
SYNTHETIC TEXTURING USING DIGITAL FILTERS

by

Eliot A. Feibush, Marc Levoy, Robert L. Cook
Program of Computer Graphics

Cornell University
Ithaca, New York 14853

ABSTRACT

Aliasing artifacts are eliminated from computer generated images of textured polygons by equivalently
filtering both the texture and the edges of the polygons. Different filters can be easily compared
because the weighting functions that define the shape of the filters are pre-computed and stored in lookup
tables. A polygon subdivision algorithm removes the hidden surfaces so that the polygons are rendered
sequentially to minimize accessing the texture definition files. An implementation of the texture
rendering procedure is described.

COMPUTING REVIEWS CATEGORY: 8.2

KEYWORDS: Computer Graphics, Anti-Aliasing, Sampling, Digital Filtering, Texturing, Hidden Surface Removal

i. INTRODUCTION

Sampling converts a function into a sequence
of discrete values so the function can be
reproduced at a finite resolution. If the
sampling rate is insufficient for the function,
then the discrete values will contain aliasing
artifacts. The most common aliasing artifacts in
computer generated images are jagged edges and
Moire patterns. Animated sequences can also
suffer from temporal aliasing artifacts such as
strobing and false motion (e.g., wagon wheels
that appear to spin backwards).

There are two solutions to the aliasing
problem in computer graphics: increasing the
sampling rate and filtering the original function.
Increasing the sampling rate means computing and
displaying the image at a higher resolution.
Filtering the original function means blurring the
image before sampling. The two approaches are not
mutually exclusive. Catmull and Crow point out
that if the only goal is to eliminate aliasing,
then filtering the original function is better
than increasing the sampling rate (4,5).
Furthermore, it is often impossible to increase
the sampling rate without more costly display
technology.

P e r m i s s i o n t o copy w i t h o u t f e e a ~ o r p a r t o f t h i s m a t e r i a l i s
g r a n t e d p r o v i d e d t h a t t h e c o p i e s a r e n o t made o r d i s t r i b u t e d
for direct commercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice
i s given that copying is by permission of the Association f o r
Computing Machinery. To copy otherwise, or to republish,
r e q u i r e s a f e e a n d / o r s p e c i f i c p e r ~ t s s i o n .

01980 ACM 0-89791-021-4/80/0700-0294 $00.75

Filtering was introduced to the computer
graphics literature by Catmull in (3) and was
studied comprehensively by Crow in (5). Since
then, several researchers have made filtering an
integral part of their synthetic imaging systems.
These systems can be classified by the type of
data they display:

i. Continuous functions (parametric data):
1. Crow (5) (parabolas)

2. Objects (polygonal or patch data):
i. Catmull (3) (patches)
2. Crow (5) (polygons)
3. Crow (6) (vectors)
4. Catmull (4) (polygons)
5. Whitted (9) (polygons)

3. Textures (pixel data):
1. Catmull (3) (on patches)
2. Blinn and Newell (2) (on patches)
3. Crow (6) (characters)
4. Blinn (1) (on patches)

Most of the above implementations that filter
only edges use an unweighted filter (i.e., a
filter with a weighting function that is constant
throughout the convolution mask). This is far
better than no filter at all, but not as good as a
weighted filter. Unweighted filters have been
used to avoid the computational expense of
weighting functions. Researchers who have used
weighted filters for the texture did not use the
same filter for the edges of the surfaces.

The texture and the edges of each surface
should be filtered separately and equivalently to
produce correct renderings. The texture should be
filtered first to remove excessively high

294

frequencies that could cause aliasing in the form
of Moir~ patterns. Then the edges of surfaces
should be filtered to eliminate the excessively
high frequencies that could cause aliasing in the
form of "jaggies." Of the implementations listed
above that include texturing, only Catmull's (3)
applies equivalent filters to both the texture and
the edges. He uses unweighted filters to display
environments of textured patches.

2. IMPLEMENTATION

This paper describes the implementation of
two filtering processes used for displaying
textured polygons. Both the texture filter and
the edge filter are based on a polygon subdivision
hidden surface algorithm, and both procedures use
pre-computed lookup tables to define any desired
filter shape.

