial scales of thefield evolution. Unlike many authors in the pastwe go
magnetic field and the current density distribution in a chabeyond merely using finite time Lyapunov exponents as a
otic flow. The other effect is the so-called differential statistical quantity to characterize transport. We will, for the
growth. first time, use the spatial and temporal dependence of the
The flow elements, while undergo a relative motion, arefinite time Lyapunov exponent to rigorously examine the
simultaneously distorted by the flow motion. In a chaoticspatial and temporal evolution of the magnetic field and cur-
flow, initial blobs would be stretched into thin stripes. Therent distribution. We discoverét'® that the finite time
frozen flux is therefore squeezed and gives rise to an expd-yapunov exponent can be described by two convergence
nential growth of the magnetic field strength. The growthfunctions with drastically different properties. The strongly
rate of the field is also given by the local Lyapunov expo-anisotropic behavior of the convergence functions for the
nent. Since the local Lyapunov exponent is a function offinite time Lyapunov exponent, is found to be crucial to un-
position(where the fiducial Lagrangian trajectory stadsd  derstand the spatial structures of the field and current distri-
time (how long the fiducial trajectory is tracedrhe spatial  bution. This is clearly demonstrated in the discussions which
variation of the local Lyapunov exponent, more specificallyweigh the relative importance of coordinate contraction and
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differential growth for scale reduction in Sec. IIl. bitrary vector A in either covariant representatios

The main body of the paper is organized as follows: The=3 A,V £ or contravariant representation A
mathematical background for the analysis is given in Sec. II:EAi(aX/agi)_
In particular, Sec. Il A gives an interpretation of Oseledec’s  The description of the kinematics of chaos in Lagrangian
multiplicative ergodic theor in terms of a mapping be- coordinates becomes obvious once the metric tensor of the
tween Lagrangian and Eulerian coordinates. The characterigagrangian coordinateg; is interpreted using the language
tic directions that describe the spatial anisotropies in botlbf dynamical systems as the Oseledec matrjx of Osele-
Lagrangian and Eulerian frames, are introduced in Sec. Il Bgec’s multiplicative ergodic theoreff:1?
along with some basic calculus of coordinate transforma- Sinceg;; is a positive definite and symmetric matrix, it
tions. Section Il C summarizes some of the generic featuresan be diagonalized with positive eigenvalues and real eigen-
of the local or finite time Lyapunov exponents, with an em-yectors,
phasis on its spatial variation. Two special cases of the mag-
netic field evolution problem, the ideal evolution in three
dimensions and the nonideal evolution in two dimensionswith the three eigenvaluet,=A ,,= A >0. The metric ten-
are then presented. One is the ideal evolution in three dimersor determines the distance between neighboring flow points,
sions, the other is the nonideal evolution of a two-so this tensor determines the thréite time or loca)
dimensional field. The ideal case, section Ill, is intended td_yapunov exponents,
illustrate the small scale field structures. The nonideal case,
Sec. 1V, is to demonstrate the time scale and the magnitude = M = % = %

! )\|(§yt) 1)\m(§7t) ,)\S(g,t) ’ (4)

of Ohmic dissipation. Ohmic heating in a chaotic plasma t 2t 2t
naturally concentrates in either filaments, ribbon, or sheetsyhich are functions of both position and time. A flow is
and the condition that determines which of these forms occhaotic if the largest Lyapunov exponext has a nonzero

curs is given in Sec. V. The competition between field|imit as time goes to infinity. Otherwise it is said to be inte-
growth, Ohmic dissipation, and the back-reaction of the Lor-graple.

entz force, is discussed in Sec. VI. The preferred direction of  Chaotic motion of a flow point is said to be of Lagrang-

gij=Aee+Aymm;+AsSs;, €)

the Lorentz force is also pointed out there. ian nature in thatl) it is most easily interpreted as a map-
ping between the Lagrangian coordinates and the ordinary
II. THE ANISOTROPIES OF LAGRANGIAN CHAOS position vector in Eulerian frame, an@) the kinematics of

chaos, most notably the local Lyapunov expongste Eq.

A. Lagrangian chaos in Lagrangian coordinates (4)] and the characteristi€un)stable directions(see Sec.

The trajectoryx(&,t) of a flow point starting from posi- 11 B), are naturally defined as functions of the Lagrangian
tion ¢ at initial time is followed by integrating coordinateginitial conditiong. The physical observable, like

ax the magnetic field, induced current density, and Ohmic heat-

(_> =v(x,t). 2 ing, however, are usually followed in an Eulerian frame. The

at ¢ theory of coordinate transformations provides the link that

relates the Eulerian physical observable to the kinematics of

With the typical choice ok(&,t=0)=¢, & is known as the . ; ; o .
P (6 )=6 ¢ Fhaos in Lagrangian coordinates, which is the main focus of

Lagrangian coordinates in fluid mechanics. The practical’.
definition of chaos, i.e., the sensitive dependence of the find["lS Paper.
state[ x(&,t)] on its initial condition[ £], can be interpreted
in terms of a mappmg between the Lagrangian Coordinﬁtes B. Lagran_gian and Eulerian characteristic directions
and the ordinary position vector in the Eulerian frame for the anisotropic transport
through the functional relationshid ¢,t), which is obtained As we will show, the magnetic field in a chaotic flow
by integrating Eq(2). evolves remarkably differently in the various characteristic
The chaotic behavior is quantitatively described by thegirections of the flow. Here we introduce the characteristic
exponential rate at which an initial error or displacement isgirections that will be required to calculate quantities such as
amplified over time. This information is given by the metric the magnetic flux concentration, the current channel, and the
tensor of the Lagrangian coordinates, a point that can be se€hmic heating in the magnetic field evolution problem. The
by eXpreSSing the differential distance in the Eulerian framQ)asiC theory of genera] CoordinateS, upon which the later
(dl)?=dx-dx in Lagrangian coordinates using the chainsections will be heavily drawn, are also outlined here. As the
rule, title of the section suggests, two sets of characteristic direc-
X x o tions, one in Lagrangian frame and the other in the Eulerian
(dl)2=dx-dx:2 —-d§"2 __ngzz g;;dé'dd, frame, will be introduced. The construction of characteristic
T a¢ 7 0¢ i directions in Eulerian frame is based on their Lagrangian
with gijz(axmgi)_(&xmgj) the metric tensor of the La- coun_terparts, so we will start with th(_a eigenvectors of the
grangian coordinates. The matrix inverse gf, which is ~ Metric tensor of the Lagrangian coordinates. _
gi=V&.Ve, is also called the metric tensor of the La- ' Ne real eigenvectors of the matgy; , Eq. (3), defines
grangian coordinates. The two representations of the metriv0 sets of vectors: three orthonormal vectes{e;},m
tensor are associated with the freedom of expressing an a={m;},s={s;} in Lagrangian frame and three orthogonal
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Vectorsezeivgi,mz mivgi,szsivgi in the Eulerian frame. is another trivial result of the chain rule. Combining these
The orthonormal vectorg,m,s in Lagrangian frame have WO, one finds

