
Situational awareness visualization of joint
military forces requires the representation

of large geographic areas and thousands of military
units. High-level commanders are interested in the over-
all tactical deployment of their forces, enemy forces, and
noncombatants. The commanders are not looking for

highly detailed views of engage-
ments between units. A Joint Forces
operation simultaneously involves
ground, sea, and air forces, and can
include forces from a coalition of dif-
ferent nationalities. The visualiza-
tion shows if the different forces are
operating in support of each other.

Military units must be displayed
in the context of terrain, on the sea,
under the sea, and in the air. The
extent of the area of interest (play-
box) is typically one million square
miles. Observers want to see the
highest resolution data available
and to navigate through the model
at interactive rates. The geospatial
information displayed consists of

elevation data, a variety of maps, and high-resolution
imagery. The size of the playbox and the amount of data
place a considerable demand on both the terrain model
and the visualization software. Collateral maps and
images aid in understanding the movement and place-
ment of units.

The battlefield is a large, complex arena. Researchers
have developed computing environments to host situa-
tional awareness applications. Durbin et al. incorporat-
ed virtual reality to enhance human understanding and
interaction.1 Hix et al. reported on a virtual environment
for battlefield visualization and its evaluation.2 Rosen-
blum et al. described a situational awareness environ-
ment for directing the US Marines.3 The term situational
awareness has been applied to other aspects of the mil-
itary, such as the situational awareness of an individual
pilot or gathering information about specific assets. We

focus on theater-wide situational awareness covering a
large geographic area containing many military units.

The Joint Operations Visualization Environment
(JOVE), developed at Sarnoff to assist military decision
makers, optimizes the display of tactical data for infor-
mation presentation. JOVE uses three rear-projected dis-
plays driven from an SGI Onyx2 Infinite Reality2
computer. Stereoscopic display is available. A joystick,
a graphical user interface, and speech commands pro-
vide interaction. JOVE delivers accurate navigation
through the model over a range of viewer positions. A
typical scene from the situational awareness application
appears in Figure 1.

This case study describes techniques used for effec-
tively modeling and navigating geospatial and tactical
data for situational awareness. The visualization tech-
nology explained here could be applied to commercial
air traffic control, emergency management response,
and geographic information systems as well.

Software architecture
Our visualization software is based on the client-serv-

er paradigm. Several independent software modules
communicate through CORBA (Common Object
Request Broker Architecture).4 This approach facilitates
well-defined interfaces between modules, independent
development of modules, and communication between
modules running on different computers. The central
module, the Display Server (shown in Figure 2), is writ-
ten for Iris Performer,5 a software toolkit containing ren-
dering techniques for visual simulation. It maintains and
traverses the scene graph for rendering by the graphics
system. The graphical user interface for the application
runs as a client and submits requests to the Display Serv-
er. Typical requests include setting the view and load-
ing geospatial data.

The military data feed sends information about the
units. The data, consisting of time-stamped messages
describing the position and attributes of a unit, is stored
in the tactical database. The system stores every data
point so that the events can be replayed over time, and

0272-1716/00/$10.00 © 2000 IEEE

Visualization

38 September/October 2000

Visualization techniques in a

situational awareness system

aid rapid comprehension of

a complex battlespace.

Hardware scalability lets

remote users share

situational awareness with

the command center.

Eliot Feibush and Nikhil Gagvani
Sarnoff Corporation

Daniel Williams
Systems & Scientific Software

Visualization for
Situational
Awareness

historical tracks can be generated.
The tactical database sends requests
to the Display Server to draw the
units. The user interface lets the user
specify exactly which units to dis-
play and at what point in recorded
time.

JOVE has been deployed at train-
ing exercises where computer simu-
lation provides the unit data. Each
branch of the military has its own
simulator that only displays its own
units. The simulators broadcast their
events through a standard protocol.6

JOVE receives the messages and is
the first system to display the units
of all forces in a common picture.

The Earth model
Our model starts with a sphere

representing the Earth. We portray
the entire earth because

� Units can move out of the play-
box.

