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Magnetohydrodynamic(MHD) surface waves on liquid metal are studied theoretically and
experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived
when a horizontal magnetic field and a horizontal electric current is imposed. Waves always damp
in the deep liquid limit with a magnetic field parallel to the propagation direction. When the
magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected,
while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top
experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak
magnetic field and deep liquid. A noninvasive diagnostic accurately measures surface waves at
multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by
an intensified-CCD(charge-coupled device) camera. The measured dispersion relation is consistent
with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent
agreement with linear theory, it is observed that surface waves are damped only when a horizontal
magnetic field is imposed parallel to the propagation direction. No damping is observed under a
perpendicular magnetic field. The existence of strong wave damping even without magnetic field
suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in
fusion reactors, especially on the wave damping and a Rayleigh–Taylor instability when the Lorentz
force is used to support liquid metal layer against gravity, are discussed. ©2005 American Institute
of Physics. [DOI: 10.1063/1.1822933]

I. INTRODUCTION

The effect of a magnetic field and electric current on the
dynamics of liquid metals with a free surface facing a
vacuum or a nonconducting fluid(e.g., air), is a century-old
problem, studied first by Northrup.1 However, the progress in
their understanding has been very limited, especially in the
laboratory. Recently, a new interest has arisen in this prob-
lem, electrically conducting liquids, such as liquid lithium or
liquid salt (Flibe), are proposed as the material facing the
burning plasma in fusion reactors, directly handling the heat
flux and breeding tritium from neutrons.2–5 The Reynolds
number of such flows is typically larges*105d due to the
required fast flow rates, and the liquid is under extreme ther-
mal stresses due to the high heat flux on the free surface.2 A
typical magnetic fusion reactor uses a strong magnetic field
(on the order of 10 T) to confine plasma. Often, an electric
current is driven in the conducting, plasma-facing material
by either induction or an externally supplied voltage. In ad-
dition, unstable plasma modes can be coupled to free-surface
modes of liquid wall.6 A comprehensive understanding of
dynamics of such liquids in magnetic fields and with applied

currents becomes crucial for the success of this new applica-
tion.

A first step towards this goal is to understand the physics
of magnetohydrodynamic(MHD) surface waves7 in a static
pool subject to an externally applied magnetic field and a
current parallel to the unperturbed surface. The past work on
the subject, including theory and experiment, has been very
limited. Murty8 studied linear waves when the externally ap-
plied magnetic field and current are in the same direction. An
instability due to the pinch force(the Lorentz force directed
inward to the fluid) was found, consistent with the phenom-
ena described by Northrup1 when only the current was im-
posed. Similar instabilities in a current-carrying cylinder
along an axial magnetic field were also studied.9,10

The first serious theoretical effort on a more general
case, where the magnetic field has an arbitrary angle with
current was made by Shercliff.11 When the resultant Lorentz
force is upward and is larger than gravity, the surface be-
comes unstable, as in the Rayleigh–Taylor instability. Earlier
experiments had observed this instability.12,13 Shercliff also
found that a magnetic field and current introduces anisotropy
in the propagation of surface waves. In addition, Shercliff
estimated the effects of ohmic damping when the waves
propagate parallel to the magnetic field. A similar theoretical
study14 was performed earlier on the subject but using more
involved calculations. In both these studies, the magnetic
field generated by the current was ignored so that the pinch
instability was absent in the analysis.
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Another assumption used by Shercliff was that the fluid
velocity is two dimensional, restricted to the plane spanned
by the vertical(gravity) and the vector of wave propagation.
This assumption was relaxed only more than 20 years later
by Shishkov15 and Korovin.16 While the former author did
not elaborate on the consequences, the latter author claimed
that the resultant dispersion relation and damping rate are
significantly different except for some special cases.

Experimentally, there have been almost no quantitative
studies of wave propagation and damping when a magnetic
field or current is imposed parallel to the free surface. Ex-
periments that we referred to earlier1,12,13focused on the pure
growing mode due to the pinch force. The only published
experiment found17 used a magnetic field oscillating in time
to simulate a perfectly conducting liquid metal facing to dc
field.