well-defined time-asymptotic limits that are generally posi-  ¢.vf=g! (9x/9&)- (9f/9¢)V &

tion dependent, e.(&)={e(&)},m..(§)={m(&)},s.(¢) o . i o

={s(£€)}. In the case of\;"=—\Z>0 and\},=0, neigh- =E,8l(9f19¢)) =E.(9f19¢) =e.- Vf, 8
boring points divergéconverge exponentially in time if ini-
tially separated along, (s.) direction, but their distance
varies at most algebraically in time if initially separated C. Properties of the local Lyapunov exponents

along them., direction. The convergence &m,s to their The local Lyapunov exponents are defined in B4,

time asymptotic limitse.,m..,s. is usually exponential in  through the metric tensor of the Lagrangian coordinates,
chaotic regions. In the case of a two dimensional divergenceyhich are properties of the flow field alone. In other words,
free chaotic flow, one can write once the flow field is specified, the local Lyapunov expo-
nents are completely determined, as functions of the initial
position (i.e., the Lagrangian coordinajesnd time. Al-
with A=1 the eigenvalue of the metric tensor andan  though an explicit calculation is required for a quantitative
algebraic function measuring the convergence rate. understanding, there are generic features for the local
The contravariant representation of the metric tensorLyapunov exponents that are independent of the particular
g'=V¢£.Vé, is the matrix inverse ofj; and has the diag- form of the flow field.
onal form, gij =A|_1E‘EJ'+A;]1MiM'+AS‘18‘Sj. The The simplest case, where the local Lyapunov exponents
eigenvectors of the matrig'! are exactly the same as those are spatially independent constants, occurs only for purely
of g;, so the orthonormal vectorE={E'},M={M},5 hyperbolic systems. An example is the Arnold’s cat map. All
={S'} in Lagrangian frame are identical #®m.s The or- physmall_y relgvan_t cha_otlc systems found to date have non-
thogonal vectorE=E' ox/a&,M=Miax/ o, S=S ax/9¢' in hyp_erboh_c p_o_mts in which case the local I__yapunov exponent
the Eulerian frame are parallel &m,s. varies S|_gn|_f|c_antly over space and time. In the time
Using the time asymptotic limits*(¢) and EL(¢) one asymptotic limit, the local Lyapunov exponent converges to

can construct three new orthogonal vectors in Euleriar%he.'nﬂmte t'm.e Lyapunov expongnt, wh|c_h Is a constant for
frame a given ergodic region. The spatial and time dependence of

the local Lyapunov exponent are contained in the so-called
stf”vgi, E=E' oxl9E, M=SXE. (6) convergence functions of the expressions for the local
. Lyapunov exponents.
The vectors&(E), m(M),s(S) converge exponentially to With exponential accuracy, the finite time Lyapunov ex-
ng’ anqS n dyeghons. The thr_ee vector directions as ponent is characterized by two convergence functios)
given by{e.,m..,s.} in the Lagrangian frame ard, M,S} andf(£,t),1415
in the Eulerian frame are useful to understand the extreme ~
spatial anisotropy of the chaotic transport of a scalar or vec- \(&,t)=A(&)/t+ f(g,t)/\ﬁJr N7, 9
tor field. Alqng with the finite timg Lyapunov expor?enys, where\” is the infinite time Lyapunov exponent, i.e.,
they determine much of the physics of the magnetic field
evolution. lim N(&,t)=\" (10
Next we give two explicit demonstrations that are help- '~
ful to those who wish to reproduce the details of the calcurhe first term in Eq(9) vanishes as— sinceX(£) is a
lations in the later sections. In particular, we show howsynction of position alone. Equatiofi0) then implies that
guantities in Eulerian frame are related to those eXpressiong ¢ 1) is bounded byt so
in Lagrangian coordinates. For example the inner product of
E with itself is

whereV, denotes a gradient in Lagrangian coordinates.

exe.+(o/N)s,.; sx5.—(alA)e,, (5)

lim f(&t)/\t=0.
t—oo

.E=F! i El i=Eiqg. EJ
E-E=Eox/og-Bloxog =Eg,E An analytical argument for this decomposition of the conver-
=E'(Ajee;+ Apmim+Asis)El= A, (7)  gence functions was given in Ref. 14 for a two-dimensional

, ) o ) divergence-free flow. Numerical evidence was provided for
which grows exponentially in time for a chaotic flow. A three-dimensional systems in Ref. 15.

common expression that will be evaluated in later sections is
of the form &- VT with f some function of position. By the
chain rule, one has

The spatial anisotropy of the convergence functions
plays a large role in determining the anisotropies of the mag-
netic field evolution in a chaotic plasma flow. Since the local

Vi=(gflo&)V . Lyapunov exponent and the convergence functions are func-
tions of Lagrangian coordinates, the anisotropies will be ex-
The orthogonal relation plained using the characteristic directions in Lagrangian
frame. As we will show, the spatial anisotropies in Eulerian
ﬁ V= 5{' frame are straightforwardly related to the spatial anisotropies