2.1 DATA REPRESENTATION

Objects in this texture rendering system are
defined by planar polygons. These polygons may be
concave, may contain holes, and may be coplanar
with other polygons in the environment to create
detail faces within larger faces. Each polygon is
assigned a texture which completely covers its
surface. A texture is a two-dimensional array of
texture definition points. The color of each
point is represented by either one intensity
value, producing a gray scale texture, or three
intensity values, producing a full color texture.

The construction of the database, including
the creation and assignment of textures to
polygons, is handled by an interactive geometric
modeling package which is described by Feibush
(7). The textures can be generated by any of
several methods, including optical scanning or
synthetic airbrushing. In practice, several
techniques are usually combined for each texture.

The word "pixel" (picture element) must be
clearly defined. A pixel is often thought of as a
rectangular block whose width is equal to the
distance between centers of adjacent blocks. In
this paper, however, a pixel is defined as an
infinitesimal point having an intensity value.

2.2 COORDINATE SYSTEMS

Three coordinate systems are used:

i. Texture definition space.
2. Object definition space.
3. Image display space.

The first coordinate system is a
two-dimensional space for defining textures. The
textures are created and stored on the X - Y plane
shown in Figure la. The second coordinate system
is a three-dimensional space used for defining the
polygons. When a texture is assigned to a
polygon, a matrix is constructed that transforms
the polygon from its location in object space to
the X - Y plane in texture space, as shown in
Figure lb. The third coordinate system is a

COORDINATE SYSTEMS
Y, F IGURE 1

ill'if
• . °

• • . . ° . • ° •

°"

• • • ° ° • • • • F

t_ • . ° • . ° • . ° .

l a . P o l y g o n a n d two rows
o f p i x e l s i n t e x t u r e
d e f i n i t i o n s p a c e .

Vo
J ~

. /
A lb. Polygon and two

rows of pixels
Z O in object space.

~ Ic. Polygon and two
rows of pixels

Z i in image space.

x° 1
/[

three-dimensional space used for displaying the
object. A single matrix is used to transform the
polygons from object space to image space and
create the perspective distortion, as shown in
Figure 16.

Also shown in the figure are two rows of
display pixels which are drawn as points in
accordance with the above definition of the term
"pixel." These display pixels are initially
defined in image space and can be transformed to
object space (care must be taken in reversing the
perspective distortion), and then to texture
definition space, as shown in the figure.

295

2.3 HIDDEN SURFACE ALGORITHM

Most researchers use a scanline
hidden surface algorithm to determine the
contribution of each polygon in the object to the
display pixels. In a scanline algorithm, all the
polygons contributing to the color of a pixel are
processed simultaneously. The color of each pixel
can therefore be computed in a single pass. An
alternative solution presented here is to use a
polygon subdivision hidden surface algorithm to
compute the visible portions of all the polygons
before computing the color of the display pixels.
The color of each pixel is built up piecemeal from
the visible portions of each contributing polygon.
The polygon hidden surface algorithm developed by
Weiler (8) has been implemented.

Separating the hidden surface removal from
the filtering process has a significant advantage
over approaches that do both tasks simultaneously.
Rendering a textured polygon involves accessing
its texture definition file. A scanline algorithm
requires simultaneous access to the texture files
of all the polygons that are visible on each
scanline. The storage problems this entails can
not be taken lightly even in a virtual memory
machine, particularly if the textures are high
resolution color images. The polygon subdivision
hidden surface algorithm produces a list of
visible polygons defined at machine precision so
that the polygons can be rendered sequentially.
Hence only one texture file has to be accessible
at a given time, and each texture file is
processed completely before another one is needed.

2.4 TEXTURE FILTERING

Whenever a polygon is displayed in
perspective and is not parallel to the picture
plane, the amount of blurring required to avoid
aliasing varies across the polygon and is
different in the horizontal and vertical
directions. The method described in this paper
produces sufficient blurring at each display pixel
by selecting specific texture definition points
that correspond to the pixel and then filtering
the points to determine the color of the pixel. A
description of the procedure follows:

i. For a given view of the object, use the
polygon subdivision hidden surface
algorithm to make a list of the portions
of the polygons that are visible in image
space. The visible portions are called
display polygons.