Herein we report a detailed theoretical and experimental
study of the propagation and damping of MHD surface
waves on liquid gallium. Gallium was chosen simply due to
its easy use for the intended experiments. We begin in Sec. II
with a detailed derivation of the linear dispersion relation
when both magnetic field and current are parallel to the free
surface. It is found that the two-dimensional(2D) assump-
tion made by Shercliff11 does not impact the result, in con-
trast to the claims of Korovin.16 In Secs. III and IV, we
describe the experimental apparatus and results in detail. The
dispersion relation and damping rates are measured and com-
pared to the linear theory. Implications to the application of a
liquid metal first wall in fusion reactors are discussed in Sec.
V, followed by conclusions in Sec. VI.

II. LINEAR THEORY OF MHD SURFACE WAVES

A. Basic assumptions and governing equations

A flat layer of liquid metal with a free surface is assumed
to be at rest sitting on top of a nonconducting wall with large
horizontal dimensions compared to the layer thicknessh. We
define a Cartesian coordinate system as shown in Fig. 1,
where surface waves are assumed to propagate along thex
direction with a wave vectork=sk,0 ,0d. Following
Shercliff,11 the externally imposed magnetic field and electric
current are homogeneous and parallel to the free surface at
rest: B0=sB0x,B0y,0d and j0=s j0x, j0y,0d. Here, the sub-
scripts 0 and 1 denote equilibrium values and oscillatory
values in the wave, respectively.

An internal pressure profilep0szd is set up to maintain
static equilibriumsV0=0d by

] p0

] z
= − rg + j0xB0y − j0yB0x, s1d

where r is the mass density of liquid metal andg
=9.8 m/s2 is the gravitational acceleration. Here, the mag-
netic field generated by the current flowing internally in the
liquid metalBself, which is on the order ofm0j0h is assumed
to be negligible compared to the imposedB0. (m0 is magnetic
permeability of the vacuum and, by assumption, the liquid
metal.) Ignoring the self-B field enforces the equilibrium
Lorentz forcej03B0 to be directed only vertically in thez
direction, eliminating the pinch instability8 discussed earlier.
We note that this assumption is justified in the applications
for fusion reactors, where the external magnetic field is typi-
cally strong and the needed external current, if any, is small.
Assuming j0,rg/B0, an estimate is given byBself/B0

.m0j0h/B0.m0rgh/B0
2.3310−7 for the typical

conditions2 of r=500 kg/m3 (lithium), h=5 mm, andB0

=10 T. This assumption is also well satisfied in the experi-
ments reported later in this paper where no external current is
imposed.

An important parameter characterizing dynamics of the
liquid metal layer is the magnetic Reynolds numberRm

=m0Vh/h whereV is a characteristic velocity andh is the
electrical resistivity. For the present problem on surface
waves in a static liquid metal layer, an appropriate choice for
V is the phase velocityVph=v /k, where v is the angular
frequency. For typical parameters available in the experi-
ments described laterRm,10−2!1. In this smallRm limit,
the wave-induced magnetic field is negligible, resulting in
the so-called electrostatic approximation to Faraday’s law
]B1/]t=−= 3E1<0 so the perturbing electric field must
take the formE1=−=f, while Ampère’s law is replaced by
= ·j1=0. In addition, the wave-Lorentz force due toB1 is
negligible, i.e.,

uj0 3 B1u
uj1 3 B0u

,
j0
B0

m0

k
,

m0rg

B0
2k

. 10−5

using the aforementioned numbers with a wavelength on the
order of 1 m.

As a result, linear waves in the liquid metal layer at rest
sV0=0d are well described by a set of incompressible, invis-
cid but resistive MHD equations,

r
] V1

] t
= j1 3 B0 − = p1, s2d

− = f + V1 3 B0 = h j1, s3d

= · j1 = 0, s4d

= ·V1 = 0, s5d

whereV1 and p1 are the perturbed velocity field and pres-
sure, respectively. In the momentum equation, the linearizing
condition to ignore the convective derivative terms
rsV1·= dV1 can be shown to beka!1, wherea is the am-
plitude of the surface displacement.ka is the wave “steep-
ness.” The linear theory is thus valid when the waves are not

FIG. 1. The coordinate for surface wave analysis. The waves are assumed to
propagate alongx direction while the magnetic field and current are homo-
geneous and parallel to the free surface:B0=sB0x,B0y,0d and j0
=s j0x, j0y,0d.
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steep; effects like breaking waves are inherently nonlinear
phenomena where the steepness becomes infinite. Finally,
note that every oscillatory quantityfst ,x,zd can be assumed
to take the form offszdexpfisvt−kxdg, where fszd is a func-
tion of only z. The boundary conditions shall be discussed in
the following section.

