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Steady State Thermoelectric Field-Reversed Configurations
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It is shown that the cross-field thermoelectric force of magnetized plasmas can maintain field-reversed
configurations against resistive diffusion, resulting in a steady state device attractive for thermonuclear
fusion. If a peaked radial temperature profile is maintained, the thermoelectric force is in the opposite
direction to the usual resistive friction, thus maintaining the field configuration. The field maintenance
is tantamount to dynamo action, operating even in two dimensions. We show that a steady state device
can be made by simply heating the O-point: no external electric fields or particle sources are needed.
The feasibility of this scheme for fusion is discussed.

PACS numbers: 52.55.Dy
The field-reversed configuration (FRC) is attractive as
a device to contain thermonuclear plasmas because of
its relative simplicity and because it lends itself to di-
rect conversion of the fusion products [1]. The configu-
ration has a closed, purely poloidal magnetic field and is
toroidally symmetric. The plasma pressure is contained
by the encircling magnetic pressure and magnetic tension.
All the currents generating the field come from plasma
diamagnetism.

The FRC has two drawbacks: The magnetic field
diffuses and decays on resistive time scales if it is not
maintained by an external toroidal electric field; hence,
the device is not steady state. Second, the system may be
unstable to MHD interchange and kink modes. The latter
is a topic of intensive research; in this paper we address
the steady state issue.

Specifically, we show in this paper that the cross-
field thermoelectric force [2] can maintain an FRC in
steady state as long as an electron temperature gradient is
maintained by external heating. The thermoelectric force,
also referred to as the Nersnt effect, is a force that the
electron fluid feels on account of the fact that the electron-
ion collision frequency decreases with increasing relative
speed, yR , as y

23
R . The physics underlying the cross-

field thermoelectric force [3] and how it can maintain the
magnetic field is schematized in Fig. 1. In the figure,
the magnetic field points out of the page and there is a
plasma temperature gradient across the field. Consider the
middle portion of the figure: there is a diamagnetic flow
of electrons, from left to right in the picture, on account
of the difference in gyrospeeds (for simplicity, we assume
constant density and immobile ions). The usual friction
force arises because of the friction of this diamagnetic
flow on the background ions. This is the origin of the
cross-field resistivity, and this is what causes the magnetic
flux to diffuse at a rate proportional to h�=Te. Note that
this frictional force on the electrons is from right to left.
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Consider now that cold particles (in the bottom portion
of the figure) collide more efficiently than the hot ones,
due to the y

23
R effect. In that case, if we consider again

the middle portion of Fig. 1, we note that the part of the
electron fluid moving to the left feels more friction than
the part moving to the right. Thus, the differential friction
on the electron fluid due to the y

23
R effect is from left-to-

right. This is in the opposite direction to the “normal”
friction. Furthermore, this effect is also proportional
to h�=Te. If a density gradient is included in the
above accounting, the normal friction is proportional
to =�nTe�, but the countervailing thermoelectric friction
is still only proportional to =Te. Thus, by balancing
=�nTe� with a countervailing term proportional only to
=Te, unique steady state profiles can be found which
are characterized by there being no net friction on the
electron fluid. Hence, there is no diffusion of the mag-
netic field.

That the thermoelectric effect can be used to maintain
plasma current has been recognized before. Sakharov
[4] evaluated this effect in the transport equilibrium of a

FIG. 1. The origin of the thermoelectric force. The differen-
tial friction between hot and cold gyro-orbits is in a direction
opposite to the normal friction.
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cylindrical plasma column with an axial magnetic field.
Ahlborn [5] studied such a system in more detail. A
suggestion to use this effect for an FRC, along the lines of
this paper, has also been made by Steinhauer [6].

In what follows, we use the Braginskii [2] equations
to present an analytic theory of this effect. The transport
equations for a steady state MHD configuration can be
written as

�= ? �n �u� � S , (1)

�=�nTe 1 nTi� � �j 3 �B , (2)

�E0 2 �=F � 2 �y 3 �B 2 �ne�21 �=�nTe�

2 �ne�21 �= ? �
��Pe 1 nm �y �y�

2 0.71e21=kTe 1 h� �j 2 �jT � , (3)

where
�j � �= 3 �B , (4)

�jT � �3�2�n �B 3 �=Te�B2. (5)

Here S is a particle source, �E0 is an external toroidal
electric field, and m is the electron mass. The vector
�u is the ion flow and �y is the electron flow, where
�y � �u 2 �j��ne�. Equation (2) is the quasistatic one-fluid
force balance equation, wherein the viscous stresses have
been neglected as they are small. Equation (3) is the
electron force balance equation wherein the vector �jT is
the cross-field thermoelectric force of Braginskii and the
viscous and inertial stresses have been retained. In what
follows, we will assume that the equilibrium is toroidally
axisymmetric and that the �B field is strictly poloidal and
given by

