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I. INTRODUCTION

Gaussian process regression (GPR) is a class of super-
vised machine learning algorithms that can be used to
construct data profiles from discrete observations, pre-
dict uncertainty in the reconstructed profiles in a statis-
tically rigorous manner and provide the framework for
error propagation in the calculation of quantities derived
from the data profiles [1–3]. Compared to traditional
parametric fitting methods, GPR is particularly useful in
data reconstruction from discrete observations where the
plasma is non-uniform, and the function describing the
non-uniform profile is not known beforehand. To elab-
orate, traditional fitting methods assume a parametric
form of a function before fitting that function to a dis-
crete set of observations. A limitation of the traditional
method is that more than one function can fit a discrete
set of observations, and often plasma physics theories
don’t predict which functional form is preferred. GPR
is a Bayesian non-parametric regression technique that
predicts a probability distribution over possible functions
that fit a set of discrete data points. The mean of the
probability distribution gives the most probable charac-
terization of the data, i.e., the mean function (mean pro-
file), while the standard deviation obtained from variance
indicates the uncertainty in the prediction. Thus, GPR
recognizes that there is an uncertainty in the function
describing the data profiles, which is not acknowledged
in traditional fitting methods where a functional form is
assumed for fitting [1, 4].

GPR models assume that the measured discrete data
points are part of a multivariate normal distribution, i.e.,
the data points measured at a particular spatial location
satisfy a univariate normal distribution, while the data
points at neighboring locations are correlated. The corre-
lation between neighboring data points enables GPR to
make predictions at locations where measurement does
not exist. A covariance kernel like the Radial Basis Func-
tion (RBF) is used to incorporate the correlation between
data points in the GPR model.

GPR models are classified as homoscedastic and het-
eroscedastic models depending on how the variability
in the observation is modeled [5]. In the context of
pulsed experiments like MRX[6], the shot-to-shot vari-
ation cause observation variability. In a homoscedastic
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GPR model, the variance in the observation is assumed
to be constant throughout the input space. An example
will be a set of observations where the spread of the data
points about the mean is the same at each measurement
location. In the heteroscedastic model, the variance in
the observation can change depending on the location in
the input space. Heteroscedastic models are more rele-
vant for experiments where the error bars can differ at
different measurement locations. Heteroscedastic GPR
uses two GPs (Gaussian Processes), one for modeling
the mean function and the other for modeling the input
space-dependent error bars. A combination of the two
GPs give a posterior distribution over the mean function
and input dependent error bars [5]. The mathematical
basis for GPR and its application are well described in
Refs [1, 2, 4, 5].
Recently, GPR has been used to reconstruct 1-D den-

sity and electron temperature profiles of a Tokamak (fu-
sion device) [7]. Typically for analysis of Tokamak data,
discrete measurements made at multiple spatial locations
simultaneously in a single shot are used to reconstruct the
1-D profiles [7]. However, in MRX, data points from a
large number of shots are assembled for the reconstruc-
tion of 2-D profiles. The data variability due to shot-to-
shot variation in MRX needs to be accounted for during
profile reconstruction, gradient calculation, and uncer-
tainty prediction. We describe the application of GPR
for data analysis that considers the nuances of MRX data
due to shot-to-shot variation.

II. APPLICATION OF GPR FOR ANALYZING
MRX DATA

GPR was employed to construct 2-D planes from the
discete datsets of electric probes like Langmuir and Mach
probes. We demonstrate the implementation of GPR by
using the density and potential data of MRX as examples.
The density and potential were measured using Langmuir
probes [8]. The Langmuir probes were used to make sin-
gle point measurements in each shot. The probes were
moved between shots to obtain discrete data points cov-
ering the r-z plane of MRX. Discrete data points from a
large number of shots were assimilated to form a dataset
for application of GPR. An inspection of the raw data
showed that the spread of the discrete data points about
the mean differs at different spatial locations. Further-
more, simultaneous measurements at multiple locations
showed that the change in the measured values due to
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FIG. 1. (a) Two-dimensional mean profile of the electron density extracted from the posterior of a GPR model trained using
the discrete raw data. The grey lines are representative magnetic field lines in the r-z plane for reference. (b) A 1-D plot
showing the mean and standard deviation extracted from the posterior of the trained GPR model along with the raw data. The
dark blue line is the mean density at ∆z = 4.5 cm. The blue band gives the 1-σ uncertainty in the predicted mean profile from
the trained GPR model, where σ is the standard deviation. The black circular dots are raw data points lying between ∆z = 4
to 4.5 cm. Note that the 1-σ error bar follows the local spread in the data points. The error bar is thicker at ∆r ∼ −2.5 cm
where the spread in the raw data is more, while the error bar is smaller at ∆r ∼ 4.5 cm where the spread in the raw data is
less.