B. Solving velocity and current fields

To satisfy the incompressibility condition, Eq.(5), the
velocity field can be assumed to take the following shape

V1sx,zd = y 3 = csx,zd + V1ysx,zdy, s6d

so thatV1x=]c /]z andV1z=−]c /]x. (Unlike Shercliff,11 we
include V1y for the sake of completeness.) Using Eq. (6),
Ohm’s law, Eq.(3) or

h j1 = − = sf − B0ycd + V1zB0xy − V1yB0xz, s7d

must satisfy Eq.(4) to yield

h = · j1 = − ¹2sf − B0ycd −
] V1y

] z
B0x = 0. s8d

Since]p1/]y=0, they component of Eq.(2) simply be-
comesr]V1y/]t=sj13B0dy= j1zB0x, wherej1z is supplied by
Eq. (7). Solving forV1y yields

V1y = −
] sf − B0ycd

] z

B0x

irhv + B0x
2 . s9d

Hence Eq.(8) is rewritten to a simple form of

]2F

] z2 = K2F,

where F;f−B0yc and K2;k2s1−iB0x
2 /rhvd;k2s1−iad.

Solving the above equation using the insulating boundary
condition s j1zuz=−h=0d or equivalently j1zuz=−h~V1yuz=−h

~]F /]zuz=−h=0, yields the solutions forF

F ; f − B0yc = C coshfKsz+ hdgexpfisvt − kxdg, s10d

whereC is a constant.
A second equation is obtained through they component

of the curl of Eq. (2), r] s=3V1dy/]t=f=3 sj13B0dgy,
which reduces to

r
] ¹2c

] t
= B0x

] j1y

] x
=

B0x
2

h

] V1z

] x
= −

B0x
2

h

]2c

] x2

by using Eq.(7). Therefore, we again have

]2c

] z2 = K2c,

which can be solved by using the boundary condition
V1zuz=−h=−]c /]xuz=−h=0 to yield

c = A sinhfKsz+ hdgexpfisvt − kxdg, s11d

whereA is a constant. With solutions forF andc given by
Eqs.(10) and(11), the velocity, and current fields are known
through Eqs.(6), (7), and(9) except the constantsA andC

V1 =
] c

] z
x −

1

B0x

] F

] z
S1 −

1

1 − ia
Dy −

] c

] x
z, s12d

h j1 = −
] F

] x
x − B0x

] c

] x
y −

] F

] z

1

1 − ia
z. s13d

C. Free-surface boundary conditions

Let z=dst ,xd=d expfisvt−kxdg represent the wavy free
surface of the liquid metal. By definition,

] d

] t
=uV1zuz=d <uV1zuz=0 = −U ] c

] x
U

z=0
,

where “<”represents linear approximation, again satisfied
for small wave steepness. Thus

d = A
k

v
sinhsKhdexpfisvt − kxdg. s14d

The second boundary condition on the free surface is that the
current must be confined within the liquid metal, i.e.,

suj0 + j1uz=0d · n̂ = 0, s15d

wheren̂ is the unit normal vector of the free surface. Letf
=z−d, then we have

n̂ = = f/u= f u = iA
k2

v
sinhsKhdexpfisvt − kxdgx + z.

Taking the first order of Eq.(15), we have j0xnx+ j1z=0
which becomesC= iAj0xKh /v, leading to

F = iA
j0xKh

v
coshfKsz+ hdgexpfisvt − kxdg. s16d

D. Dispersion relation

Without losing generality, let the ambient pressure above
the liquid metal be zero, which must balance with the pres-
sure right underneath the surface plus a force due to surface
tension,

up1uz=0 +U ] p0

] z
U

z=0
d + T

]2d

] x2 = 0,

whereT is the surface tension coefficient. Thus, using Eq.
(1), we have

up1uz=0 = A
k

v
sinhsKhdsrg − j0xB0y + j0yB0x + k2Td

3expfisvt − kxdg.