9 of the local Lyapunov exponents in Lagrangian frame.
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The first characteristic direction we will consider is the given the initial magnetic fiel(x,0) and the metric tensor
S., the so-called stable direction along which neighboringof the Lagrangian coordinaté$For example,
point converge exponentially in time. Both convergence
functions are well-behaved along this direction, so is the 2_ i hi 2
variation of the local Lyapunov exponent. In particular, B 2 PG b, (13
f(&,t) does not vary along this direction,

S.- Vol (£,1)=0. M%J’Z=E{%ei”m%b'ﬂﬁ%em%’kbk}%, (14)
The variation ofx (£) along thes, direction is smooth and
related to the divergence ef ,4*° o) B=S) %Einm%w g_izibj_ (15)
S.-Vok(£)+V:5,=0. 11 ¢ ’

Another way to look at Eq(11) is that the vector field HereJ is the Jacobian of the Lagrangian coordinaté$ (
=|lgijll), mo is the permeability of free space, atd(£)

erds, (¢) _is di.ver?ence-free, which iEse!f m:?ly be dgscribed:Ee.Jk(aAkmgj)_ The quantitieso'(£) are just the three
by a Hamlltomarﬁ_ The smoothness &, implies that\(£)  cartesian components of the initial magnetic field using the
is @ smooth function of position. initial condition for Lagrangian coordinateg¢,0)= .

It is actually more widely known that the local In a region where the flow is chaotia {>0), both the
Lyapunov exponent variesildly over space and time, which  agnetic energy and the induced current density increase
makes the smooth variation along the a counterintuitive  exponentially in time
result. The requirement for(&,t) to vary wildly comes from
the fact that the higher spatial derivatives of the Jacolian B2=(Bg-€,)?A;+ O(A ) ~(By- €.)? exp2\t), (16)
the metric tensor of the Lagrangian coordinates equiva-
lently the local Lyapunov exponent, can be used to define thg.2j2=A}(By-€.)[ €. (VoX €.) ]2+ O(e*M) scexp 6] t).
most positive infinite time Lyapunov exponents of a smooth (17)
dynamical systen(see, for example, Ref. 16That is to say,

. IN(Voh)?
|m—2t =

The leading term in the current density has no dependence
on the spatial derivative of the initial magnetic field with
respect to Lagrangian coordinates, but the next order terms
do include terms of that kind, see the appendix for detail.
Thes, component oWV o\ certainly does not satisfy E€L2).  The induced current density tends to align with the magnetic

The e, component ofV,\ has to satisfy Eq(12) since itis ~ field in a chaotic flow since

the least constrained direction. The, component ofVy\ : A oin -

may or may not satisfy Eq12), ast:‘saucggestgd by numgrical pol-B=AF(Bo-€.)°[€.- (Vox &)]+O(A))
calculations. This uncertainty plays a large role in determinyhich implies §-B)2/j2B2~ 1+ exp(—2\t). The alignment
ing the natural state of the concentration for the magnetigf the magnetic field and the current density is fundamentally
field and current~heating, which includes filaments, ribbongependent on the flow being truly three dimensional, which
and sheets. S|n(m(§) is a smooth function of pOSition and means thatén.voxéc does not identica”y vanish. For a

Vok(£) does not depend on time, it f¢,t) that describes  two-dimensional flow of the formy=2xV(x,y,t), &, is
the wild spatial variation of the local Lyapunov exponent. confined to thex—y plane andv x &, lies along thez axis

Hencee, - VX e, identically vanishes and the current flows
along thez direction (L B) with the leading terms i? of
time dependence exp(d), see the appendix.

Within the framework of MHD, the evolution of a mag- ~ The exact spatial decomposition of the magnetic field
netic field embedded in a moving plasma is described by th@nd the current density requires the knowledge of vectors
induction equation, Eq(1). For a high temperature plasma &,M,S, the Eulerian frame correspondences of vectors
the resistivityz is small. Hence for times less than a diffu- e,,m..,s,., see Sec. Il B for precise definitions. The contra-
sion time(to be specified late¢the temporal behavior of the variant representation of an ideally evolving magnetic field is
magnetic field resembles an ideal evolution

dBlt=V X (vXB). B:%Z bi(g)a_x

. . . 23
It has been showf!® that in Lagrangian coordinates, the
vector potential of this field i\ =SA;(§)VE. The covariant  with b'=3,€'*9A,/a¢). This expression is equivalent to
components of the vector potenti&d; (&), are independent the Cauchy solution to the ideal induction equation. The spa-
of time in Lagrangian coordinates. By taking the curl of thetial decomposition oB can be found by dottin@ with the
vector potential to obtain the magnetic fi@dand the curl of  characteristic directions in the Eulerian frame.
the magnetic field to obtain the current dengityone finds The magnetic field lies essentially along #elirection
that the scalar quantitieB?, j2, andj-B can be evaluated in the Eulerian frame or the real space,

AT (12

t—oo

IIl. IDEAL EVOLUTION OF A MAGNETIC FIELD
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_&B . _ hads..- Vo(\t) behaved ag,- Vy(\t) does, s would have
BEZWN(BO'Q")\/A—’ 18 5 time dependence of exp-A)t. This is a point that has
not been clarified in the literature.
B = EW(BO' M) VA (19) Three limiting cases can occur. The first is that beth
" M| N m and Bo~éw are independent of position, then the magnetic
S-B field can never develop exponentially decreasing spatial
BSE—m(BO.ASx)\/A_S, (20 scales. The second case is that oRlyis independent of