� Far-ranging units, such as aircraft,
may be stationed anywhere
around the world.

� Additional situations could devel-
op outside of the detailed playbox.

Satellite imagery of the Earth is texture-mapped onto
the geometric model. The cloudless geosphere imagery
(http://www.geosphere.com) portrays the earth at 4
kilometer resolution. Lines of latitude and longitude over-
lay the imagery at 10 degree intervals. We modeled the

sphere geometry to use polygons efficiently and also to
avoid thin triangles near the poles. The highest polygon
density occurs in the playbox, where most of the action
takes place. Similarly, we modeled the near hemisphere
containing the playbox with more polygons than the dis-
tant hemisphere. The entire Earth and playbox can be

IEEE Computer Graphics and Applications 39

1 Military units are represented
symbolically for situational aware-
ness. A stalk pinpoints the location
of each unit and the altitude of
each aircraft. The red dots on top of
the gray curtain show the location
of an airplane during a time period.
The terrain is drawn as a texture,
shaded and color-coded by eleva-
tion. The time and date of the
situation appear at the top along
with the compass heading of the
view direction.

2 Visualization
software archi-
tecture.

modeled with about 4,000 triangles in this way, as shown
in Figure 3. We generated the polygon geometry using
the OpenGL Optimizer toolkit, which stitches together
the two hemispheres and the playbox seamlessly. By spec-
ifying the topology as three regions defined by shared
edges, Optimizer created a crack-free triangle mesh.

The sphere geometry is initially calculated in spheri-
cal coordinates (latitude, longitude, and elevation),
then converted to Cartesian coordinates. All graphics
calculations use a Cartesian coordinate system with its
origin at a corner of the playbox. We chose Cartesian
coordinates instead of spherical coordinates for fast pro-
cessing by the hardware. The SGI graphics hardware
implements a nonlinear Z-buffer with maximum preci-
sion at low Z values. Therefore, having the origin at a
corner of the playbox allows the highest numerical pre-
cision in the most critical area and avoids artifacts dur-
ing the hidden surface removal process.

The geometry for the terrain elevation model, maps,
imagery, and military units are geographically regis-
tered to and integrated with the Earth model. The geom-
etry is initially calculated in spherical coordinates and
then converted to Cartesian coordinates to optimize
graphical rendering. The point of view moves seamlessly

across the different features, so the
observer maintains context even
with large changes in viewpoint.

Navigation model
We designed our model for con-

trolling the view of the scene so that
users could not crash into the Earth’s
surface or get disoriented, flying off
into space. The point of view is
restricted to locations on the Earth,
and the eye point lies on a virtual
cone perpendicular to the earth’s
surface. We have observed inexperi-
enced computer users navigate com-
fortably with the Cone Viewer on
their first try. This model works well
for navigating environments posi-
tioned on a surface when the view-
point is primarily from above. The
Cone Viewer could benefit geo-
graphic information systems, weath-
er displays, or looking at parametric
values projecting from a surface.

The viewing model consists of
positioning the tip of the cone at a
point on the Earth’s surface, as
shown in Figure 3. Moving the tip of
the cone to a new point on the Earth
changes the point of view displayed
at the center of the screen. The eye is
restricted to locations on the rim of
the cone and always looks toward
the tip of the cone. This type of view
fosters situational awareness of
large areas on the Earth. For our
application it is not necessary to look
up at the sky or fly through a valley.

The cone’s height and diameter are adjustable. Scal-
ing the size of the cone changes the zoom factor by mov-
ing the eye either farther from or closer to the tip.
Changing the apex angle of the cone, while keeping the
distance between the eye and the tip constant, changes
the elevation of the view direction. A top-down view is
like looking at a flat map. A low-angle view is useful for
looking at 3D terrain features. Moving the location of
the eye around the circular base of the cone changes the
compass heading of the view. We have found it useful
to display this heading value (0 to 359 degrees) in the
visualization.

