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the fusion experimental cycle became possible for the 
first time thanks to this technology. We also describe 
the Access Grid, experimental data presentation tools, 
and agreement-based resource management and 
workflow systems enabling time-bounded end-to-end 
application execution. The first virtual control room 
experiment represented a mock-up of a remote 
interaction with the DIII-D control room and was 
presented at SC03 and later reviewed at an 
international ITER Grid Workshop.  

roven value to the 
ational Fusion 

enefited from Grid 
n of the application 
that codes can be 

 organization (VO) [3] 
ices. NFC, as well 
g from Grid tools 
anagement, data 

ity, and information 
nfrastructure works 

be developed to 
 another challenge: 
rimental science.  

for experimental 
sciences poses unique challenges. For example, to 
assist in an ongoing experiment, we need to find ways 
of delivering results, such as time-critical execution in 
the Grids, within promised quality of service (QoS). 
This task involves resolving issues of control over 
resources shared by more or less controlled 
communities as well as finding ways to deal with 
uncertainty and dynamic behaviors always present in a 
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at sample rates from kHz to MHz, 
representing about a gigabyte of data. Throughout the 
experimental session, hardware/software plasma 
control adjustments are made as required by the 
experimental science. These adjustments are debated 
and discussed among the experimental team. Decisions 
for changes to the next pulse are informed by data 
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The vision of the virtual control room was 
developed in answer to the requirements discussed 
above. We developed a prototype implementation of 
the required functionality and conducted a mock-up 
simulation of the control room interactions as an 
experiment in collaborative science. The interactions 
involved remote codes, resources, and scientific teams 
in the experiment. The experiment was demonstrated 
at SC03. The interactions are depicted in Figure 1 and 
described below.
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Figure 1: SC03 experim

 
 
Offsite collaborators (SC floor, Phoenix) joi
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run at PPPL for the first time between pulses, giving 
the scientists data that was previously available only 
after the experimental day had ended. The offsite team 
members were able to collaborate more efficiently by 
being able to share their personal display with the 
room’s shared display. This capability allowed 
visualizations to be efficiently compared for debate 
before reporting results back to the DIII-D control 
room. The results of this demonstration and the 
feedback from fusion scientists has helped sharpen the 

aborative control room for 

 
ntrol Room 

ogy used to 
ntrol room.  

ss Grid 

ockup of tokamak 
trying to illustrate 

ate fully in the 
at the experimental 

d to give the remote 
 the control room at 

a distance. The Access Grid is an ensemble of network, 
computing, and interaction resources that support 
group-to-group human interaction across the Grid [8]. 
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presentation and interactive software environments, 
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application should also use the Access Grid toolkit to 
provide a secure information channel as well as a way 
of easily dumping data collected into the AG venue. 

As the data is gathered into the MDSPlus [10] 
system, the remote scientist was able to open standard 
data processing and viewing applications such as 
ReviewPlus or EFIT viewer to start the analyzing 
process. Once remote scientist identified data points of 
interest, they were able to “warp” the application to a 
region that was shared between Access Grid node and 
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Agreements-based interactions enable negotiation 

enable negotiation approach to resource and service 
management [14-16].  The negotiation process can be 
viewed as a discovery phase in which clients and 
providers represent their needs and capabilities to each 
other. This phase ends when both sides commit. A 
committed agreement can be viewed as a 
concretization of use policy representing a relationship 
between a client and a provider. From the providers 
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To assess the progress of the experiment, fusion 

scientists run analysis and simulation codes during the 
between-pulse period. The core analysis code is the 
magnetohydrodynamics (MHD) equilibrium fitting 
code EFIT [20], first developed in 1985 to perform 
magnetic and optionally kinetic-magnetic analyses for 
Doublet III, the predecessor to DIII-D. It was later 
adapted for the DIII-D National Fusion Facility and 
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