2. Working with one display polygon at a
time, make a list of all the pixels that
contribute to the display of the polygon.
A convolution mask, whose shape is
determined by the weighting function of
the filter, is centered at each display
pixel. Each pixel has a bounding
rectangle, which is the smallest
rectangle that completely bounds the
pixel's convolution mask. The bounding
rectangles may overlap depending on the
size and shape of the convolution masks.
List every display pixel whose bounding

rectangle is completely or partially
within the polygon, as shown in Figure
2a. Also save a list of the
intersections of each bounding rectangle
with the polygon.

3. For each display pixel, transform its
bounding rectangle from image space to
object space and then to texture
definition space. The rectangle can be
transformed to texture definition space
because its vertices have
three-dimensional coordinates coplanar
with the display polygon. The rectangle
in image space transforms to a
quadrilateral in texture space, as shown
in Figure 2b. The texture definition
points within this quadrilateral
contribute to the color of the display
pixel. To simplify the selection of
these points, a rectangle is constructed
around the bounding quadrilateral. This
rectangle includes some texture
definition points that do not contribute
to the color of the pixel, but these
extra points will be eliminated from the
filtering in step 6.

4. Transform the parent polygon of the
current display polygon from object space
to texture definition space. Clip the
rectangle around the convolution mask
quadrilateral against the parent polygon.
The texture definition points within this
area will be filtered, as in Figure 2c.

5. Transform each texture point that will be
filtered to object space and then to
image space, as shown in Figure 2d.

6. Eliminate the extra points selected
in step 3 by clipping the transformed
texture points against the bounding
rectangle of the convolution mask in
image space, as shown in Figure 2e.

7. Filter the selected texture points by
computing the weighted average of their
color values. Points near the center of
the convolution mask are weighted more
heavily than those near the edge. The
cone shown in Figure 2f represents one
possible weighting function. The
weighting function is computed at a
number of locations and the values are
stored in a two-dimensional lookup table.
The location of each transformed texture
point within the convolution mask is used
as an index to the lookup table. The
color values of all the texture
definition points are multiplied by their
respective values in the lookup table and
sun, ned together in a weighted average.
When the transformed texture points do
not coincide precisely with the discrete
locations at which the weighting function
is calculated, the nearest value is used.

This completes the texture filtering. The
edges of the polygons are filtered next to
complete the rendering procedure.

296

TEXTURE FILTERING FIGURE 2

"•---•Xi
Z i

I~ ~iii~,~t • I ' / " • :.,
, , i: ::::::~iii !~ i~:' ::~i~

I. I. I. I-li~iiiil. I

2a. Select the pixels that contribute to
the display of the polygon. For
clarity, the bounding rectangles
shown do not overlap. Figures 2b-2f
illustrate the texture calculation
for each selected pixel.

>"t
2b. Transform the bounding rectangle to

texture space and select texture
definition points.

t

~Xt /

2c. Select the points inside the
transformed parent polyRon.

/
/

polyg~

¥

Z i

2d. Transform the points to image space.

i

2e. Select the points
bounding rectangle.

inside the

Y
I

Z I

2f. Compute the weighted average of the
selected points.

297

2.5 EDGE FILTERING

The intensity of a pixel whose convolution
mask is completely within one display polygon is
determined just by the texture filter. The
intensity of a pixel near an edge of a polygon is
only partly determined by the texture filter
because its convolution mask covers more than one
display polygon. The intensity of a pixel
computed by the texture filter for one polygon is
weighted by the percentage of the total intensity
of the pixel that is contributed by that polygon.
The total intensity of a display pixel is built up
sequentially as each polygon is rendered by
accumulating the partial intensities in a frame
buffer.

The contribution of a polygon to a pixel is
determined by filtering its edges with the same
weighting function that was used for the texture
filter. But unlike the texture, which is defined
by discrete points, the edges of the polygon are
defined by a continuous function. Edge filtering
is therefore an analytic problem. The cone above
the convolution mask shown in Figure 3a represents
one possible weighting function for the filter.
The value of the weighting function at any point
in the convolution mask is the distance from the
point to the surface above it. The contribution
of a polygon to the pixel is the percentage of the
volume of the entire cone that is above the
polygon, as shown by the shaded volume in Figure
3a. The calculation of this volume is described
below.

i. Clip the display polygon against the
bounding rectangle of the convolution
mask, as shown in Figure 3b. The points
of intersection of each polygon edge with
the bounding rectangle are already known
from step 2 above. The clipped polygon
may be concave and may contain holes.

