

1

ElVis: A Portal for Scientific Graphics

Abstract—Creating web-based visualizations around legacy
fusion plotting codes written in Fortran has been an effective
approach for enhancing the graphics and making an
interactive system for collaborating scientists. A multi-tier
architecture was developed to optimize computing and display
resources while making minimal changes to the original
Fortran code. The buffering limitation of standard input and
output in legacy command line programs was overcome by
implementing a pseudo-terminal interface that handles
communication on the server side with the command line
code.

Index Terms—client-server systems, collaboration, graphical
user interfaces, web-based scientific visualization.

I. INTRODUCTION
EVELOPMENT of TRANSP, the transport analysis code
suite for tokamak experiments, started over 25 years ago
[1]. These programs are still actively used by physicists

at several institutions around the world to analyze the data
acquired from plasma fusion experiments. The results of an
analysis are plotted using Fortran programs that prompt the
user with text menus and read command line input. These
well established application programs are tailored to extract
specific data from an analysis and formulate graphs for plasma
fusion research. The suite has significant data handling
functions, but its display is limited to only one monochrome
Tektronix emulator window as shown in Figure 1.

The goal of this work is to visualize the fusion data and
develop a new graphical interface for exploring the data.
TRANSP is now available as a compute service so there is the
further goal of providing collaborative visualization from a
web browser. An analysis may run for several days.
Monitoring enables the user to stop an errant run and save
computer and human time. These goals have been achieved
by developing the ElVis Portal as a multi-tier visualization
system. It consists of a client running in a web browser that
communicates through a servlet to the legacy plotting
programs. The server side of the portal can access the output
files of TRANSP runs on the compute cluster. Through a new
subroutine interface, the application programs send an XML
description of the graph and the data to the Java servlet. The
servlet creates a graph object containing the data (not just a
static picture) and sends it to the display client. The Java
applet has a graphical user interface for exploring the data.

 Manuscript submitted June 23, 2006.
Eliot Feibush and Douglas McCune are with the Princeton Plasma Physics

Laboratory, Princeton, NJ.
Scott Klasky is with the Oak Ridge National Laboratory, Oak Ridge, TN.

II. RELATED WORK
The ElVis display client is based on the SciVis program [2].
Written in Java, SciVis had a graphical user interface and a
socket for receiving data from application programs and
collaborating peers. Scientific visualization over the web was
described in [3] and articulated as a problem solving
environment in [4]. They outline several approaches for
dividing the computing and the data between the client and the
server. An extensive portal for scientific visualization and
volume rendering is described in [5].

III. DISPLAY CLIENT
The ElVis display program presents publication quality

visualizations in multiple windows as shown in Figure 2. Data
from experiments is organized by “shot” of plasma and forms
the input to a transport analysis. Graphs from multiple shots
and analyses can be displayed in the client. Data from one
shot or analysis can be copied and pasted into another to make
a direct comparison. A digital crosshair can be interactively
positioned for each curve in a graph to show numerical values.
 A time indexed graph contains a series of datasets, f(xt), for
the same variable. Displaying the time steps sequentially
produces an animation showing the variable’s behavior over
time. Multiple graphs (with multiple variables) can be
animated to visualize several processes simultaneously.
 The annotations from the whiteboard, e.g. lines, circles,
highlights, are defined in data space coordinates so the
annotations zoom and scroll with the view. The data
highlighter tool draws a feature along a curve from x1 to x2
and is shown in each step of animation. Annotation is saved
with the data in a netCDF file. Stored as a URL on the portal,
other clients can browse for the file and display it.

 The ElVis client implements efficient collaboration
similar to SciVis. A graph object sent to the servlet is relayed
to each instance of the client that has registered for
collaboration. Communicating through the portal enables
users to collaborate between machines. As a user interacts
with a display, such as zoom, annotate, or animate, only an
interaction command is sent. The collaborating applets
receive the interaction and apply it which is considerably more
efficient than pixel based systems that transmit entire images.

Downloading the applet to the web browser at runtime
eliminates installing software, yet always provides the latest
version. The visualization subsystem is packaged in an
archive file so Java and Jython programs can easily import it.
The interactive methods are encapsulated in the classes
making the methods available in any application.

