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1 Introduction

Although high-temperature plasmas in laboratory magnetic fusion con�nements are
suÆciently collisionless that formal uid closures are diÆcult to attain, the resistive
MHD model has proven, by comparison with experimental data, to be useful for
describing the large scale dynamics of magnetized plasmas [1]. Resistive MHD
model consists of Faraday's law for the evolution of the magnetic �eld and Navier-
Stokes equation for the plasma ow. These equations are closed by the Ohm's law
and an equation of state for the plasma.

@B

@t
= �r� E; (1)

E = �v �B+ �J; (2)

�
dv

dt
= J�B�rp+ ��r2v; (3)

@�

@t
= �r � (�v); (4)
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Figure 1. Tokamak (left) has a toroidal axisymmetry, but stellerator
(right) does not.

dp

dt
= �pr � v + �r � � � rp

�
; (5)

where � is the plasma resistivity, � is the kinematic viscosity,  the ratio of speci�c
heats, and � a tensor thermal conductivity. For a magnetized plasma, heat conduc-
tion is usually many orders of magnitude faster along the �eld line than that across
due to charged particles free-streaming along the �eld lines.

The front runners of magnetic con�nements have a toroidal geometry. Devices
like Tokamak have toroidal axisymmetry, while stellerators do not, see �g. (1) for an
illustration. The purpose of this paper is to present the design and implementation
of a resistive MHD code for a general toroidal geometry. This code is targeted for
massively parallel distributed memory computers, and constructed in the framework
of PETSc [2].

2 Current-Vorticity Formulation

We adopt a mixed �eld and ux representation for the magnetic �eld B following
[3],

B = r �r'+
1

R
r?F + R0Ir'; (6)

in a cylindrical coordinates (R;Z; '):The (R;Z) plane at a speci�ed toroidal angle '
is called a poloidal plane, where r? � @

@R
R̂+ @

@Z
Ẑ: The magnetic �eld is divergence-

free so only two of the three functions  ; F; and I are independent. Applying
r �B = 0 to equation (6) one �nds

r2

?F = �R0

R
I0 (7)

with I0 = @I=@':
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The plasma ow �eld also has a mixed �eld and stream function representation[3],

v = �R2rU �r'+r?�+ v''̂; (8)

with � � a=R0 the inverse aspect ratio of the torus. We have assumed a compressible
plasma so all three functions U; �; and v' are independent. This particular form of
ow �eld representation separates the dominant incompressible part (U ) and com-
pressible part (�) of the ow �eld. The bene�t of this formulation is the separation
of the compressible Alfv�en dynamics and the incompressible shear Alfv�en dynamics,
and hence di�erent sets of equations can be treated with di�erent numerical time
stepping schemes.

The numerical solver takes on a dimensionless form of the MHD equations.
This is done by normalizing the magnetic �eld with the toroidal �eld at the magnetic
axis, the ow �eld with the Alfv�en speed de�ned as vA � B0=

p
�0; time with a

toroidal transit time �A � R0=vA; length with the minor radius a: The density is
also made dimensionless by writing

� = �0
R2

0

R2
d:

The pressure p is scaled by the magnetic pressure �B2

0
: In this dimensionless form,

an 1=R �eld can be pulled out of I

I =
R

R0

B' = 1 + �~I (9)

with the inverse aspect ratio � � a=R0: Taking the curl of the magnetic �eld the
plasma current is

J = J''̂+r~I �r'� 1

R
r?F

0 �r'+
1

R2
r? 

0: (10)

Next we de�ne an auxiliary variable C as

C � �RJ' = �� +
1

R

@F

@Z
:

The original MHD equations can be transformed into a set of time evolution
equations for ~I;�� ;�yU; v';�

��; d; and p;

@ ~I

@t
= ��R'̂ � r?

~I �r?U � R0I�
���r?

~I � r?�

+R'̂ � [r(v'
R
)�r? ] � v'

R

@ ~I

@'
+Rr?F � r?(

v'
R
)

+r?� � r?
~I � 1

R
r?� � r?F

0 � 1

R
(r?� �r? 