5] position, then the field structures shrink exponentially in time
since VA =eMt> A, =eMmis> A =est for A >N\ >\s. (es!) due to the converging Lagrangian trajectories bringing
The current density has a similar spatial anisotropy. Ith€ighboring magnetic field of different magnitude exponen-
suffices to note here thggxe3*'>j e, The exact time tially close along thes, direction, the so-called coordinate
dependence of th& componentj, can be either<e* or  contraction factor. The third case is that the initial magnetic
xe?M depending on whethen..- VoA (£,t) exponentiates in field is spatially uniform so coordinate contraction makes no
time or not. The detailed form of the current distribution will contribution, the small scale structures for the magnetic field

be considered in Sec. V. come from the(smooth) spatial variation ofA, along thes,
As time progresses, the magnetic field develops strucdirection, the so-called differential growth factor.
tures of different spatial scales along eV, andS direc- The field line lies basically along thé& direction and
tions. The gradient of the magnetic pressure alSngjrec-  naturally has the least spatial structure in this direction. The
tion is usual pictorial analysis says that Lagrangian trajectories car-
5 A ) rying differentBs are exponentially separating apart in ée
S-VB _ s.-VoB +O(AZY?) direction so the characteristic scale of the field should in-
S| VA s crease exponentially in time. An exact calculation shows this
N N is not the case in general after taking into account the spatial
B® . B* s.-Vo[(Bo-€.)?] variation of the local Lyapunov exponent. To the leading
=—=25,-Vo(\1)+ . =
VA VA (By-©,)2 order,
+O(ASY). (21) £VB? &,.-Vo(By &) N &, Vo(2\ 1)
As before,V, denotes gradient in the Lagrangian frame. |£|B2 eM(By-€e.) eht
Hence the magnetic pressure develops an exponentially de- i - o
creasing spatial scale\(<0) along thes lines, The first term is the familiar contribution from the exponen-
tially divergence of neighboring trajectories, which can be
s-ve2| ™t o analogously called coordinate dilation. It becomes exponen-
s |5| B2 ~lsexpng). (22 tially small in time. Except for the special case whaieis
independent of position, the second term, the differential
The exact contribution fof?, growth factor, overtakes the first term in determining the
- Aoy -1 spatial structures of the field along tledirection. The rea-
|2: | 2§m'Vo(7\|t)+ M (23) son is thate, - Vo(\t) has an exponential time dependence.
(Bo-€,)? That is, to leading order, the characteristic scale in &he
direction is given by

requires some clarification. The expressions in Lagrangian

coordinates(frame clarify two separate mechanisms for cvg2] ! \/K
scale reduction of the magnetic field. The first is coordinate | = ~— ! ) (24)
contraction, which is represented by the second term in Eq. |£1B2 2e.-V(N1)

(23). The other one comes from differential growth, which ) ] ] o
corresponds to the first term in E€R3). The two mecha- The time evolution of the spatial scale of the magnetic field

nisms are of comparable importance, or equivalently speaid!ond the direction has an algebraic dependence in time
ing, the two terms in Eq(23) are of the same order only due to the fact that

because the finite time Lyapunov exponent varies smoothly
along thes, direction sos,-Vo\t does not have a time
dependence. Physically the second técoordinate contrac-
tion) describes the contribution from an initial field distribu- which is generally true for flow fields with smooth spatial
tion with spatial variation. The first tern(differential  gradients'® In general one has

growth) is the contribution from the flow alone. The obvious

explanation is that a general chaotic flow with spatially \/E q

nonuniform can generate spatially nonuniform magnetic field m“t : (25)
even for a uniform initial seed field. A less obvious point is

that N\, does not vary wildly in thes, direction so this con- If <0, the spatial structure of the magnetic field along&he
tribution does not overshadow the second term. For examplélirection becomes ever finer.df>0, the spatial structure of

lim In[e,- V(At)]3/2t=\",
t—oo
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the magnetic field along th& lines tends to diminish under growth mechanism, and are independent whether the initial

chaotic advection. A flow field witlg=0 could be favorable field has a spatial dependence or not.

for sustaining a magnetic dynamo. In a large class of flows such as the three dimensional
The leading order terms that describes the time evolutiotime-independent flows,, strictly vanishes. Henca,=0

of the spatial scales of the magnetic field along Medirec-  is a case of special interest. The characteristic direation

tion has a similar breakdown as before. There is one termssociated with ;=0 is usually called the centémanifold

associated with the initial gradient of the magnetic field, anddirection. It is a direction along which the separation be-

there is another term account for the spatial variation of theween neighboring trajectories varies at most algebraically in

local Lyapunov exponent. Written out explicitly, time, which means\ ,, is an algebraic function inif it has
any time dependence at all. The time dependencémf
M-VB? m,-Vo(Bg-e.) m. Vo(2\t) -Vo(At) is difficult to generalize. Numerical calculation in
= - : some cases has shown smooth variation o&longm., di-
IMB2 VAn(Bo-e) VAn orond

rection over large distances but there are intermittent wild

B fluctuations. The intermittence can be real, but numerical
In the most general cask,,=In A,/2t can be any real num- ,,hq_off can not be ruled out at this stage due to the deli-

ber since even for a divergence-free flow the most stringerEaCy of the calculation. There are three main scenarios. If
constraint is for\;+\,,+Ag=0. UsuallyN,>0 for a chaotic .- Vo(\t) varies algebraically in timel, | bl
o Vo(\ gebraically in timel,,, is comparable

flow and\;<0 so as to be practically relevant. For a time- o . -
independent flow)”;, always vanishes, but the same is not With ¢ and the magnetic field accumulates in sheetsn.lf
always true if the flow field has a time dependence. -Vo(Mt)=expt) the flux concentrates in tubes sinlcgis

The spatial gradient of the initial magnetic field plays "W comparable withs due tohs~—), in a flow where
less a role in determining the time evolution of the field ¥ 'V does not vary exponentially. Otherwise, the field has a
structure if\,, is positive. This case is similar to that of the ribbon like concentration. It requires a dominant contribution