Applying this to thex component of Eq.(2),

r
] V1x

] t
= −

] p1

] x
− j1zB0y, s17d

at z=0 yields the dispersion relation for MHD surface waves

rv2 = srg + j0yB0x + k2Td
k2

K
tanhsKhd, s18d

whereK2=k2s1−iad anda=B0x
2 /rhv.

A few observations on the above dispersion relation Eq.
(18) are in order. First, settingB0= j0=0 recovers the usual
surface wave dispersion relation in neutral fluid,
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rv2 = srg + k2Tdk tanhskhd.

Second, the added imaginary componenta due to the mag-
netic field along the propagation direction, will cause the
surface wave to damp due to ohmic heating. A transverse
magnetic field has no effect at all on the waves, because the
perturbing motion does not bend field lines. The wave damp-
ing shall be discussed in detail in the later sections. Third,
the second component of Lorentz force in the vertical direc-
tion j0xB0y does not appear in the dispersion relation. The
reason for the disappearance can be found in Eq.(17) where
the second term on the right-hand side −j1zB0y cancels the
j0xB0y term contained in the first term −]p1/]x. Since the
perturbed currentj1z arises because of the waviness of the
free surface when a uniform currentj0x flows along the
propagationsxd direction, this is a special effect due to the
free surface facing a nonconducting fluid or vacuum. How-
ever, this effect leads to an instability(Rayleigh–Taylor in-
stability) when the Lorentz force is used to put a liquid metal
layer up against gravity in applications like in fusion
reactor.2 The detailed implications shall be discussed in Sec.
V.

E. Deep liquid limit

The deep liquid limit, defined askh@1 when the wave-
length is short, simplifies the dispersion relation by using
tanhsKhd<1 to

rv2 = srg + j0yB0x + k2Td
k

Î1 − ia
. s19d

When B0x is weak so thata!1 and s1−iad−1/2<1+ia /2,
and if we assume thatv is real andk is complex,k=kr

+ iki skr @kid, the real and imaginary parts of Eq.(19) give

rv2 = srg + j0yB0x + kr
2Tdkr , s20d

ki = −
B0x

2 vkr

2hsrv2 + 2Tkr
3d

, s21d

respectively. The convective damping rate is given by Eq.
(21), which reduces to simpleki =−sa /2dkr if T=0. A small
shortening of the wavelength enters in second order ina.

Here it is appropriate to provide a heuristic derivation of
the damping rate Eq.(21). The ohmic dissipation is esti-
mated as

h j2 . hSvB

h
D2

=
v2B2

h
,

where v is the characteristic fluid velocity. Then the wave
energy decays as

]

] t
S1

2
rv2D = −

B2

h
v2,

which leads to

astd = a0 expF−
B2

rh
tG ,

since v=]a/]t=va. Setting t=x/vph=kx/v in the above
equation leads toasxd=a0 expskixd, where

ki = −
B2k

rhv
.

This is consistent with Eq.(21) within a factor of 2 when the
surface tension is ignored.

WhenB0x is strong so thata@1, the dispersion relation
relaxes to a different form,

rv2 = srg + j0yB0x + k2Td
k

Î2a
s1 + id. s22d

If v is set to be real andT=0 for simplicity,

rv2 = srg + j0yB0xdkrÎ2

a
,

ki = − kr ,

which predicts that a strong magnetic field along the propa-
gation direction shortens the wavelength, and, more impor-
tantly, leads to strong damping of surface waves within one
wavelength. Note that the values ofa are typically larger
than unity in the fusion reactor application for parallel propa-
gating waves whilea!1 in the experiments reported in the
following section.