The initial user interface to the Cone Viewer used a
mouse to manipulate on-screen thumbwheels corre-
sponding to the degrees of freedom. We subsequently
added a joystick interface to make navigation more user
friendly. The four geometric features of the cone con-
trol the view parameters:

1. Location of the tip controls point of view.
2. Location of the eye on the rim controls heading.
3. Scale controls zoom.
4. Apex angle controls elevation angle.

Visualization

40 September/October 2000

3 The Earth model has the highest polygon density in the playbox (black),
lower in the surrounding hemisphere (cyan), and lowest in the far hemi-
sphere (magenta). The Cone Viewer navigation model positions a cone
perpendicular to the Earth. The eye looks from the rim of the cone to the
tip of the cone on the Earth’s surface.

These features map to joystick functions. Pushing the
joystick moves the tip in the compass direction and
moves the viewpoint. Twisting the joystick moves the
eye around the rim and rotates the view. Twisting while
squeezing the trigger button changes scale (zoom).
Pushing while squeezing the trigger changes the height
and diameter of the cone proportional to the elevation
angle. To maintain interactive rates when navigating,
some of the symbols are not drawn while the joystick is
in use. When the navigation stops and the view remains
constant, then the system redraws all the symbols. Com-
bining interactive navigation with a single, integrated
geospatial model helps users build a coherent mental
model of the terrain and its features.

The Cone Viewer with the joystick interface has per-
formed successfully in many military exercises that we
have observed. Its simplicity and reliability attract the
interest of first-time users, encouraging them to try
other aspects of the system.

Elevation visualization
Elevation postings are typically measured at 100-

meter intervals and stored in data files. A square degree
of land at 100-meter resolution contains about
1,440,000 sample points. Since the playbox can cover
more than 200 square degrees, representing the terrain
at full resolution with a uniformly triangulated polygo-
nal model greatly exceeds the capabilities of current
graphics computing. More efficient triangulation meth-
ods will yield better performance.7,8 However, current
high-end graphics hardware can display very large tex-
tures at high performance. Our first elevation visual-
ization technique takes advantage of high-resolution
texture rendering. Our second technique uses a more
display-efficient polygonal model.

The first technique represents the entire elevation data
as color-coded texture. The value of each elevation point
is color-coded by height and entered into a large texture
map. This texture is mapped onto a spherical patch of
geometry corresponding to the playbox. This approach
enables displaying the terrain at its full resolution and
makes for well-defined coastlines and other detailed fea-
tures as shown in Figure 1. The color-coding enables the
user to develop a perception of the terrain, such as areas
having tall mountains and areas of flat plains.

Initially we used just the color-coded value for the tex-
els (pixels in the texture map). Subsequently we shad-
ed the color-coded texels according to the 3D shape
(relief) of the terrain. Observers preferred combining
color-coding with the visual cue of relief shading
because it reinforced their perception of the terrain. We
describe the implementation of the relief shading tech-
nique in the next section.

The second technique uses a 3D model of the ter-
rain—a triangulated irregular network model—to opti-
mize rendering performance. Close to the surface, a 3D
picture of the terrain is preferable. This enables users to
not only perceive hills and plains, but also gain line-of-
sight information. For example, if two opposing tanks
are near each other but not firing, a hill might block their
view. We describe the implementation of relief-modeled
terrain in a following section.

We have used the two techniques to create terrain
models deployed at military exercises. Users involved
with ground-based units preferred the 3D relief model.
Users of aircraft were satisfied with the shaded, color-
coded texture because the relief shading resembles the
hill shading printed on maps that pilots typically use for
mission planning.

Color-coded, relief-shaded, textured terrain
We combined two methods to better convey the topog-

raphy of the digital elevation model. First, we developed
a color-coding scheme to reinforce the perception of ele-
vation. Blue and cyan cannot be used because they are
reserved for water and sky. Green is perceived as vege-
tation, and white looks like snow. Eliminating blue, cyan,
green, and white leaves gray, yellow, and red and their
intermediate blends. Observers preferred gray for low
land and red for high elevations. We used this color
scheme to translate each posting of the elevation model
into an appropriately colored texel in a texture (Figure
4a). Then we computed a reflectance map using Method

IEEE Computer Graphics and Applications 41

4 (a) Elevation
postings are
color-coded
by height.
(b) Reflectance
map of eleva-
tion values with
illumination
from the north-
west. Gradient
information
from the eleva-
tion data is used
to produce
relief shading.
(c) Color-coded,
relief-shaded
elevation. The
color-coded
values (a) are
modulated by
the reflectance
map (b) to
produce this
shaded eleva-
tion texture.