¢ direction, in that the second term always dominates thdrom the differential growth mechanism to achieve a tube or

first term in determining the time asymptotic behavior of thefiPPonlike spatial distribution if.;,= 0. o
field structure. Equivalently speaking, differential growth  Although the characteristic scale of the magnetic field
rather than coordinate dilation plays the more important roletlong the M direction decides whether the field structure

if \,>0. In making this statement, we have assumed that th@PP€ars in tubes, ribbons, or sheets. It is the rich structure of
variation of the local Lyapunov exponent along the secondhe magnetic field in theé direction that inevitably leads the

unstable direction ., associated with a,>0) is not magnetic field to have a fractal-like spiky distribution in a

- m— chaotic dynamd? The physical mechanisms responsible for
smooth andm..- Vo(2\t) has an exponential time depen- e fine scales are the coordinate contraction that brings dif-

dence. AIthpugh a progf is not avallablg, we find itto be thegerent initial fields close, and differential growth that comes
most plausible scenario, since otherwise one arrives at the, ., ihe spatial variation of local Lyapunov exponent in a
peculiar result that the field structures would flatten out at an, o naral flow. The coordinate contraction mechanism is ab-
exponential rate, a case that is not even true for the mo%ent without an initial spatial gradient of the seed field. But
unstablex d'|rect|orf. . differential growth always presents for a smooth flow. The
It Xy is less than zero, the flow has two contracting oy reason that the differential growth mechanism does not
directions and one expandlng direction. The field scale along inate the coordinate contraction mechanism in generat-
the second stable directiom(. with \;<0) has qualita-  ing small scale structures is because the finite time Lyapunov
tively the same behavior as that lafalongs.., the primary  exponent\, varies smoothlyalong the stable€contracting
stable (contracting direction. Both the coordinate contrac- direction s,), in contrast to the wild variation along th&

tion and differential growth contribute to an exponential de-djrection. The ever finer field concentration assures the im-
cay inly, so a uniform initial field would still develop ex- portance of a small but finite resistivity.

ponentially finer structure in space unlessis independent

of position, an event of little practical relevance. The expo-

nential rate at which,, decays provides final information in V. NONIDEAL EVOLUTION OF A MAGNETIC FIELD:
determining the three dimensional spatial structures of th€D CASE

field distribution. Two factors require consideratiorl. The  The competition between field growth and Ohmic dissi-
magnitude of\,, in comparison with\s and whethem.,  pation has a clear resolution if the system is restricted to two
VoMt has an exponential time dependence. Similar as th@imensions. Although the lack of time-asymptotic dynamo
conjecture made earlier, we expect thqtvary smoothly  action in two dimensions has a simple explanation, the char-
along the second stable directiom,. Then the only decid- acteristics of the solution were not known from previous
ing factor is the relative magnitude af; and \,,. Unless antidynamo theorems. In particular, the nature of resistive
Ns=\p, in Which casd s~ ,xexp(d) so fields concentrate dissipation was not known due to the lack of a full solution.
in tubes, the strong field appears in ribbons sirlge In this section we give a solution to the evolution of a
cexpid) <l cexpiyt) for larget. These conclusions utilize two-dimensional magnetic field in a chaotic flow and illus-
the fact that  varies at most algebraically in time. It should trate the time scale and magnitude of the Ohmic dissipation.
also be noted that these results come from the differentiadVe assume the initial magnetic energy is much smaller than
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the kinetic energy(specific requirements are discussed infined in Eq.(5) and it measures the convergence rate of the
Sec. VI, so the back reaction of the magnetic field on theeigenvectork Then an initial magnetic flux functiomi(t
flow field can be neglected. =0)=cy(1—coska)(1—coskp) relaxes as
A two-dlmer]smn.al magnetic f|eAId can be representéd by Y=ol 1—exf — (1—e 2\)/20]

a scalar potentialy, i.e., B(x,y,t)=zXV(Xx,y,t). Substi-
tuting this relation into the induction equation, one obtains x coska}{1—exd — (e ~—1)/2Q]coskp},
the advection-diffusion equation fo#(x,y,t) which de-
scribes the magnetic field evolution in two dimensions,

APl at+v-Vip= (5l no) V2ip.

with Q=puo\/k?7n since 1k is the characteristic length
scale. The magnetic field is then given by

B2=Voy-D- Vo= (Il da)? exp( — 2\t)
The induced current density is given by the curl of the mag-

2
netic field + (941 9p)” exp(2At)
) A with
j=VXB=—-V?yz
. . . . ~ . . ﬁl/f — 2\t
which strictly points in thez direction. Henceg-B=0 for &—a=co{exp[—(1—e )12Q ]k
two-dimensional magnetic evolution, which is clearly differ-
ent from the general three-dimensional case as discussed in X sinka}{1—exd — (e?*'—1)/2Q JcoskB};
the previous section. In a chaotic plasma flow, one finds that
Y co{1-ex — (1—e 220
B2~BZexp2\t) and u2j2~(By/L)2 exp(4nt), gp~ Collmexi—(1=e 7)20]
and j-B=0,j XBxexp(3\t) before the resistivity becomes x coska}{exq — (e —1)/2Q 1k sinkp}.

important. _ _ .
As shown in Ref. 14, the advection-diffusion equation is1n€ Wo terms inB? have completely different time depen-

an ordinary diffusion equation with a tensor diffusivi// ~ dence,

=(75/uo)g" in Lagrangian coordinates, I\ 2
(—‘p) e M=c2k? sirf ka{l—exg — (e?M—1)/2Q]
oy 9 oi d ’ da
98 98 < oSk B2 r{ 1—exp(—2\t) zxt}
cosl exg————— ,
For a two-dimensional divergence-free flow as discussed A Q

here, a2
- ~~n n _ 2Mt — ~21,2 o _ _ _ a2\t
DI = (pf A ju) 8+ (77 1) 5 (l9,3) eM=cik?si kB{1—exfg —(1—e 2\Y)/2Q]
with A =exp 2At>1. The diffusion equation is simplified in a ) exp(2at)—1
natural Lagrangian coordinate system—(3) which can be X coska} exp — T+2M .

defined as )
R R o For t<t,— 1/\ with t,=(In2Q)/2\ and Q= u\L?/ 7,
e,=aVa, s,=bVB, ande,=zXs,.