F. Viscous effects

Viscosity has been ignored in the theory described so far
because of its smallness. Here we estimate the viscous damp-
ing rate as following. Letv be characteristic fluid velocity
due to the wave motion, then the dominant viscous force is
given in deep fluids by

Fn = rn
]2v
] x2 , rnk2v,

wheren is kinematic viscosity. Therefore, the wave energy
decays as

]

] t
S1

2
rv2D = − Fnv = − rnk2v2,

which leads to

astd = a0 exps− nk2td, s23d

sincev=]a/]t=va. We note that Eq.(23) is consistent with
more rigorous derivations18,19 within a factor of 2. Settingt
=x/vph=kx/v in Eq. (23) leads toasxd=a0 expskixd, where

ki = −
nk3

v
. s24d

Since viscosity for liquid metal is typically small,20 the nor-
malized viscous damping rateki /k is small. For liquid gal-
lium, ki /k is on the order of 10−4 (see later).
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There is also a viscous drag effect due to the friction
between the oscillating fluid and stationary tank
boundaries.18 Landau and Lifshitz calculate the temporal
damping rate to be

g =
1

2Î2

2h + w

wh
Înv, s25d

which depends the fluid depthh, and the tank widthw. This
calculation requires that the viscous effects be confined to a
narrow boundary layer near the walls, small enough so as not
to change the dispersion relation calculated assuming ideal
fluid motion at the boundary, i.e., that the boundary layer
thickness is much less than the depth. This requirement is
well satisfied: the width of the boundary layer is of the order
În /v&10−2 cm, negligible compared to the typical depth of
1 cm. Regarding the dissipation formula, as might be ex-
pected, since the damping gives the energy dissipated per
unit energy in the fluid, and all the energy dissipation occurs
at the boundary, the expression incorporates the ratio of the
area of contact with the wall(2h+w per unit length) to the
fluid volume(wh per unit length). For liquid gallium,ki /k is
estimated to be on order of 10−3 (see later), which is still
small.

G. Summary of linear theory of MHD surface waves

A short summary on theory of the linear MHD surface
waves with horizontal magnetic field and current is in order
before describing detailed experimental apparatus and re-
sults. In the small magnetic Reynolds number limit or when
the induction is negligible and the self-field due to imposed
electric current is small, the wave dispersion is given by Eq.
(18). Only the component of the Lorentz force with parallel
B and perpendicularj contributes to the dispersion(this is
due to a cancelling ofj0x by j1z, which arises to keep the
current confined to the gallium surface). As a result, a mag-
netic field perpendicular to the propagation direction affects
neither the wavelength nor damping of surface waves. A par-
allel magnetic field damps waves in liquid with depth on the
order of a wavelength and deeper while viscous damping is
small. The magnetic damping efficiency depends on the di-
mensionless parametera=B0x

2 /rhv and the waves are
weakly damped whena!1 and strongly damped whena
@1.

Next, experimental studies of MHD surface waves in a
table-top device are described in detail. The experiments do
not cover the full parameter regimes in which the theory is
valid. More specifically, the experiments are limited to the
cases when no current is imposed anda!1 in the deep
liquid limit. The small magnetic Reynolds condition is al-
ways satisfied.

III. EXPERIMENTAL APPARATUS

We have constructed an experiment to study the proper-
ties of liquid gallium surface waves in an applied magnetic
field. Figure 2 illustrates the major components of the experi-
mental apparatus: the gallium tank, wave driver and paddle,
magnetic field coils, and surface diagnostics. A noninvasive
diagnostic measures the waves by reflecting multiple laser

beams off the surface and onto a screen, which is filmed by
a camera. A PC-based Labview program with a National In-
struments PCI-1671E board controls the experiment by con-
trolling the magnetic field strength, gathering data, gating the
wave driver, and digitizing the images from the camera. Be-
low we briefly describe each component of the above experi-
mental apparatus; a more detailed discussion of the experi-
mental setup, including photographs, can be found in one of
the author’s Bachelor thesis.19

A. Gallium tank

Gallium, which melts at a low temperature of about
30 °C, is believed to be nontoxic, and the oxidation is con-
fined to a skin layer. It is an ideal metal for table-top liquid
metal studies than other candidate metals such as
mercury,21,22which is highly toxic and has a high vapor pres-
sure, and lithium and sodium, which are reactive with
water.2,23 Approximately 1400 cc of gallium is held in a
square plexiglass tank which has a side length of 37.8 cm
and a height of 5 cm. The depth of the gallium layer is about
0.9 cm, which satisfies the condition for the deep liquid limit
for the most cases in our experiments. The size of the tank is
constrained by the cost of gallium, but must be large enough

FIG. 2. Experimental setup for study of MHD surface waves in liquid gal-
lium: top view (top panel) and side view(bottom panel).
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to minimize boundary effects. The gallium tank sits in a
larger water tank, which serves as a heat reservoir.(Gallium
has about 1/10 the specific heat of water.) The water tank,
which has a copper bottom plate, is in turn heated from be-
low by a hot plate(by Thermolyne Corp. Model 5PA10258);
the water temperature was monitored with a thermocouple.