(a)

(b)

(c)

P, A Simple Alternative,9 which roughly simulates how
the terrain will look if viewed from above with the sun’s
illumination coming from the northwest (Figure 4b).
The method uses gradient information from the eleva-
tion data to produce a relief-shaded texture. We used this
reflectance map to modulate the colored texels to achieve
the final texture map (Figure 4c).

Relief-modeled terrain
Visualization of the 3D terrain promotes understand-

ing the speed and movement of ground forces and plan-
ning tactical maneuvers. Elevation data points are
organized into a triangular, irregular network model
using the method proposed by Heckbert and Garland.10

A monolithic model for the entire playbox cannot be ren-
dered interactively, so we split the model into multiple
tiles. Tiles outside the view volume are culled prior to ren-
dering. Each tile also has multiple levels of detail, which
switch to lower detail as the eyepoint moves further away.

Contextual cues accurately model coastlines, espe-
cially for low-resolution tiles. Threshold-based seg-
mentation followed by edge detection creates a coastline
mask from the elevation data. This mask serves as an
input to the triangulation algorithm to generate a larg-
er number of triangles near the coastline.

If each tile is individually modeled, the triangles do
not match up at the edges between tiles. To alleviate this,
we create a huge model for the entire playbox and then
split it into tiles. Such an approach provides seamless
terrain at the cost of more triangles. However, when
adjacent tiles have different levels of detail, cracks can
appear in the terrain. One solution eliminates the cracks
with additional geometric modeling.11 Our approach
displays texture-rendered, flat terrain below the relief
model to achieve a visually continuous appearance.

The relief model typically occupies several hundred
megabytes of disk space and takes considerable time to
generate. To facilitate rapid color changes without
regenerating the relief model, the system handles color
as a one-dimensional texture. It assigns texture coordi-
nates to the relief polygons according to elevation and
creates a very small texture map using the elevation col-
ors. The 1D texture rendered on the relief model reloads
instantly. We implemented rapid traversals for coordi-
nate and normal computations in Iris Performer to
achieve scaling. Two-dimensional textures from maps
and satellite imagery can be draped on the terrain.
Again, the JOVE software includes texture coordinate
computation to enable switching between 1D and 2D
textures for runtime switching of maps.

The actual vertical displacement of terrain relative to
its area is small. The vertical dimension only covers a few
pixels when a large geographic area is rendered on the
screen. To enhance the observer’s perception, the vertical
displacement is scaled up to exaggerate elevation. In the
JOVE user interface, a slider interactively controls the ver-
tical scale. Users typically prefer a scale factor of 5 for the
relief model when viewed from high in the air. For line-
of-sight evaluation along the ground, the user can set the
vertical scale factor to 1, the original elevation data. This
helps in determining if one ground unit can see another.
The terrain is modeled on a spherical Earth, so it is not
possible to apply a simple scale transformation to the orig-
inal 3D model. Therefore the 3D coordinates of each point
must be recalculated based on the scaled elevation.

Sea and under sea visualization
Joint Forces operations include surface craft and sub-

marines. Our technique for displaying sea units is to
model a translucent, textured surface for water areas
within the playbox. Initially we created a noise texture
tile that covered a 1 × 1-degree square area (about 60
miles on a side). Although adequate for close-up views of
the coastline, it became visually objectionable for play-
boxes with large water areas. In a distant view, showing
a number of noise texture tiles, the macro pattern of iden-
tical, adjacent, water texture tiles created a visual arti-
fact. To eliminate the repetitive patterning, we generate
a fractal sum noise texture12 with enough texels to cover
the entire playbox. By merging this water texture with
the elevation postings, the land area texels replace the
fractal pattern in areas not covered by water. Each texel
in the merged texture has a transparency value. The land
texels are opaque, and the water pixels have varying
degrees of transparency according to the noise function.