B?~(By- €.)? exp 2\t.
The Jacobian of thee— g3 coordinates iab. o ,
In natural Lagrangian coordinates— g3, the diffusion The magnetic field is dissipated away for a relatively short

equation i&4 period 1A centered ori,. This is due to the Ohmic dissipa-
tion of the induced current,
Iy 1 9 1 9 5 ,
—=———(aby")— — —(abyP), 0, | Py B
ot ab g ab o 2| T oMt o202
@ B woi®=| 5a75 € e

wherey® and y# are the fluxes in ther and 8 directions,
vy A — c2k* sif? ka S kB h2(t)exi] — 2h()/Q], (26)

a__Decd¥ Desd¥ with
Y 22 da ab B’
h(t) =exp(2\t) —exp(— 2\ t).
s__ Desd¥ Dssoy Since Bxexp\t, jxexp At, andj-B=0, the Lorentz force
Y ab da p2 9B’ on the flow grows exponentially in time withjxB|
o o . . . cexp At.
The diffusion coefficients areD¢e=e€,-D-e,,Dse=s.-D The production of heat by the Ohmic dissipatiaj?, is

.e,, andDy=s,-D-s,. For A>1, these coefficients sat- concentrated in a relatively short time intervak 1which
isfy the inequalitiesD oo~ ( 7/ o)e 2M<Dge~ — o (7! o) coincides with the diminution of the main magnetic energy.
<D ~(7/po)e*. The evolution of a two-dimensional The total energy dissipated is larger by a factor @f
magnetic field can be illustrated by making the rough ap=A\L?uq/7 than the initial magnetic energS(B?)/ZMO)d3x.
proximations thaa=b=1,\ a constant, and=0 [o is de- The additional energy comes from the flow during the advec-
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tion p.eriodté1 .in. Which the field is frozen tg the flow. In ngj'M/|M|=M61\/A_m/\|(éx-Bo)[rﬁx~Vo><ém+§m
actuality, the finite time Lyapunov exponent is not a constan

a_nd_an _energetic plasma flow tends to generate _cor_nplicated Vo |n(ém. Bo)+§m~Vo(2k|t)]+O(Am)-
dissipative structures given a small seed magnetic field. The "
spatial-temporal complexity of the Ohmic dissipation is de- N the case than.,- V(2 t) does not have an exponen-
termined by the spatial-temporal dependence of the finitéial time dependence, the current density obeys
time Lyapunov exponent. j oMt | @@ s | oc @Mt AL

In a time-independent flow,;~ —Ag~A>0 and\,,~0, one
V. RESISTIVE DISSIPATION: FILAMENTS AND has
SHEETS

. - . jeoc e3}\t>j m e2)\t>j & e}\t_

In Sec. lll, it was shown that the ideal evolution of a
magnetic field in a chaotic plasma leads to an exponentiallyf m..- Vo(\t)ceM!, one finds instead
growing magnetic field and induced current density. This
suggests that a finite resistivity, regardless of how small it
might be, will be important and changes the characteristicén either case, the natural state is for the induced current to
of the solution. In general, the magnetic field initially align with the magnetic field.
evolves ideally and then dissipation dominates the solution if  The spatial scale of the current density distribution has
the plasma flow is chaotic. The heatingj,?, is concentrated  strong anisotropy similar as the magnetic field. To see this,
in the current channels at the end of an ideal evolution. Theve calculate the spatial scale of the current density distribu-
cutoff time for ideal evolution is approximated by, tion along different characteristic directions. We consider the
=(In2Q)/2|\| with Q= ug|N|L? 5. Since the dimension- general case that the flow is truly three dimensional which
less numbex) is usually large ©10%), the magnetic field, meanse, - V,x &, does not vanish. In this case, the leading
wh|ch follows an |dgal evplutlon beforg, would have ob- 4. ~ontribution t0j2 is A3(&.-By)2(.-Vox&,)2 The
tameq gxtreme §pat!al .anls.:otropy and fine scales at the Ons&tadient ofj2 in the & direction is
of efficient Ohmic dissipation,. For the same reason, the
spatial distribution of the Ohmic dissipation can be learned  £.Vj2 6e,-V(\t)
by following the ideal evolution of the induced current den- 1] j2 = A,
sity, which is given by the curl of the magnetic field. !

In the case of a two-dimensional magnetic field, the pro-The spatial scale along th#& direction always has an alge-
duction of heat by the Ohmic dissipatiomj?, is concen- praic dependence in time becauseégfvo)\ltocexp()\lt),
trated in a relatively short time intervalX,/ which coincides .
with the dissipation of the main magnetic energy. The total £-vj? VA 0:q
energy dissipated is larger by a factor@&\L%uy/ 7 than le EIE = 6e.- V(M 1) ~leth. (28)
the initial magnetic energy’(BS/Z,uo)dg'x. The additional
energy comes from the flow during the advection peripd Just like the magnetic field, the spatial scale of the current
in which the field is frozen to the flow. density distribution along thé& direction tends to diminish at

In the general three-dimensional case, the current tend® exponential rateNs<0),

Je* eM>j =] s* e”M.