�B � �=f 3 �=c , (6)

where �R, f, z� are cylindrical coordinates and c is the
flux function. The above system has to be augmented by
equations for Te and Ti which we will introduce soon.
For immediate purposes, we will need only the fact that
the parallel thermal conduction is very large and thus
Te � Te�c� and Ti � Ti�c�. (The latter presumes that
heat sources are axisymmetric. For simplicity, we assume
this to be the case for this paper. Nonaxisymmetric effects
are discussed briefly at the end.)
2970
It follows immediately, from the component of (2)
along �B, that n � n�c�. Further, from (2), �j� � �B 3
�=�nTe 1 nTi��B2 and we find �= ? �j� � 0 (for Bf � 0
and axisymmetry). In that case, jk can be set to zero.
Now, from the �=f component of (3), we get

2RE0 � �u ? �=c 1 �ne�21 �= ? ��
��Pe 1 nm �y �y� ? R2=f�

1 h��nTe�0 1 �nTi�0 2 �3�2�nT 0
e�R2. (7)

The viscous and inertial terms in (7) can be shown to
be negligible, as follows. First, consider the parallel
viscous stress, the largest of the anisotropic stresses as

formulated by Braginskii. This stress has the form
��P �

�b̂b̂ 2
��1�3�W , where W is a scalar. In that case, the

divergence of the =f component of this stress vanishes
identically given the symmetries of our problem. Next,
we examine the collisionless, gyroviscous stress and the
collisional, cross-field stress. We find these stresses to
be smaller than the resistive term in Eq. (7) and, so,
negligible. To see this, we note that the resistive term
in (7) can be written hR2j ? =f, where h � mne��ne2�
(here, ne is the electron collision frequency, re is the
electron gyroradius, and ye is the electron thermal speed).

The viscous stresses,
��P, are of order nmm== �y, where

j �yj is of order the diamagnetic speed and m is of order
the Bohm diffusion coefficient, reye, or the cross-field
diffusion, r2

ene. With these sizes, the resistive term can be
shown to be larger than the collisionless and the collisional
stresses, respectively, by factors of at least jre=j21 or
jre=j22. Finally, the inertial term can be estimated to
be at most of order the collisionless stress. Hence, all
the viscous and the inertial terms can be neglected. The
resulting equation can be written

2RE0 � �u ? �=c 1 h��nTe�0 1 �nTi�0 2 �3�2�nT 0
e�R2.

(8)

We now take flux surface averages of (1) and the
heat equations. Noting that � �= ? �A	 � �d�dc� � �=c ? �A	,
where �f	 �

H
�d��B�f, the average of (1) yields

d
dc

�n��u ? �=c	� � �S	 . (9)

For the heat equations, we use Braginskii’s heat transport
equations. The flux surface averages yield
3
2

n
dTi

dc
� �u ? �=c	 1 nTi

d
dc

� �u ? �=c	 �
d

dc

∑
�k�iR

2B2	
dTi

dc

∏
2 ne

m
M

�n	 �Ti 2 Te� 1 �Hi	 , (10)

3
2

n
dTe

dc
� �u ? �=c	 1 nTe

d
dc

� �u ? �=c	 �
d

dc

Ω
�k�eR2B2�n	

∑
n

dTe

dc
2

9
28

d
dc

�nTe 1 nTi�
∏æ

2 ne
m
M

�n	 �Te 2 Ti� 1 �h� �j 2 �jT � ? �j	 1 �He	 , (11)
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where k�a are the perpendicular thermal conductivities
[2]. In the above heat equations, all the Braginskii terms
except for the viscous terms have been accounted for
(the viscous terms can be estimated to be unimportant).
In particular, the drift and thermal heat fluxes as well
as Ohmic heating have been included: “Pfirsch-Schluter”
effects do not arise in this system since there is no toroidal
magnetic field.

Finally, we take the �=c component of (2) to obtain the
Grad-Shafranov equation

�= ? �R22 �=c� � 2�nTe 1 nTi�0. (12)

Equations (8)–(12) constitute a closed set of equations for
n�c�, Ta�c�, c , and � �u ? �=c	. Particle sources, �S	, drive
� �u ? �=c	 [from (9)], and heat sources, �H	, determine T �c�
profiles [from (10) and (11)]. Given � �u ? �=c	 and Ta , the
n�c� profile can be deduced from (8) if E0 is provided.
Finally, n and Ta profiles determine c , from (12).