Opaque blue sea floor and walls modeled below the
water surface visually enclose the sea area. The texture
on the water enhances the perception of the surface and
partially obscures the submarines. This clarifies the posi-
tion of the submarine as below the water. The lines of
latitude and longitude are drawn over the submarine
symbol and label, as in Figure 5.

Maps and imagery
Digital maps and imagery, available for display in the

terrain model, provide contextual geographic detail to
enhance the observer’s perception of the features per-
taining to the tactical situation. We have used maps that
vary in scale from 1:2,000,000 to 1:24,000. The map’s
content varies with the scale. The scale of the content

Visualization

42 September/October 2000

5 The subma-
rine and its
label are drawn
below the
translucent,
textured water.

of 1:2,000,000 matches the scale of
a far-ranging view of the entire play-
box. The content of more detailed
maps cannot be resolved from a dis-
tant view. As the view moves in, the
content of the more detailed maps
becomes visible, so it is effective to
switch the display to a different
map.

Maps and images are stored as
high-resolution textures. The origin
of each texture is registered to a point
of latitude and longitude, so it can be
positioned within the Earth model.

Figure 6 shows a 1:24,000 contour
map texture rendered onto the 3D
relief model—useful for determining
where ground forces can move and
how quickly. The land areas in other
maps we have used are shaded cor-
responding to the terrain. Texture
rendering a shaded map onto the 3D
model visually reinforces the map shading with the geo-
metrical shape. Pilots and aircraft commanders felt this
was a very effective presentation. If the map is higher res-
olution than the terrain, the map will appear distorted
and visually conflict with the relief model. If the map or
imagery is significantly higher in resolution than the ele-
vation postings, then it is rendered onto a small geomet-
ric surface positioned above the terrain as a spherical
patch.

Displaying large maps
Combining adjacent digital maps (pixel arrays) into a

large texture facilitates their display on certain graphics
hardware. We combined sixteen 8K × 8K arrays into one
32K × 32K texture map. This texture of more than 1 bil-
lion texels is stored on disk as a precomputed mipmap of
16 levels, with each level organized in 512 × 512 texel
tiles. Large textures are displayed using clipmaps13 when
running on an SGI Onyx2 computer with Infinite Reality2
graphics hardware. Clipmaps permit displaying very large
textures by efficiently loading texture tiles from disk to
the texture memory of the graphics hardware as needed.
An 8K × 8K clipmap for one digital map occupies 8.66
megabytes of hardware texture memory. The 32K × 32K
clipmap uses 12.66 Mbytes of texture memory. It is much
more efficient for display to composite geographically
adjacent digital maps into one large clipmap than to cre-
ate a clipmap for each individual pixel array.

The clipcenter is the point on the model that is given
the highest resolution texture, with the resolution
decreasing at points away from it. The default algorithm
in Iris Performer for setting the clipcenter places it at the
point on the model closest to the eyepoint. For our view-
ing model, this holds true only when the eye is overhead
and looking straight downward. We implemented our
own clipcentering algorithm using a ray from the eye-
point outward into the view frustum. We use the view-
ing model elevation as the input to a function that bends
the ray from the center of the frustum (when looking
straight down) to the bottom of the frustum (when look-

ing straight ahead.) The intersection of this ray with the
model (or the closest point) serves as the clipcenter.

Hardware support for clipmaps is not available on
lower end machines. On such machines hardware tex-
ture memory (typically 4 Mbytes) can only accommo-
date a 1K × 1K texture map. Hüttner14 proposed a
mipmap pyramid to overcome this limitation. The
method requires potentially time-consuming runtime
modification of the geometry.