+0O(e M. (27)

to flow along thef direction, just like the magnetic field. To s.vizl !
see this, we note that the current density has the form l= _12 ~1%exp(\gt) (29
ST ]
=2 j'(axiag") with 12 determined by both the flow field and the initial mag-
. netic field configuration,
with
. Z ik g { b'(¢) Ig={63w.Vo()\|t)+sﬁ.V0In(BO.em)z
Mol =2 5 o g Ok | - ~ -
R NI J +5.-V,yIn(8, Voxe,)2 L. (30)
The & component of the current density is The spatial scale along th&! direction, in leading order, is
je=i-ElEl=po A}, Bo)e.- Vox e, + O(A)). Mmviel Tt . .
The S component of the current density is the smallest, Im= IM|j2 ~{6(m..- VoAt) +m..- Vo In(Bo-€:)
js=i-SIIS|= 1o "VAA[(€2-Bo)S. Vo M, Voin(e,-Voxe,)2 WA, (31
xXe, — rAnx-Vo(éw- Bo)— (e.- Bo)rﬁoc If the middle Lyapunov exponent is negativg, is exponen-

tially reduced similar ads so the current concentrates in
Vo(2MD]+O(A), elongated tubes or ribbonlike structures depending on the

where we have used the conventernm=s. The M com-  ratio between\, and\. When the middle Lyapunov expo-

ponent of the current density is nent is positive, one expects that.- V,(\t) has an expo-



1122 Phys. Plasmas, Vol. 7, No. 4, April 2000 X. Z Tang and A. H. Boozer

nential time dependence so current distribution will not beremain dark. On a longer time scale, the transport barrier is
smoothed out indefinitely. In this case, the asymptotic fornthe location of strong dissipation and becomes bright while
for |, is given by the vast chaotic region is dark. This brightness can last sig-
nificantly longer than the initial main burst of Ohmic dissi-
|~ = exp(Amt) _ pation in the chaotic region. A transport barrier in the chaotic
M., - V(6N 1) region can be easily distinguished from the regular
" ) o Kolmogorov—Arnold—Moser (KAM) islands since the
~Inthe case thak, vanishes, which is always true for a opmic dissipation in the regular islands is on a much longer
time-independent flowA, varies at most algebraically in (jme scale. The regular islands are always dark on the time
time. I, varies algebraically in time ifm..- VoAt does not  scale in which the transport barrier in a chaotic region lives
blow up exponentially in time. In that casé<l~le,  and dies, i.e., from dark to bright and then back to dark
hence the Ohmic heating occurs in current sheets. On thggain.
other hand, ifrﬁx-Vox,t grows exponentially in time, one

finds I¢~I1,<l. and the Ohmic heating occurs in current VI. BACK REACTION OF THE MAGNETIC EIELD ON

filaments. . .  THE FLOW
In general, the differential growt¥io(At) plays a domi-

nant role in determining the characteristic scales of the cur- To solve the magnetic field evolution problem self-
rent (and magnetic fielddistribution along them,, and e, consistently, one has to consider the back reaction of the
directions, in comparison with the other factors such as comagnetic field on the plasma flow flg‘id[here are a number
ordinate contraction, which operate only if the initial seed®f unique features of this back reaction if the flow is chaotic.
field has a spatial dependence. The current runs through tub@/€ will first examine the two dimensional case which admits
sheet, or ribbon-like structures if conditions oy (A, A o) a clear long time solution to the nonideal magnetic field evo-
and V,(\t) are met in a particular flow. The analysis of lution just like the two dimensiqna! passivpj scalar problem
(N Am.hs) and V() t) is straightforward once the flow _(Sec. IV or _Ref. 14 Although a S|m!lar so_lutlon to the non-
field is specified. As a general result, we have found thatdeal evolution of a general three dimensional magnetic field
Vo(\ 1) is well-behaved in th&, direction but ill-behaved in N & chaotic flow is not available, the back reaction on the

A . oL flow has generic features which can be related to the spatial
thee, direction[i.e.,e,- V(A t) exponentiates in timeThe 9 P

- ) - and temporal dependence of the finite time Lyapunov expo-
m.,- Vo(\t) requires a case-by-case examination. nents.

It should be stressed that the onset of Ohmic heating has  There are essentially two issues. The first is whether the
a large spread in time due to the spatial variation of the locaj,ck reaction on the flow field is important before the Ohmic
Lyapunov exponents. To understand the distribution Ofdissipation removes the magnetic enefigytwo dimensions
Ohmic heating power as a function of time, one can convog, suppress the transient growth of the magnetic fiels
Iyte the timeq'-c.with. the proper probability distribution furjc— could happen in three dimension# the back reaction does
tion of the finite time Lyapunov exponents for any given pecome important before dissipation, then the second issue is
flow under consideration. o . toresolve the effects of the Lorentz force on the flow field.

The difference between the distribution of the finite time 110 magnetic field affects the flow field through the Lor-
Lyapunov exponents and a Gaussian distribution becomeésytz forcej x B on the plasma. In the two-dimensional case,
smaller as one samples the finite time Lyapunov exponent aé=2xV:,0(x,y,t) andj = —sz,bi. Hence the magnitude of

a Iondger_tlhnzﬁrvi[largertot!n )\t(hgitoz]. go;lgrggts (corfnt—h the Lorentz force is the product of the magnitudes of the
pared wi € Lyapunov timethe standard deviation of the Scurrent density and the magnetic field,

distribution of the finite time Lyapunov exponents scales a
1/\t,. This implies that if the plasma resistivity is smaller |j X B|=jB~(B3/L)exp 3\t).
and the flow is more chaotic, the histogram of the heating isl.

| 0 G ) tatisti d th 4 in time for th his force should be compared with the convective force
closer fo f>aussian statistics an € spread in time for EUZ/L, where p is the density of the media and is the
main Ohmic heating is smaller.