0) � '̂

+�[�� ~I +
1

R2

@2 ~I

@'2
+

2

R2
(
@F 0

@R
+
@ 0

@Z
)] (11)
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r2

?F = �~I0=R (12)

@

@t
�� =

R

R0

fr?U �r?(�
� ) � '̂ +r?(�

yU )�r? � '̂

+2r?

@U

@R
�r?

@ 

@R
� '̂+ 2r?

@U

@Z
�r?

@ 

@Z
� '̂g

+2�r?U �r?

@ 

@R
� '̂+ 2

�

R

@ 

@R

@U

@Z

+
R

R0

f� 1

R
r?U � r?

@ ~I

@'
+

1

R2

@U

@R

@ ~I

@'
+r?(�

yU ) � r?F

+2r?

@U

@R
� r?

@F

@R
+ 2r?

@U

@Z
� r?

@F

@Z
g

+�r?U � r?

@F

@R
� �

R

@F

@Z

@U

@Z

�fr?(�
��) � r? +r?� � r?(�

� ) + 2r?

@�

@R
� r?

@ 

@R
+ 2r?

@�

@Z
� r?

@ 

@Z
g

+
2

R2

@�

@R

@ 

@R

+fr?(�
��)�r?F � '̂� 1

R
r?��r?(

@ ~I

@'
) � '̂� 1

R2

@ ~I

@'

@�

@Z

+2r?

@�

@R
�r?

@F

@R
� '̂+ 2r?

@�

@Z
�r?

@F

@Z
� '̂g

� 1

R
r?��r?

@F

@R
� '̂� 1

R2

@F

@Z

@�

@R

+
@

@'
r2

?�� @

@'
(
1

R

@�

@R
)

+��(��� ) + ��(
�

R

@F

@Z
) (13)

r2

?� = �r?
~I � r?U + I�yU � I

R

@U

@R
+

1

R
r?� �r?

~I � '̂ +
R0

R2
I
@�

@Z

� 1

R
r?v' � r? � v'

R
�� � 1

R
r?F �r?v' � '̂� v'

R2

@F

@Z

�� 1

R2
[
@ ~I

@z
� 1

R
(
@F 0

@Z
� @ 0

@R
) +

@

@'
(RJ')]

+
1

R
(r?� �r?

~I) � '̂ � 1

R2
(r?� �r?F

0) � '̂+
1

R2
r?� � r? 

0 (14)

@

@t
�yU = �R[r?U �r?(�

yU )] � '̂�r?� � r?(�
yU )� v'

R

@

@'
�yU

�2��yU
@U

@Z
�����yU � 2

R

@�

@R
�yU

� 1

R
r?v' � r?(

@U

@'
) +

v'
R2

@

@R
(
@U

@'
) +

2R0

R2
v'
@v'
@Z

+
R0

R2
[r?v' �r?(

@�

@'
)] � '̂� R0v'

R3

@

@Z
(
@�

@'
)
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�R0B � r(RJ'
d

) +R0J � r(R0I

d
)

+
2

d

@p

@Z
� R

d2
(r?d�r?p) � '̂: (15)

@v'
@t

= �R�(r?v' �r?U ) � '̂�r?� � r?v' � v'
R

@v'
@'

+
1

d
(r?

~I �r? ) � '̂+
1

d
(r?

~I � r?F )� 1

Rd
(r?F

0 �r? ) � '̂

� 1

Rd
r?F

0 � rF � 1

Rd
r? 

0 � r? +
1

Rd
'̂ � (r? 