We use a simple paging scheme to browse large maps
on an SGI Octane workstation with 4 Mbytes of texture
memory. The map is divided into 512 × 512 texel tiles.
We create flat, geo-positioned geometry corresponding
to the latitude and longitude extents of each tile and pre-
load it into the Performer scene graph. Initially, traver-
sal for all such geometry is turned off, incurring no
rendering burden. The four texture tiles closest to the
current viewpoint load in response to user demand. The
system maps these textures onto their corresponding
geometries, which it makes visible in the scene graph.
When the view position changes, new tiles can load
automatically or when the user requests. With auto-
matic loading we achieved update rates of 3 frames per
second on an Octane.

Tactical visualization
Theater-scale situational awareness focuses on the

military units’ tactical information. The input data feeds
provide information about each unit. The information
typically consists of loyalty (friendly, neutral, or hos-
tile), location, role, size, heading, and speed. The size
of ground units ranges from squad to brigade, but only
a single location value is specified. Role refers to func-
tion, such as infantry or motorized armor for ground
units and fighter or tanker for aircraft. Aircraft have alti-
tude and submarines have depth. Realistic rendering of
fine detail is not required. Efficient presentation of the
information in the data feed is critical.

We implemented two techniques for visualizing tacti-
cal units—symbols and 3D models. Although the 3D

IEEE Computer Graphics and Applications 43

6 A 1:24,000-
scale map
draped onto the
3D relief model.
Military units
are displayed as
symbols.

models have an intuitive appeal, we have observed that
experienced users derive more information from the sym-
bols. For aircraft, in particular, the same airframe can be
equipped for a variety of roles, such as transport or sur-
veillance. The functionality—indistinguishable in the 3D
models—is very obvious in the symbolic representation.
We based the symbols on Military Standard 2525A, devel-
oped by the US Department of Defense. The color and
shape of the symbol indicates friendly, neutral, or hostile.
The shape indicates air, sea, or ground. The icon in the
center of the symbol represents role. The size of a ground
unit appears symbolically above its rectangular frame.
For aircraft, we display a number and an X, such as 4X, to
indicate a flight of 4 aircraft reported in the data feed.

The system renders the symbols as billboards with
depth, ensuring that the front of the symbol always
faces the observer while drawing the symbol at its true
location in the 3D world. If the symbol had a fixed ori-
entation, then rotating the view could position the sym-
bol at an angle to the observer and make it impossible
to recognize.

We scale the billboarded symbols and the models so
that they always cover a constant amount of area on the
screen. Otherwise, the units would get very large as the
eyepoint approaches or become very small and possibly
disappear when the eyepoint moves away.

A stalk line drawn from each unit pinpoints its loca-
tion on the Earth’s surface. This is especially important
for clarifying the location of aircraft. Portraying the loca-
tion and history of air units in 3D has had compelling
results compared to systems that only draw the path in
2D on a flat map. We observed a simulated theater bal-
listic missile launch at an exercise. From the 3D visual-
ization of the trajectory and rapid rise in altitude, the
commander could immediately identify the air unit as a
missile. The 2D display only showed an air unit, and sev-
eral minutes elapsed before the operators at the 2D dis-
play could identify it as a missile and not an airplane.

A heading vector drawn for each unit shows direction
of travel. The length of the vector is proportional to the
unit’s speed. We have observed situations where diverse-
ly oriented ships simultaneously turned toward the coast
to begin an amphibious landing. Seeing the alignment of
the heading vectors provides an early indication of coor-
dinated movement. Large ground units, such as a brigade,
occupy an area in reality, but only a single point of lati-
tude and longitude is reported as their location. There-
fore we display the stalk instead of outlining an area.

We have participated in joint force exercises where the
data feeds reported up to 15,000 military units. The
screen resolution is much too low to display all the units
simultaneously. A display filter controls which units are
shown. The user sets the filter by specifying a combination
of attributes. This is a very flexible and general approach.
For example, the user can request the system to display all
hostile ground units whose role is “special operations”
and all hostile helicopters. Limiting the display to these
units makes it possible to locate the air support for an
advanced ground assault. This helps the commander
understand the situation and formulate a response.