shot-to-shot variation is spatially correlated. To preserve
these raw data features in our analysis, we adopted the
heteroscedastic GPR model of Zhang and Ni [5]. The
model implemented for data reconstruction can be writ-
ten as

y (x) = f (x) + GP (0, g (x) ρ (x,x′) g (x′)) , (1)

where y(x) is a sample from the posterior of the trained
model, f(x) is the mean function, g2 is a measure of the
variance, and ρ is the correlation function that incorpo-
rates the spatial correlation between the change in the
measured values at neighboring locations due to shot-to-
shot variation. The formulation of Zhang and Ni [5] is
used to estimate f(x) and g from two GPs employing
RBF Kernels. An RBF kernel with a length scale l of 1.5
cm is used to specify ρ. Refer to subsection II B for the
role of length scale of ρ in the GPR model. For the func-
tional form of the RBF kernel, also known as the squared
exponential kernel, refer to Rasmussen [1].

Henceforth for brevity, the heteroscedastic GPR model
used for reconstructing MRX data profiles will be referred
to as the GPR model. The codes for the model were
written using the freely available Python packages scikit-
learn [9] and NumPy. For introductory examples on how
GPs are trained refer to the help files of scikit-learn [10].

A. Reconstruction of 2-D data profiles and
calculation of uncertainty in the predicted profile

We have used the density data to demonstrate the con-
struction of 2-D data profile using GPR. As mentioned
before, a Langmuir probe was used to measure density.
The Langmuir probe was used to make a single-point
measurement in each shot. A large number of shots were
taken where the probe was moved in-between shots to

sample the r-z plane of MRX. A total of 1,700 shots are
scrutinized to assemble a refined dataset. We checked
for consistency in magnetic-field structure and reference
Langmuir probe data in the scrutiny. The X-point loca-
tion of the reconnection layer had a minor shot-to-shot
variation with respect to the system coordinates of MRX.
We corrected for the slight change in the X-point location
by using the relative positions of the probes measured
from the X-point in our GPR analysis.

Fig. 1 demonstrates the effectiveness of GPR in the re-
construction of the density profile and in the prediction
of the associated uncertainty. Fig. 1a shows the mean
profile of the density extracted from the posterior of the
trained GPR model. The 2-D density profile shows a
pair of high density and low density regions in the vicin-
ity of the separatrices. To validate these features, we
compared the mean profile and error bars with the raw
data. A visual comparison of a 1-D cut of the mean
profile at ∆z = 4.5 cm in Fig. 1b shows that the mean
profile follows the trend in the raw data points. The
1-σ confidence interval predicted by GPR is shown by
the blue band in Fig. 1b. A visual inspections shows
that the width of the 1-σ confidence interval follows the
local spread of the raw data points. For example, the
error bar is larger at ∆r ∼ −2.5 cm where the spread in
the raw data is more, while the error bar is smaller at
∆r ∼ 4.5 cm where the spread in the raw data is small.
Furthermore, we quantitatively checked the 1-σ error bar
by comparing the number of raw data points lying within
nmean±1σ to those lying outside the error bars. We found
67% of the raw data points to lie within the error bars,
which is very close to the theoretical expectation where
68% of the data points are expected to lie within ±1σ
confidence interval. Thus the comparison between raw
data and GPR predictions show that GPR is effective at
predicting mean profiles and quantifying the uncertainty
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FIG. 2. Demonstration of gradient calculation and determination of the associated error bars using the GPR framework.
We also show the effect of the length scale l of the correlation function ρ on the uncertainty in the calculated gradient. The
two-dimensional mean profile of plasma potential Vp extracted from the posterior of a GPR model trained using the discrete
raw data points is shown in (a). The grey lines in (a) are representative magnetic field lines in the r-z plane for reference. A
1-D plot showing the radial variation of the mean and standard deviation of Vp for l = 1.5 and 2 cm are shown in (b) and (c),
respectively. Note that the mean and standard deviation in (b) and (c) does not depend on l, which is expected as l does not
influence the variance. Rather l affects the smoothness of the sample drawn from the posterior of the trained model. This is
because l affects the correlation between spatially separated data points extracted from the posterior. The radial electric field
Er = −∂Vp/∂r calculated for the two cases l = 1.5 and 2 cm is shown in (d). Note that the error bar in the Er calculation is
smaller for the l = 2 cm case as the profiles drawn from the posterior are relatively smoother.

associated with those predictions.