2. For each vertex of the clipped polygon,
construct a triangle with the following
sides (as shown in Figure 3c):

i. BASE is the line segment between the
current vertex and the next vertex
(going clockwise around the polygon).

2. SIDE1 is the line segment between the
current vertex and the pixel.

3. SIDE2 is the line segment between the
next vertex and the pixel.

3. Calculate the volume above the polygon
from the volumes above all the triangles
constructed in step 2, as shown in Figure
3c. The volume above a single triangle
is added to the total if the cross
product of SIDE1 and SIDE2 is negative;
it is subtracted from the total if the
cross product is positive.

The task of finding the volume above an
arbitrary polygon has now been simplified
to finding the volume above a series of
triangles, each having one vertex at the
pixel. The problem can be simplified

4.

further. For each triangle, the
perpendicular from the pixel to BASE (or
to its extension) forms two right
triangles. The volume above the original
triangle is the sum of the volumes above
the two right triangles if the
perpendicular lies within the triangle,
as shown in Figure 3d; it is the
difference of the volumes if the
perpendicular lies outside of the
triangle, as shown in Figure 3e.

5. The problem has now been simplified to
finding the volume above a group of right
triangles. The base and height of each
triangle are used as indices to a lookup
table that contains the volume above this
triangle for the given weighting
function. Care must be taken in
computing the lookup table so that areas
inside the bounding rectangle but outside
the convolution mask have no volume above
them. Only the shaded area of Figure 3f
has volume above it.

Each filter shape needs only one lookup
table, regardless of the filter's absolute size.
The filter size can be changed by scaling the
indices to the lookup table.

The organization of the lookup table assumes
that the filter function is circularly synmnetric.
For a filter that is not circularly symmetric, one
more parameter describing the location of the
right triangles (such as a polar sweep angle) is
required. A four parameter lookup table would
give the volume above the original triangle
without constructing the two right triangles. The
X and Y positions of the two vertices of BASE of
the original triangle would be used as the indices
to the four parameter lookup table. This further
simplifies the filtering computation but requires
significantly more table storage.

3. EXAMPLES

A polygon textured with alternating red and
white vertical stripes has been rendered by the
system described in this paper. Due to the
rotation and perspective transformations, the
number of texture definition points that were
filtered for each display pixel varied
considerably. The images were computed at a
resolution of 512 x 512 and displayed on a 24-bit
color frame buffer.

The five images of the polygon demonstrate
the effectiveness of different filters, as shown
in Figures 4a-e. Figure 4a shows the polygon in
texture definition space. In Figure 4b this
polygon is displayed in image space with no
filtering. In Figure 4c it is displayed using an
unweighted filter with a square convolution mask
whose sides are equal to the distance between
adjacent display pixels. In Figure 4d the polygon
is displayed using a filter with a Gaussian
weighting function that has a standard deviation
equal to the distance between adjacent display
pixels. The convolution mask is a circle whose
radius is equal to twice the standard deviation of

298

EDGE FILTERING

Yi

Z i 3a. The intensity computed by the texture
filter is weighted by the ratio of
the shaded volume to the total volume
of the cone.

FIGURE 3

Y
/

3b. Clip the polygon to the bounding
rectangle of the pixel's convolution

mask.

\ \

/

3c. For each vertex of the clipped polygon, construct the triangle formed by the vertex,
the next vertex (going clockwise), and the pixel. From the volumes above these
triangles, calculate the volume above the clipped polygon as shown in Figures 3d-f.

3d. For each triangle, construct the perpendicular from the pixel
to BASE. If the perpendicular is inside the triangle, then
the volume above the triangle is the sum of the volumes above
the two right triangles formed by the perpendicular.

3e. If the perpendicular is outside the triangle, then the volume
above the triangle is the difference of the volumes above the
two right triangles formed by the perpendicular.

f
3f. Find the volume above each

right triangle by using its
height (h) and base (b) as
indices to a lookup table.
The value stored in the
lookup table includes only
the volume above the shaded
portion of the triangle.

J

299

Figure 4a. Texture definition. Figure 4b. No filter.

!si

Figure 4c. Unweighted filter. Figure 4d. Gaussian filter.

Figure 4e. Hardware magnification. Figure 5. House.

300

the Gaussian.