In finding a minimum width of the gallium tank in they
direction, a few characteristic lengths need to be considered.
The first length concerns the thickness of viscous boundary
layers, which is only on the order ofÎn /v,10−2 cm. Sec-
ond, there is a characteristic length for the wave-induced
current in they direction[see, e.g., Eq.(13)] j1y to return at
the side boundaries. Because of smallRm or large resistivity,
the current return areas are expected to extend from the side
walls for about half a wavelength, a distance over whichj1y

reverses its direction. Since the longest wavelength in our
experiments is about 6 cm(see later), this characteristic
length is about 3 cm. Finally, the tank width should be much
longer than the capillary length,ÎT/rg,0.34 cm. However,
the capillary boundary effects are more pernicious, and, in
fact, the tank must be made as wide as possible. The gallium
generally does not wet the plexiglass walls evenly, and the
nonuniform meniscus at the boundaries scatters the single
incident waves and creates nonplanar waves, and interfer-
ence, downstream. Thus, in contrast to larger water wave
experiments(with flumes less than meter wide and tens of
meters long), this small gallium experiment is nearly square
in aspect ratio.

The end boundary also needs special attention. Since our
aim was to observe traveling waves, one possibility is to find
some boundary at the far end that simulates an infinite tank,
such as impedance matching on a transmission line. Reflec-
tions from the end boundary(opposite the side from which
waves are driven) complicate the patterns on the surface, and
the seven-point laser diagnostic we used does not adequately
resolve the counter-propagating waves. In the end, it is found
that the best way to make a precise measurement of the wave
is to use transient data, taken before reflected waves could
return to the measurement location.

B. Wave driving hardware

The paddle design is another way in which this experi-
ment deviates from larger hydrodynamics experiments.
While those experiments use large paddles hinged to the bot-
tom or large wedges to drive waves, early tests we conducted
in water and gallium found that wedge-type wave drivers
caused splashing if the wedge angle is larges45°d. For the
experiments reported here, we used a wedge with a smaller
angle of 31° or an edge of 1/16 inch copper sheet. Unlike
the wedge-type paddles, which drive waves by moving vol-
umes of fluid, this kind of paddle pulls up and down on the
surface with surface tension. Both paddles were about 34 cm
wide, about 90% of the width of the tank. To drive planar
waves with a singlek, it is very important to have uniform
contact along the length of the paddle. When setting up ex-
periment runs, it was important to optimize the planarity of
the waves, which we checked using the laser diagnostic de-
scribed below.

The paddle motion is driven in by the wave driver, an
electromechnical device(Mechanical Vibrator SF-9324 from
Pasco Scientific) similar to a speaker, but more robust and
magnetically shielded. The input sinusoid comes from a sig-
nal generator, gated by the experiment control, through a
power amplifier. Prior to experiments using gallium, the
wave driving hardware was tested using water with and with-
out magnetic field. It was found that the driven waves in
water were not affected by presence of a magnetic field,
confirming that the wave driving hardware is insensitive to
the magnetic field.

C. Magnetic field coils

In our experiment we have used two pairs of “L-2” coils
in a magnetic mirror configuration to provide a relatively
uniform, dc magnetic field. The coils, of outer diameter
49.8 cm, are separated by 50.8 cm. Currents of up to 500 A
create a field of up toB0=400 G at the center in between the
coils. Because the gallium tank sits in the midplane of the
coils, there is no vertical component to the magnetic field at
the liquid surface.

D. Laser surface diagnostic

To measure the surface waves, we reflect lasers off the
surface and onto a screen filmed by an ICCD(intensified
charge-coupled device) camera(by ITT Corp.). A passing
wave distorts the local angle of the gallium surface and per-
turbs the laser spot on the screen from its flat-surface posi-
tion. When the wave amplitudea is small, the deflection of
the laser spot is proportional to the slope of the passing
wave; the diagnostic thus directly measures the wave steep-
nesska, wherek is the wave number. Measuring the relative
phases of multiple points on the surface determines the wave
numberk, and wherea.