B. Calculation of gradient using GPR framework

GPR is useful for computing gradients from data pro-
files and estimating the associated error bars. For cal-
culating gradients, many sample data profiles were ran-
domly drawn from the posterior of a trained GPR model.
Spatial gradients were calculated for each data profile to
obtain an ensemble of spatial gradient profiles. The mul-
tiple profiles of spatial gradients were averaged to get the
mean profile of the data gradient, and the standard de-
viation was computed to estimate the uncertainty in the
gradient calculation.

The magnitude of the error bar of the gradient calcu-
lated by the above method depends on the correlation
length scale l used for ρ in Eq. 1. We demonstrate the
effect of l on uncertainty estimates for gradients using
the electric field calculation as an example.

The electric field was calculated from the negative gra-
dient of the plasma potential profiles. The GPR model
was trained using diescrete plasma potential data points
to extract the plasma potential profiles from the pos-
terior. The discrete data points of the plasma potential

were calculated using Vp = Vf+3.7Te [11]. Here Vp is the
plasma potential, Vf is the floating potential, and Te is
the electron temperature. The Vf and Te were measured
using a Langmuir probe.

Fig. 2 shows the calculation of radial electric field, Er,
from Vp using Er = −∂Vp/∂r. Fig. 2b and c shows the
radial variation of Vp used for calculating Er shown in
Fig. 2d. The value of l was held at 1.5 cm in Fig. 2b,
while l was 2 cm in Fig. 2c. Note that the mean and the
error bar of Vp in Fig. 2b and c are the same as l does not
effect the mean and the standard deviation. However, the
samples drawn randomly from the posterior of GPR are
smoother for the l = 1.5 cm compared to l = 2 cm as l
affects spatial correlation of the posterior samples. The
Er profile for the two cases are shown in Fig. 2c. The
mean Er for the cases are nearly identical, however, the
error bars are greater for the l = 1.5 cm case compared
to l = 2 cm.

To estimate a value of l for reconstructing data pro-
files we compared the gradient of the floating potential
directly measured using a radial floating probe array with
predictions of GPR for different values of l. The results
of direct measurement and GPR prediction were found to
best agree for l = 1.5 cm. Therefore, we used l = 1.5 cm
for defining ρ in Eq. 1.
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FIG. 3. Schematic of uncertainty propagation in calculation of composite quantities.

C. Error propagation in calculation of composite
quantities using a Monte-Carlo method and the

GPR framework

GPR provides an effective framework for error propa-
gation in the calculation of composite quantities derived
from data profiles of multiple directly measured vari-
ables using a Monte-Carlo technique. We use the cal-
culation of the z-component of the ion current density,
Ji,z = enM

√
Te/mi, as an example to demonstrate error

propagation. Here, e is the quantum of electric charge,
M is the Mach number, Te is the electron temperature,
and mi is the ion mass. The n and Te are measured us-
ing a Langmuir probe, and M is measured using a Mach
probe. The mach probe data was calibrated using ion ve-
locity measured by an ion Doppler spectroscopy probe.
The steps of the error propagation calculation are shown
in the schematic given in Fig. 3. First, the discrete data
points of n, M and Te are used to train GPR models for
each quantity. From the posterior of trained GPR mod-
els, many profiles of n, M , and Te are drawn randomly
to calculate Ji,z and thus generate an ensemble of Ji,z
profiles. The multiple profiles of Ji,z are averaged to ob-

tain the mean profile of Ji,z, and the standard deviation
gives the uncertainty.

III. DISCUSSION

In this supplementary material, we have described the
use of GPR to reconstruct 2-D data planes and compute
gradients of physical quantities (n, Te, Vp, Mach number,
etc.) from datasets of discrete data points obtained by
electric probes. The electric probes were used to make
single-point measurements in each shot, and the probes
were moved in between shots to cover the r-z plane of
MRX. Single point measurements from a large number of
shots were assimilated to form a dataset of discrete data
points for the application of GPR. The 2-D reconstructed
data planes of the electric probe data, along with the
magnetic field data of the 2-D B-dot probe array, are used
for physics analysis of the reconnection layer. The error
propagation in the calculation of composite quantities
was done using a Monte-Carlo method.
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