0 �r?F )

��v' @U
@Z

� v'
R

@�

@R
� �R

d

@p

@'
(16)

@

@t
��� = �2R2r?(�

yU ) � r?U + �2R2(�yU )2 �r?(
v'
R
) � r?(

@�

@'
)� v'

R
��(

@�

@'
)

+
@

@R
(
v2'
R
)� v2'

R2
� �R[�yU; �]� �[v';

@U

@'
] +

�v'
R

@

@Z
(
@U

@'
)

+R0[
I

Rd
;
@ 

@'
] +R0r?(

I

Rd
) � r?(

@F

@'
) +

R0

R

I

d
r2

?(
@F

@'
)

�R0

R2

I

d
(
@2 

@'@Z
+

@2F

@'@R
)

�r?(
C

d
) � r? � C

d
�� + [

C

d
; F ]� C

Rd

@F

@Z

��R2r?

1

d
� r?p+ 4�

p

d
+ 4�

R

d

@p

@R
� 1

d
�y(�R2p)

���(
v2?
2
)� R0

�
Ir?

1

d
� r?I +

2R0I

Rd

@ ~I

@R
� 1

d
�y(

R2

0
I2

2
); (17)

@d

@t
= �d[���+

1

R

@v'
@'

]

+R�r?U �r?d � '̂�r?� � r?d� v'
R

@d

@'
(18)

@p

@t
= R�r?U �r?p � '̂�r?� � r?p� v'

R

@�

@'

�p[�?�+
2

R

@�

@R
+ 2�

@U

@Z
+

1

R

@v'
@'

]: (19)

Here all primes indicate toroidal derivative, and

r2

? � @2

@R2
+

@2

@Z2
; �y � r2

? +
1

R

@

@R
; �? � r2

? � 1

R

@

@R
:

The viscous terms are left out to conserve space.
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3 Spatial and temporal discretization

There are altogether seven time evolution equations for ~I;�? ;�yU; v';�
?�; d;

and p: In addition, �ve Poisson equations are required to be inverted for the elec-
tric potential, ux and stream functions. These Poisson equations are strictly two
dimensional, concern with poloidal (R;Z) planes only. For a general toroidal ge-
ometry can always be represented by a stack of shaped poloidal sections, we have
adopted a mixed �nite element and �nite di�erence scheme. The shaped poloidal
sections are treated by �nite elements on unstructured grids, �gure (3). The toroidal
derivatives are calculated with fourth order �nite di�erence.

There are three types of waves in the MHD model, the compressional Alfv�en
wave, the shear Alfv�en wave, and the slow magnetosonic wave. The compressional
wave in a toroidal device with strong toroidal �eld is stable, but poses the strictest
constraints on the Courant-Friedrichs-Lewy (CFL) condition. The shear Alfv�en
wave is usually associated with the various instabilities, and is generally thought to
be treated accurately to resolve the fast growing ideal MHD instabilities. One of
the main bene�t of our formulation is that the compressional wave is represented
by a ~I; �; and p coupling. This coupling can be treated implicitly to overcome the
fast compressional wave CFL constraint. Furthermore, this coupling involves only
poloidal derivatives, so the matrix inversion problem is restricted to two dimen-
sional (R;Z) plane. Taking advantage of these unique features of the equations, we
have devised a time stepping scheme that treats only the compressional wave and
dissipative terms implicitly, while treating the shear Alfv�en dynamics explicitly for
accuracy. We note that for the class of resistive instability (e.g. tearing modes) the
growth rate is on the resistive time scale, which is many orders of magnitude slower
that Alfv�en wave transit time. It is then preferable to also treat the shear Alfv�en
dynamics implicitly. We are investigating to add an option to treat the poloidal
shear Alfv�en wave implicitly in the code. To deal with the irregularity in the mesh,
we have �nd that a slightly dissipative scheme, like the third order Adam-Bashforth,
does better than the variants of leapfrog scheme that was commonly used in MHD
simulations.

4 Domain decomposition and PETSc solvers

Our spatial and temporal discretizations lead naturally to a three dimensional do-
main decomposition. Figure (2) shows a twenty-four processor decomposition for
a Tokamak and a stellerator con�guration. As shown in the illustration, a toroidal
geometry is sliced into a set of poloidal planes, and a poloidal plane is further par-
titioned into equal area patches. A stack of poloidal patches (along the toroidal
direction) is assigned to individual processors. Figure (3) gives another view of the
ux surface aligned, unstructured, poloidal grids, and a twelve poloidal subdomain
decomposition. The merit of this scheme include the exibility of adjusting the
aspect ratio of the subdomain, that the surface to volume ratio approaches that of
a cubic, and excellent load balance.