The experiment, once configured, is triggered off of a
camera gating pulse. Thus, the camera frames correspond to
exactly the same points in time in each experiment, confirm-
ing that the experiments are highly repeatable. A similar
technique was implemented in a recent experiment on(non-
MHD) surface wave in mercury.24

The diagnostic consists of a laser rail, on which the laser
(2 mW, He-Ne by Uniphase Model 1101P), and associated
optics are mounted, a screen near the gallium surface, and an
ICCD camera. Following optics to focus the laser spot on the
surface, a diffracting beam splitter(a dot-matrix projection
head from Edmunds Optics) splits the laser beam into a di-
verging matrix of beams, and a mask blocks all but the cen-
tral row of up to seven beams. The resultant beams lie in a
plane, whose intersection with the plane of the gallium sur-
face is a line parallel to the direction of wave propagation.

The camera takes 60 frames per second(de-interlaced),
which are digitized by a National Instruments NI-1407 series
frame grabber board and saved to disk. The image intensifi-
cation hardware on the camera allows for controlled gating
of the exposure time; typically, gate widths of 100ms–1 ms
were sufficient to freeze the laser spot in each frame.

We now present a way to map the laser spot measure-
ments back to the wave motion, valid for small-amplitude
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waves and diagnostic laser beams that come in close to ver-
tical. Figure 3(b) shows a picture of the laser reflection in the
x-z plane for waves propagating in thex-direction.

Figure 3(a) shows a schematic picture of a laser reflect-
ing from a flat surface atx0 and intersecting the screen at the
position r0. When a wave passes, the angle of the surface
changes and the laser spot shifts tor0+Dr. We now correlate
the motion of the spot on the screenDrstd with the motion of
the free surfacedsx,td=a sinskx−vtd.

The angle of incidence of the laser beam,u0, will be a
different value for each of the seven incident laser beams,
because the beams diverge from one another. It will however,
be treated as small; the largest incident angle was 4°. We
discuss below how to precisely calibrate theu0’s from a few
simple,in situ measurements. The flat-surface position of the
laser spot on the screen isr0=x0+d tans−u0d, whered is the
distance of the screen from the gallium surface.

In general, a passing wave not only changes the angle
that the ray reflects off at, but also changes the position
where the ray intersects the surface, and thus the surface
point that the laser samples. However, this effect can be ne-
glected in the first order, as discussed below. In this first
approximation of smallu0 and wave amplitude, the laser
always reflects off the surface at the pointsx,zd=sx0,0d. The
surface normal at this point due to traveling waves isnstd
= = fz−dsx,tdg=fka cosskx0−vtd ,0 ,1g. (The laser rays also
have a finite component in they direction. However, the
projection of the incident and reflected rays onto thex-z
plane does not depend on it.) Let u be the inclination of the
surface normal, tanustd=ka cosskx0−vtd.

With this definition ofu andu0, simple geometry shows
that the angle of reflection is 2u−u0. Thus, the motion of the
spot on the screen will be

Drstd < d tans2u − u0d − d tans− u0d

< 2dka cosskx0 − vtd, s26d

if u,ka!1 andu0!1. The factorkx0 affects the phase of
the laser motion on the screen. Since the reflection positions
hx0j can be precisely calibrated, it is possible to experimen-
tally measurek by comparing the phases of the seven laser
spots.

We now discuss the lowest order corrections to these
formulae. First, in the expression above we have used small-
angle approximations for the tangent; thus corrections to the
above formula will be proportional only to second-order
products ofka andu0. We also introduce errors by assuming
that the reflection always occurred atsx0,0d. The next
approximation of the reflection point is fx0

−dsx0,tdu0,dsx0,tdg. The small shift of the reflection position
has two effects: first, there will be a correction to the surface
normal, and second, the laser will reflect from a different
surface height. The former can be evaluated from a Taylor
expansion of the surface normal aboutx0,

nx < nx0
+ U ] nx0

] x
U

x0

sx − x0d.