Displaying the polygon with no filtering is
completely unsatisfactory due to the jaggedness of
not only the edges of the polygon but also the
stripes in the texture. Using an unweighted
filter is better and nearly satisfactory along the
edges, but Moir~ is still evident in the center of
the polygon. The weighted filter, however,
produces an excellent image. In the hardware
magnification shown in Figure 4e, the polygon is
inclined slightly more than in Figures 4b-d to
enhance the visibility of the filtering. Notice
that the filtering along the left edge of the
polygon is equivalent to the filtering along the
stripes of the texture.

The final image, Figure 5 shows the front
facade of an imaginary house that has been
rendered by the system described in this paper.
It demonstrates an application of the system to a
complex database composed of many polygons and
textures. The textures were extracted from
optically scanned photographs of real objects.
The background was created by assigning an
optically scanned photograph of a real site to the
rearmost polygon in the environment.

4. LIMITATIONS

It is possible to obtain views where textures
are magnified beyond their original resolution
(i.e., zooming into a texture). During the
texture filtering process, the area of the texture
definition that corresponds to a display pixel
will contain only a few texture definition points.
To avoid reproducing these texture definition
points as large square areas, the color values of
the closest texture definition points are
bilinearly interpolated.

Bilinear interpolation of the texture
definition points is also necessary when the edges
of two polygons are very close to each other, but
do not actually touch. The hidden surface
algorithm will detect the narrow slot between the
polygons, so texture definition points of the
polygon seen through the slot should be selected
for filtering. If no texture definition points
from the background polygon fall within the slot,
then the nearby texture definition points are
bilinearly interpolated.

More blurring is required to avoid aliasing
if there are high frequency components in the
texture definition. Aliasing that is not
noticeable in a static image may become visible if
the image is part of an animated sequence, so that
additional blurring is needed.

5. CONCLUSIONS

Two filtering processes, one for the textures
and one for the edges, are necessary for
displaying textured polygons without introducing
aliasing artifacts. A weighted filter, such as
the Gaussian used in the examples, produces more
realistic images than an unweighted filter or
no filter at all.

A polygon subdivision hidden surface
algorithm is superior to a scanline hidden surface
algorithm for displaying textured polygons. By
making a list of all the visible portions of the
polygons before computing the color of the display
pixels, the polygons can be filtered sequentially
to minimize accessing each of the texture
definition files.

Complex filters no longer have to be
considered prohibitively expensive. If the
filter's weighting function is stored in a lookup
table instead of being computed at each pixel, an
image can be computed in the same amount of time
regardless of the complexity of the filter. The
filter can be changed just by using a different

lookup table.

ACKNOWLEDGEMENTS

This research has been performed at the
Program of Computer Graphics at Cornell University
and was funded in part by the National Science

Foundation.

The authors thank Theodore Crane and Stuart
Sechrest for implementing the polygon subdivision
hidden surface algorithm.

i.

2.

3.

4.

5.

6.

7.

8.

9.

REFERENCES

Blinn, James, "Computer Display of Curved
Surfaces", Dissertation, University of Utah,

1978

Blinn, James, and Newell, Martin, "Texture and
Reflection in Computer Generated Images",
Communications of the ACM, Vol. 19, No. i0,
Oct., 1976

Catmull, Edwin, "A Subdivision Algorithm for
Computer Display of Curved Surfaces",
Dissertation, University of Utah, 1974

Catmull, Edwin, "A Hidden-Surface Algorithm
with Anti-Aliasing", Computer Graphics, Vol.
12, No. 3, Aug., 1978 (Siggraph '78)

Crow, Franklin, "The Aliasing Problem in
Computer Synthesized Shaded Images",
Dissertation, University of Utah, 1976

Crow,' Franklin, "The Use of Grayscale for
Improved Raster Display of Vectors and
Characters", Computer Graphics, Vol. 12, No.
3, Aug., 1978 (Siggraph '78)

Feibush, Eliot, "Texture Rendering for
Architectural Design", Computer Aided Design,
Vol. 12, No. 2, Mar., 1980

Weiler, Kevin, "Hidden Surface Removal Using
Polygon Area Sorting", Masters thesis, Cornell

University, 1978

Whitted, Turner, "An Improved Illumination
Model for Shaded Display", Preliminary papers
to be published in Communications of the ACM,

Aug., 1979

301