The Poisson equations and the implicitness in time stepping introduce large
sparse matrices to be inverted over a poloidal plane. This is addressed by iter-



tmd
2000/12/4
page 7

i

i

i

i

i

i

i

i

7

Figure 2. Twenty four processor domain decomposition for a Tokamak
(left) and a Stellerator (right).

Figure 3. Unstructured poloidal mesh and a �ner poloidal decomposition.

ative scheme with Krylov subspace acceleration. We have found that overlapped
Schwarz method coupled with ILU provides adequate preconditioning for GMRES
or BiCGSTAB. These functionalities are entirely provided by PETSc.

The parallel scalability of the design is satisfactory. In the toroidal direction,
it is near ideal (linear speedup of �xed size problem as precessing elements increases)
due to the time explicit scheme. In a poloidal plane where large sparse matrices
are inverted, the degradation in the parallel scalability is gentle for a generously
overlapped Schwartz preconditioning scheme[4]. The overall scalability of the code
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can be optimized by varying the aspect ratio of a sub-partition. We note that the
design of the mesh and domain decomposition has been devised to accommodate
future coupling with particle simulations [5].

PETSc has proven to be ideal for enabling a rapid numerical implementation
of this physics simulation model on massively parallel computers. The global MPI
communicator is partitioned and recombined to form intersecting local poloidal and
toroidal communicators. The ranks of each sub-partition in the local poloidal and
toroidal communicators serve as a coordinate in a two dimensional index space.
Parallel data structure like array and matrix are implemented as PETSc Vec and
Mat [6] over local poloidal communicator to enable access to PETSc linear solvers
(SLES). The toroidal ghost zones are explicitly implemented in the code since no
sparse matrix solve involving toroidal coupling is required. The exchange of toroidal
information is greatly simpli�ed by the formation of local toroidal communicator.

The algebraic overlapped Schwarz preconditioner is a critical PETSc func-
tionality for our simulation. We have found that without overlapping, the iterative
scheme seldom converges. Rapid convergence is achieved if moderate (2-5 grid
points) overlapping is employed. The algebraic implementation of this scheme in
PETSc removes the cumbersome and error-prone task of constructing new parallel
data layout associated with a variable ghost zone.

5 MHD activity in a TOKAMAK

Our parallel MHD code has been undergoing a physics validation and benchmark-
ing process. These include axisymmetric equilibrium check and perturbative cal-
culations of global MHD modes such as toroidal Alfv�en eigenmode (TAE), kink,
ballooning, and tearing modes. Here we will show two examples, one with a stable
TAE mode, and the other with an ideally (� = 0) unstable (n = 1;m = 1) kink,
where n;m are the toroidal and poloidal mode numbers.

It is known that in ideal MHD with uniform �eld, the shear Alfv�en wave
typically has a continuous spectra[7]. In a toroidal plasma, the toroidal magnetic
�eld is non-uniform over a magnetic surface and causes coupling of di�erent poloidal
harmonics. This can break up the shear Alfv�en continuous spectrum and create
discrete low n shear Alfv�en eigenmodes inside the continuum gaps[8]. The ideal low-
n TAE is stable, and would decay if dissipation is introduced (�nite resistivity and
viscosity). Due to the global nature of this mode (low n;m and radially extended),
it decays slower than the background noise. As the result, an initial perturbation
quickly settles down on the primary TAE. The energy in the perturbation, though
decaying due to dissipation, beats on the TAE eigenfrequency, �gure (4). The mode
structure of an n = 1 TAE is also shown in �gure (4). One of the motivations of this
benchmark was to verify the time unit normalization of the code implementation.