Eliot Feibush, Douglas McCune, and Scott Klasky

D

2

IV. SERVER SIDE
Applet security restricts file access and limits socket

connections so the applet is paired with a servlet that can run
programs and access all data on the file system. The servlet
runs in the Apache Tomcat container and services client
requests forwarded through the firewall by the HTTP server
shown in Figure 3. The ElVis application programming
interface (API) enables a Fortran or C program to define a
GraphWindow as a grid of scientific graphs containing
datasets. The API produces XML and sends it to the servlet.
The XML protocol facilitates extending the API while
avoiding version mismatches that could break an input reader.
The hierarchical, object-oriented design of the GraphWindow
readily maps into an XML description.

Security is enforced by credentials stored on a remote
myProxy server. The user just enters name and passphrase in
the sign-on panel in the applet. A script conveniently
downloads the user’s credential to the servlet from the
myProxy server instead of requiring the user to manage and
upload files. The servlet uses the credential file to run
application programs in the Globus Security Infrastructure [6].

V. PSEUDO-TERMINAL
The command line interface to TRANSP programs is well

established. Many scripts have been written for it. Handling
command line standard input and output could not be trivially
accomplished with a Linux pipe due to buffering. This
limitation was overcome by developing a controller program
on the server side that forks a child process of the plotting
application. The controller handles text communication with
the child through a non-buffering pseudo-terminal and relays
it through a socket connection to the servlet. There can be
many lines of output for a single line of input. A command
that takes a long time to complete may output several groups
of lines instead of all lines in one group. This requires
accumulating lines in the servlet and the applet repeatedly
requesting new data because all client-server exchanges must
originate from the applet. The only change to the legacy
command line code was appending an end-of-text character
to the end of each prompt for user input.

REFERENCES
[1] R. Hawrlyuk, An empirical approach to tokamak transport, Physics of

Plasmas Close to Thermonuclear Conditions, Vol. 1, (1980), CEC,
Brussels, pp. 19-46.

[2] K. Byeongseob, S. Klasky, Collaborative scientific data visualization,
Concurrency Practice and Experience, Vol. 9, Issue 1, (Nov. 1997),
John Wiley & Sons Ltd, pp. 1249-1259.

[3] K. Brodie, Visfiles: Harnessing the web for scientific visualization,
Computer Graphics, Vol. 34, Issue 1 (Feb. 2000), ACM, pp. 10-12.

[4] K. Engel, R. Westerman, and T. Ertl, Isosurface extraction techniques
for web-based volume visualization, IEEE Proceedings Visualization
’99, pp. 139-146.

[5] T.J. Jankun-Kelly, et al., Deploying web-based visual exploration tools
on the grid, IEEE Computer Graphics and Applications, Vol. 23, Issue
2, (2003), pp. 40-50.

[6] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A security architecture
for Computational Grids, Proc. 5th ACM Conference on Computer and
Communications Security, (1998), p. 83-92.

Fig. 1 The legacy plotting programs were written to draw into
one monochrome Tektronix window with command line input
and text menus.

Fig. 2. Graph drawn in the ElVis display client by pseudo-
terminal connection to legacy codes on server. Collaborative
data exploration from multiple data sources, whiteboard,
graph editor, and portal sign-on panels are also in the client.

Internal Server

HTTP Web Server

User’s Client Computer
Windows, Mac, Linux

Java Applet - GUI
Java Servlet

Create graphs

Registration

Collaboration

Compute Cluster

Firewall

Credentials

myProxy Server

Legacy Plotting
Code

ElVis API

Command Line I/O
Controller

Experiment Data
Analysis Runs

X_509 Certificates

XML

Globus

job-su
bmit

Gra
ph

 O
bje

cts P
seudo-Term

inal

Master

Slave

Req
ue

sts

Fig. 3. Multi-tier architecture of the ElVis Portal includes
display client, HTTP server, servlet, myProxy server, and
legacy applications running on compute servers.

	I. INTRODUCTION
	II. Related Work
	III. Display Client
	IV. Server side
	V. Pseudo-terminal