Locati th liarl Il finite i L characteristic scale of the flow. The back reaction of the
o;:a 'onZW'. pefcu ,'{E;r yosr:na_ ('jm c |nt1_e yTaﬁunov ex magnetic field on the plasma flow is negligible if the Lorentz
ponents are barriers for the Uhmic dissipation. 1hese regiong .o is much smaller than the convective force which drives

are where thes lines make sharp bendsee Ref. 14 for the the initial flow field. This is satisfied for time<t, with
two dimensional case, the three dimensional case is dis-

cussed in Ref. 15, additional numerical evidence is also  th=(1/3\)In(e"/€g), (32
shown in Ref. 28 The existence of transport barriers in \yhere & is the kinetic energy densityu?/2 and e is the
highly chaotic plasma flows implies the strong intermittenceipjtia| magnetic energy densi§2/2u,. The back reaction of
of the Ohmic dissipation of a magnetic field in a chaoticihe magnetic field on the plasma flow with finite resistivity is
conducting fluid. The parts of the chaotic region with 8at negligible if t,> r.=(In 2Q)/2\ with Q=uo\l?/ 7, i.e.,

lines will appear to be hot and dissipate most of the energy at K me23

the onset of the rapid Ohmic dissipation due to the entan- Q<(e€)™™ (33
gling of magnetic field lines, while the transport barriémes- If Q>(6k/€g1)2/3, the effect of the back reaction of the
gions with larges line curvaturg have low dissipation and magnetic field on the plasma flow will be important, and the
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flow field will be modified before the Ohmic dissipation re- form of filaments, ribbons, and sheets. For a turbulent back-
moves the magnetic energy. Fox 7, the exponentially ground flow, the small scale structures of the magnetic field
growing magnetic field lies along tiedirection of the flow, ~and induced current density may be attributed to the small
Be~(Bo-éﬁ)exp()\t)>BS~(Bo-§m)exp(—)\t). Since the cur- Scale structures of 'Fhe turbul(_ent flow velocity field |t_self. The
same cannot be said for nonintegrable smooth laminar flows.
Instead the explanation is found in the kinematics of the
chaotic Lagrangian trajectories of the flow. It is the spatial
anisotropy of the finite time or local Lyapunov exponents

rent density strictly lies along the direction, j=— V2 z,
the Lorentz force points at the direction. SinceV?2y
xexp(At), the S component of the Lorentz force is

(jXB)-SI|S|=B.V2yo exp(3nt). along the various characteristizin)stable directions, that
The & component of the Lorentz force is much smaller with causes the complicated structures for the magnetic field evo-
lution.
(1% B)-&l|&|=—BsV2i exp(At). The local Lyapunov exponent and the characteristic

(un)stable directions are naturally defined as functions of La-
_ grangian coordinates and time, in the same spirit as chaos of
[(jxB)-S/|S]] flow trajectory means sensitive dependence on initial posi-

Since

[jxB-&lé] * eXp2AL), tion (Lagrangian coordinatgsThe spatial dependence of the
the Lorentz force primarily applies along tiline of the IocaI.LyaEunov exponent IS des.crlbed tly tWO_ conv'ergence
flow. functions (&) and f(§,t). The first onen(&) is entirely

The primary difference between the two-dimensionaldetermined by the geometry of the stable foliatighe s,
case and the generic three-dimensional magnetic field evollines and is a well-behaved smooth function of position
tion is the alignment of the induced current density and thedlone.f(&,t) is the one that has a strong spatial anisotropy. It
magnetic field in three dimensions. It was shown in Sec. llidoes not vary along ths, direction, but develops exponen-
that the magnetic fiel@=b'(9x/3¢') is along theS direc- tially increasing gradientin time) along the most unstable
tion, B.=B-&/|&~(By-e.)exp\t=>B,=B- M/|M|~B, directione.. The property off(&,t) along them.., the di-
.m,> B.=B- §/|§| = (Bo.gﬁ)exp(_m)_ The current density rection along which the middle Lyapunov exponagt (e.g.,

j:Eji(élxl[})é‘?i) with A,=0 for a time-independent flowesides, is not unique.
Whetherf(¢,t) develops exponentially growing spatial gra-
woi' = (€1%13)al €[ gyb'(£)13] dient in this direction helps determine the exact form of the
kI small scale structures, filaments, ribbons, or sheets.

also lies along the direction, as shown in Sec. Ill. As a e have identified three orthogonal directige, M,
consequence of the alignment betweandj, the Lorentz 35 defmeq in Eq6)] in the Eulerlan frame or regl space that
force still scales exp(3t), just as the two dimensional case, characterize the spatial anisotropy of the physical observable
despiteBxeMt and jxe3Mt, such as the magnetic field, induced current density, and the
The spatial breakdown of the Lorentz force can be illus--0rentz force. For a chaotic plasma flow with a high mag-
trated with the class of time-independent flows. In suchnetic Reynolds number, the initial stage of the magnetic field

flows, the orientation of the Lorentz force depends on theévolution is ideal and an initial small seed field grows expo-
spatial variation of the finite time Lyapunov exponent a|0ngnent|ally in time, so does the induced current density except

A~ S at an rate two times faster than the magnetic field. The in-
the m,, direction. If the finite time Lyapunov exponent has a . . S

. N . . ; . duced current tends to align with the magnetic field, and both
gradient along the\ direction which varies algebraically in

; . oo : of them point along thé& direction. This is also the direction
time, the Lorentz force points at tigédirection with along which the field and the current have the least structure.
f=(jXB)-S/|S8|=jeBm—jmBe*eXp(3\t), (34 At the same time, both the magnetic field and the induced

. . . current density develop exponentially decreasing spatial
f= (1% B)- M/ M| =]Be— jeBsexp(2Nt), (39 scales in theS direction, which is transverse to the magnetic
fo=(jXB)-&|&=jmBs—j Bm*exp(At). (36)  flux and current flow. The Lorentz force primarily acts along
s the S direction, which is transverse to the filament or sheets
IT the.fmlte t'_me Lyapunov exponent d?"e"?ps an ex.ponenwhere magnetic flux and induced current concentrate. This is
tially increasing gradient along the., direction, one finds 450 the direction along with neighboring flow points con-
fo=fmeexp(t)>fexexpit, i.e., the Lorentz force lies in yerge exponentially in time. In other words, the Lorentz
the (M,S) plane. It is interesting to note that the magneticfyce primarily counteracts the convective fortag., the
field evolution in the first case leads to the formation Ofpressure gradienthat squeezes neighboring flow points to-
current sheets, while in the second case it generates curre@@ther_ Consequently it suppresses Lagrangian chaos and

filaments. regularizes the flow.

VIl. SUMMARY
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APPENDIX A: THE ASYMPTOTIC EXPRESSION FOR which has the time dependence of exXp(4 2\ ). In mak-
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