Movement over time proves useful for understanding
strategy. The location of each unit is stored in the tacti-

cal database for every update. For ships and ground
units, the system draws a single line to show each his-
tory path. For an airplane it draws a translucent, gray
history curtain stretching down to the ground from the
plane’s flight path. Showing the location and altitude of
a plane during a time period helps to determine its mis-
sion. Figure 1 shows the history for an airplane diving
down for an attack. The history for a submarine also
uses a gray curtain, but drawn below the translucent
water surface.

We used history tracks to resolve questions of terri-
torial incursion. Without visualization it is a time con-
suming task or sometimes impossible to manually
reconstruct the path of a unit. In one military training
exercise where JOVE was deployed, there was a report
that a red (hostile) aircraft flew over blue (friendly) ter-
ritory. This affects the blue commander’s response pro-
vided it can be authenticated. By recalling the red
plane’s history curtain, it was immediately clear that the
incursion occurred. None of the other computer systems
at the exercise could answer this question.

The movement of units can be replayed faster than
they actually occurred. Users are comfortable with a
replay rate 30 times faster than real time. Fast replay
offers an excellent tool for showing prior events to the
next shift of personnel. An entire 8-hour shift can replay
in 16 minutes, enabling the new shift to see all the events
of the previous shift. This is a very efficient method for
conveying information.

The tactical database for a one-week exercise typi-
cally contains 100,000 events describing the creation,
update, or deletion of units. Replay used at training exer-
cises provides after-action review, enabling users to
search through time and space to verify the movements
and engagements of military units. Visually replaying
these events gives participants a coherent picture of the
tactical situations that occurred during the exercise.

Collaboration
The military has a hierarchy of command locations

ranging from the command center to remote outposts.
Thus, the ability to share the visualization throughout
the chain of command is desirable. A large JOVE system
in the command center can have a 12-foot-wide display,
so a group of people can readily look at the display and
discuss the situation.

Commanders have reported that one of their biggest
challenges is mutual understanding of the tactical pic-
ture between the command center and the units in the
field. The Display Server runs on a computer in the com-
mand center. We developed a technique for remote users
with minimal computing resources to collaborate with
the command center. If the remote user can run a brows-
er and connect to the server in the command center,
then collaborative visualization becomes possible.

We developed software for both the client and the
server. The client software runs in the browser and can
request the current picture in the Display Server. The
remote user can change the view, set the time, and spec-
ify which units to display. The request is sent to the serv-
er, which generates a new picture that is stored in an
image file and transmitted to the client.

Visualization

44 September/October 2000

Sharing the command center’s visualization enables
the unit commanders to verify their positions and sta-
tus. This can be key to preventing friendly fire.

Conclusion
Visualization of tactical and terrain data increased

situational awareness. When deployed at exercises,
JOVE rapidly clarified complex environments contain-
ing large amounts of data. Symbolic representation of
military units conveyed more information than geo-
metric models. Polygon-based terrain modeling would
have exceeded the capacity of current display systems.
However, current graphics hardware supports very large
texture maps. Therefore we applied texture-based ter-
rain modeling techniques to situational awareness.
Organizing the software as independent modules con-
nected by CORBA facilitated extending the system for
collaborative visualization between distant users. For
the future we are developing additional user interfaces,
reading new data feeds, and developing metrics for eval-
uating battlefield visualization systems. �

Acknowledgments
This work was sponsored by the National Information

Display Laboratory (NIDL), Princeton, N.J. The Cone
Navigation model was developed by Michael Amabile
and Charles Asmuth of Sarnoff Corporation.

References
1. J. Durbin et al., “Battlefield Visualization on the Responsive

Workbench,” Proc. IEEE Visualization 98, ACM Press, New
York, Oct. 1998, pp. 463-466.

2. D. Hix et al., “User-Centered Design and Evaluation of a
Real-Time Battlefield Visualization Virtual Environment,”
Proc. IEEE Virtual Reality 99, IEEE Computer Society Press,
Los Alamitos, Calif., 1999, pp. 96-103.