When the safety factor on the magnetic axis q0 drops below unity, there is a
q = 1 magnetic surface inside the Tokamak. The n = 1;m = 2 component tends
to stabilize the n = 1;m = 1 via poloidal coupling in a torus. But it becomes
insuÆcient once the poloidal beta, de�ned as the average pressure over the poloidal
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Figure 4. Decaying kinetic energy of the MHD perturbation oscillates with
the TAE eigenfrequency (left) and mode structure of this n = 1 TAE (right).

Figure 5. Mode structure of an internal kink at ' = �=2 plane: perturbed
RJ' (left) and poloidal ow (right).

�eld strength squared, exceeds a modest value[9]. Figure (5) shows the mode struc-
ture of such a (1; 1) kink. In the framework of resistive MHD, a small but �nite
resistivity increases the growth rate while �nite viscosity slowing down the mode.
The convergence to the ideal limit is investigated by varying the resistivity while
maintaining a comparable magnetic Prandtl number (Pr � �=�), and by varying
the viscosity at a �xed small resistivity (� = 10�6), �gure (6). In either case, the
growth rates of the mode are observed to approach the ideal limit (� = � = 0) as
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Figure 6. Growth rate approaches ideal limits (red square) as resistivity

and viscosity are reduced. The � is �xed at 10�6 in the second plot.

calculated by a linear stability code NOVA[10].

6 Flux surface quality of stellerator equilibriums

The main subtlety for non-axisymmetric geometry is the implementation of bound-
ary conditions in our mixed �eld-current representation of the MHD equations. This
is resolved by a new formulation based on generalized Ohm's law[11]. The three
dimensional capability of the code can be demonstrated on stellerator equilibrium
reconstruction which has a non-axisymmetric magnetic �eld. The advantage of a
stellerator is its potential for disruption-free steady state operation. But closed ux
surface, another critical property for good con�nement, is known to be fragile in a
general three dimensional �eld. In practice, an equilibrium con�guration is numer-
ically found through variational principle by writing the magnetic �eld in a form
that imposes good ux surfaces, such as the VMEC code [12]. This weak solution
to the force balance equation J � B = rp is equivalent to assuming a perfectly
conducting plasma. Magnetic perturbation theory tells us that this perfectly con-
ducting plasma preserves closed ux surfaces by running a singular current that
cancels the external resonant perturbation at the resonant magnetic surface. How-
ever, singular current is diÆcult to rigorously retain in numerical solution, and it
will decay away in a realistic resistive plasma and hence allow island opening and
ux surface breakup. It was conjectured that by reconstructing the magnetic �eld
from VMEC current with a general magnetic �eld representation, the e�ect of the
absence of singular cancellation current can be assessed.

Figures (7,8) show Poincar�e sections of the magnetic �eld on the ' = 0 poloidal
plane for two national compact stellerator experiment (NCSX) candidate con�gu-
rations, the c82 and li383. The magnetic �eld is reconstructed from the VMEC cal-
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Figure 7. Poincar�e plot of NCSX c82 candidate con�guration at ' = 0:

culated B' and j': From VMEC B'; ~I is calculated by its de�nition, equation (9).
One then �nds F by solving equation (12). With F and VMEC toroidal current
j'; the ux function  is calculated from equation (10). The Poincar�e plot is then
obtained by integrating the �eld line trajectories and locating its intersection with
the ' = 0 plane. Over one million grids are employed to cover one period of the
three-period c82 in �gure (7). The prominent features of c82 reconstructed �eld are



tmd
2000/12/4
page 12

i

i

i

i

i

i

i

i

12

1.5 2.0 2.5 3.0 3.5 4.0 4.5
R

−1.5

−0.5

0.5

1.5

Z

Figure 8. Poincar�e plot of NCSX li383 candidate con�guration at ' = 0:

the presence of large (n = 3;m = 11) island chain, and stochasticity on the edge.
In contrast, with two million grids covering one period of the period three li383, we
�nd much better ux surface properties, particularly on the edge. There are island
chains at the primary resonances (n = 3;m = 5) and (n = 3;m = 7); and higher
order resonances (n = 15;m = 23) and (n = 9;m = 14):
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