We now address the question of interest; namely, can
an FRC be maintained in steady state without external
transformers driving E0. The answer is in the affirmative.
In the simplest possible configuration, we set E0 � 0
and S � 0. In this case, � �u ? �=c	 � 0, from (9). It
follows, from (8), that the current is driven completely
by the thermoelectric force, i.e., �j ! �jT . The following
equilibrium configuration is obtained:

d
dc

"
�k�iR

2B2	
dTi

dc

#
� ne

m
M

�n	 �Ti 2 Te� 2 �Hi	 ,

(13)

d
dc

"
29
56

�k�eR2B2	
dTe

dc

#
� 2ne

m
M

�n	 �Ti 2 Te�

2 �He	 , (14)

n0

n
�

�1�2�T 0
e 2 T 0

i

Te 1 Ti
, (15)

�= ? �R22 �=c� � �nTe 1 nTi�0. (16)

Thus, the heat sources drive the entire system and main-
tain a steady state: the temperatures Ta are determined
from (13) and (14); this yields n from (15), which then de-
termines c from (16). From (15), we note that n ~ T

1�2
e

for Te ¿ Ti , and n ~ T
21�4
e for Te � Ti . Thus, n can be

hollow (n is flat for Te � 2Ti) but note that the pressure
is always peaked for peaked Te, since �nTe 1 nTi�0 �
�3�2�nT 0

e, from (8).
We have solved the time-dependent version of the

system (1)–(5) by numerical means. A simple one-
dimensional system was investigated; i.e., the magnetic
field was unidirectional but reversing sign at the axis.
The ion temperature was set to zero and constant transport
coefficients were used, for simplicity. Three questions
were posed and resolved: (1) A steady state is achieved
by simply heating the axis, as in Eqs. (13)–(16); (2) such
a state is stable; and (3) the magnetic field can be “pumped
up” by heating on axis if it is initially very weak (i.e., the
initial pressure profile is almost flat). We found that a
steady state is indeed achieved, that such a state is stable,
and that the magnetic field can, in fact, be pumped up to
the desired value.

We point out here that the thermoelectric force intro-
duces considerations that obviate Cowling’s theorem [7].
Let us state this theorem: in resistive MHD, where Ohm’s
Law can be written �E � 2 �u 3 �B 1 h �j, if the system
is axisymmetric, the poloidal component of the magnetic
field must decay due to resistivity. Now Eq. (3) is just the
generalized Ohm’s Law, including the above and more.
Equation (8) is the 2D version of one of the compo-
nents of (3), wherein the first two terms on the right-hand
side constitute the usual hj term [using Eq. (12)] and
the third term is the thermoelectric term. The time de-
pendence in Eq. (8) can be restored by adding 2≠c�≠t
to the left-hand side. Now consider (8), for E0 � 0,
as one approaches the magnetic axis (i.e., the limit of
�=c ! 0). In this case, if j �uj is finite at the axis, we
have ≠c�≠t ! h=2c 1 �3�2�hR2nT 0

e. If the thermo-
electric term were absent, c must decay— this is Cowl-
ing’s theorem. Clearly, this tendency is overcome by the
thermoelectric term. The thermoelectric term constitutes
a source for the creation of magnetic flux; in this sense,
even if this source term were zero near the magnetic axis
(as we elaborate below), a steady state solution for c still
exists since flux annihilation at the axis is balanced by
flux creation elsewhere. In particular, if heat sources are
present to maintain temperature gradients, then c cannot
only be maintained but also be pumped up, rendering a
2D dynamo effect. (Note: jT 0

ej � j �=Te�RBj; thus, near

the axis, j �=Tej ! 0 and B ! 0, but T 0
e is finite [3].)

We may elaborate on this discussion of Cowling’s theo-
rem as follows. Suppose we have a system where we have
no inductive electric field, E0, but we have a source of
particles, S, and a heat source, H, both, say, feeding the O
point. For simplicity, let us examine the case where R is
large and the flux surfaces are circular so that �d�dc� !
�1�B� �d�dr�. Consider first the case where the thermo-
electric effect is absent. We look for a steady state solu-
tion with nonzero S and H with the idea being that if the
pressure gradients can be maintained by the particle and
heat input, this will maintain the diamagnetic currents and
thus the whole magnetic configuration. From Eq. (8), we
get d�rB��dr � �ur�h� �rB�, where we have used (12).
The radial flow, ur , is specified by S, according to Eq. (9)
which becomes nrur �

Rr
0 dr 0 r 0S�r 0�. In this case, we

may integrate the previous equation to solve for rB, viz.,
rB � C exp�

Rr dr 0 ur�h�, where C is the integration con-
stant. Upon applying the boundary condition B�0� � 0,
we find C � 0. Thus, the only steady state solution is for
vanishing B, i.e., the magnetic field diffuses away to zero
in spite of particle and heat input. This is another way
of proving Cowling’s theorem, in the presence of sources.
Let us now restore the thermoelectric term. Let the par-
ticle source be zero, for simplicity. The corresponding
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steady state equation, obtained from (8) and (12), is now
�rB� d�rB��dr � 2�3�2�nr2f�r� dTe�dr, where we have
introduced a new function f�r� which is arbitrary for the
moment but will be discussed soon. From this equa-
tion, we find the steady state solution for B�r�: B2�r� �
2�3�r2�

Rr
0 dr 0 nr 02f�r 0� dTe�dr 0. This solution is well

behaved and satisfies the boundary conditions. Thus, the
thermoelectric force can give rise to a steady state solu-
tion, obviating Cowling’s theorem. The function f�r� has
been inserted to show that this solution is good even if the
thermoelectric effect were to go to zero at the origin; i.e.,
a steady state solution for B�r� exists even if f�r� ! 0 as
r ! 0. We discuss this point further below.

Can a scheme for maintaining FRC’s in steady state
by central heating alone be feasible for fusion? Insofar
as the system is steady state and, so, to be maintained
for many energy confinement times, it is clear that the
FRC must be heated by auxiliary means, such as neutral
beam heating (NBI), for example. The above analysis
shows, pleasingly, that the same auxiliary heat source will
automatically be sufficient to maintain the magnetic field.
In other words, if FRC’s can be heated, the magnetic field
will also be maintained: in the transient phase the pressure
profiles will adjust, but the system will settle down to the
density profile given by (15) in steady state (if there is
also a particle source, as with NBI, there will be a cross-
field flow that will alter the balance above, though this
will still not affect the steady state aspect).

One major concern is that if the transport is anoma-
lous, then the “detailed balance,” signified by the cancel-
lation of h �j with h �jT [cf. Eq. (3)], could be thrown off
depending on how turbulence affects the cross-field resis-
tivity and/or thermoelectric effects. Another issue is the
validity of conclusions drawn from Chapman-Enskog the-
ory [2] as they are applied to collisionless thermonuclear
grade plasma. A detailed assessment of the latter is made
in Ref. [3]. Briefly, the thermoelectric force can be ex-
pected to survive into long mean free path regimes since
this force is a cross-field phenomenon. In addition, and
more to the point, the expected failure of the small Lar-
mor radius approximation near the O point is not serious
since the thermoelectric effect has to do with electron gy-
roradius effects and electrons become unmagnetized only
in a very small region near the O point (less than 1 cm
for typical fusion parameters). The latter point is of some
importance in reference to Cowling’s theorem. For, near
the axis as B ! 0, the thermoelectric effect could vanish
[2,8] (all diamagnetic effects vanish). However, as we
have discussed above, this is not an issue since the ther-
moelectric source of flux is nonzero almost everywhere
(for r . 1 cm in the plasma) and will actually create flux
there. In fact, as we have shown in the preceding para-
graphs, a steady state solution for B�r� can be obtained
with the thermoelectric force even if the latter were to
vanish as r ! 0 [see the solution for B�r� above and the
discussion on the function f�r�].
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It is clear, though, that only experiment can resolve all
the above issues. The proposed SPIRIT (self-organized
plasma with inductive, reconnection, and injection tech-
niques) experiment [9] is in a position to explore these
questions. The experiment will form an FRC with a con-
comitant toroidal NBI. The NBI will provide the necessary
auxiliary heat but, if the above physics works, and if the
plasma is MHD stable, it should also provide a thermo-
electric current drive sufficient to prevent flux decay. A
simpler or an existing experiment that tests just the basic
nature of the thermoelectric physics is desirable. The levi-
tated dipole experiment [10], currently under construction,
may serve this purpose well. It should be noted that in both
these experiments, the heat sources will be nonaxisymmet-
ric. Since there is no toroidal field in the system, the cross-
field heat conduction is relatively weak and, as a result, one
can expect toroidal asymmetries in the temperature. In
our analysis in this paper, we have assumed that the heat
sources are axisymmetric; thus, at a minimum, the analy-
sis should be redone allowing nonaxisymmetric heating.
It is well known [10] that such asymmetries lead to con-
vection cells with toroidal structure. A transport analysis
with nonaxisymmetric heating and convection is tractable
in simple cases: we have examined the case of a Z pinch.
We find that it is only the toroidally averaged radial flow,
not the toroidally varying convection, that has any influ-
ence on flux transport. Insofar as the averaged radial flow
results from particle sources and does not unduly influence
the thermoelectric effect (as we have shown herein), it is
possible that the asymmetries may not affect the thermo-
electric effect we have investigated herein. We may also
add that if large toroidal flow is driven in an FRC, as is
proposed for the SPIRIT experiment, this may have the ef-
fect of smoothing out the toroidal asymmetries.
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