3. L. Rosenblum et al., “Situational Awareness Using the
Responsive Workbench,” IEEE Computer Graphics and
Applications, Vol. 17, No. 4, July/August 1997, pp. 12-13.

4. Object Management Group, The Common Object Request
Broker: Architecture and Specification, Tech. Report 1.2,
Needham, Mass., 1993.

5. J. Rohlf and J. Helman, “Iris Performer: A High-
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics,” Proc. Siggraph 94, Computer Graphics Proc.,
Ann. Conf. Series, ACM Press, New York, July 1994,
pp. 381-394.

6. R. Weatherly, D. Seidel, and J. Weissman, “Aggregate Level
Simulation Protocol,” 1991 Summer Computer Simulation
Conf., Mitre Corp., McLean, Va., July 1991.

7. P. Lindstrom et al., “Real-Time, Continuous Level of Detail
Rendering of Height Fields,” Siggraph 96 Conf. Proceed-
ings, Holly Rushmeier, ed., Ann. Conf. Series,. ACM Press,
New York, Aug. 1996, pp. 109-118.

8. R. Pajarola, “Large-Scale Terrain Visualization Using the
Restricted Quadtree Triangulation,” Proc. IEEE Visualiza-
tion 98, Oct. 1998, ACM Press, New York, pp. 19-26.

9. B. Horn, “Hill Shading and the Reflectance Map,” Proc.
IEEE, Vol. 69, No. 1, Jan. 1981, pp. 14-47.

10. P. Heckbert and M. Garland, Fast Polygonal Approximation
of Terrains and Height Fields, Tech. Report CMU-CS-95-181,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, Penn., 1995.

11. L. Willis, “Who Says You Can’t Teach an Old LOD New
Tricks,” Proc. Image 98, The Image Society, Chandler, Ariz.,
1998.

12. K. Perlin, “An Image Synthesizer,” Proc. Siggraph 85, Com-
puter Graphics Proc., Ann. Conf. Series, ACM Press, New
York, July 1985, pp. 287-296.

13. C. Tanner, C. Migdal, and M. Jones, “The Clipmap: A Vir-
tual Mipmap,” Proc. Siggraph 98, Computer Graphics Proc.,
Ann. Conf. Series, ACM Press, New York, July 1998, pp.
151-158.

14. T. Hüttner, “High Resolution Textures,” Late Breaking Hot
Topics, IEEE Visualization 98 CD-ROM Proc., IEEE Computer
Society, Los Alamitos, Calif., Oct. 1998.

Eliot Feibush is a member of the
technical staff at Sarnoff Corpora-
tion in Princeton, N.J.. His research
interests include modeling, render-
ing, human-computer interfaces, and
display systems. He received both his
B. Architecture (1979) and his MS in

computer graphics (1981) from Cornell University.

Nikhil Gagvani is a member of the
technical staff at Sarnoff Corpora-
tion in Princeton, where he is part of
the Microsystems Imaging Technolo-
gies Group. His research interests
include computer graphics, visual-
ization, networking, and most

recently, volume graphics and animation. He holds a
B.Tech degree from the Indian Institute of Technology,
Kharagpur, and an MS degree from Rutgers, the State Uni-
versity of New Jersey. He is also a PhD candidate in com-
puter engineering at Rutgers.

Daniel Williams has been an
independent consultant specializing
in computer graphics software devel-
opment for 14 years. He holds a BS
in mechanical engineering and an
MS in computer science from the Uni-
versity of Pennsylvania. His interests

are visual simulation, scientific visualization, and dis-
tributed systems. He is a member of the ACM, Siggraph,
and IEEE Computer Society.

Readers may contact Feibush and Gagvani at Sarnoff
Corp., 201 Washington Road, Princeton, NJ 08540-6449,
e-mail {efeibush, ngagvani}@sarnoff.com. Contact
Williams at Systems & Scientific Software, 263 Forrest
Ave., Elkins Park, PA 19027, e-mail sass@acm.org.

IEEE Computer Graphics and Applications 45