The correction to the above formula(26) is therefore of order
kau0, since taking the derivative ofd is proportional tok and
the position shift is of orderau0. This correction, then enters
at the same order as the corrections to tangent. Next, the
second finite amplitude effect changes the total distance the
laser travels, shifting the position of the spot on the screen by
about 2dstdtan u0<2au0. Comparing this to our linear for-
mula(26), we can see the correction is of ordera/d, which is
small in our setup:a,0.1 mm whiled,10 cm.

E. Calibrations

To calibrate the laser diagnostic, first the beam splitter
was carefully characterized to determine the interbeam diver-
gence. Once this is known, a few still frames taken with the
laser in place in the experiment is sufficient to calibrate the
angleu0 of each ray and the height of the screen, to better
than 1%. The first still frame is taken with the screen moved
intersect the beams on the way to the gallium. The second is
taken with the screen in its normal position, so that the laser
beams intersect the screen after reflecting off the flat gallium
surface. The difference in laser spots between the two frames
is only due to the path of the lasers between the plane of the
screen and the plane of the gallium surface. From knowledge
of the interbeam divergence and these measurements, one
can determine the height of the screen, the angleu0 of each
laser, and the location on the surface that each laser mea-
sures. Finally, a still frame taken of a grid of points in place
of the screen maps pixels to real-world units and in principle
allows for correction of any optical distortion in the camera
optics.(We did not, however, observe any distortions in our
optical setup.)

FIG. 3. Laser reflection from the fluid surface(a) flat surface and(b) surface
with waves.
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F. Procedures for data analysis

The camera takes images of the laser spot motion, which
are digitized and saved. For analysis, an IDL(interactive data
language) program was written to find the laser spots in each
frame, by finding the regions with the brightest points. The
location of the spot is determined consistently by a mass-
weighted average of the light intensity over a small region
containing the spot, after removing background light. The
error in the location of the spot center is assigned to be 1
pixel (since the centroid is determined more accurately than
this). As mentioned before, because we can control the cam-
era shutter gating, we can gate for a short enough time so
that the laser spots do not smear in the frames.

After finding the lasers in each frame, a time series of
spot motion is assembled at each surface location. It is found
that a sinusoid is an excellent fit to each time series, consis-
tent with Eq.(26). From the fitting parameters, we can find
the frequency, relative phase of the spots, and the amplitude
of the spots motion, from which we findka at each surface
location.

IV. EXPERIMENTAL RESULTS

Descriptions of experimental results are divided into two
sections: wave propagation and wave damping, which corre-
spond to the real and imaginary parts of the dispersion rela-
tion, respectively, as exemplified by Eqs.(20) and(21) in the
deep liquid and weak magnetic field limits. Discussions are
included in each section following the descriptions of results.

A. Wave propagation without magnetic field

Figure 4 shows an example of the measured movements
of seven reflected laser spots on the screen as functions of
time. We focus on waves in the early times after the initiation
before they are reflected from the end boundary to minimize
the effects due to standing waves(see Sec. III B). The move-
ment of each reflected laser is fitted to the function of

Drstd =
1

2
Stanh

t − t0
t

+ 1DDr0 sinsvt − pd + c, s27d

where all parameters exceptt are fitting parameters. Heret0
represents the arriving time of the waves at each laser and

Dr0 is related to the wave amplitude by Eq.(26),

Dr0 = 2dka. s28d

The fitting is performed by a nonlinear fitting procedure pro-
vided by the IDL package, and the fitted curves are shown by
solid lines in Fig. 4. The wave frequencyf =v /2p is accu-
rately determined the fitting and is 10.13±0.03 Hz for the
example given by Fig. 4. The wave phasep is fitted linearly
with positionx as shown as the solid line in Fig. 5(top), and
the slope of the line determines the wave numberk or
equivalently the wavelengthl which is 2.20±0.01 cm for
the example given by Fig. 4. Consequently, the wave ampli-
tude at each laser is determined by Eq.(28) since all other
quantitiessDr0,d,kd are known. The obtained amplitudes are
shown in Fig. 5(bottom).

In order to measure the dispersion relation of the MHD
surface waves, the driving frequency is varied from about
4 Hz to about 12 Hz. The lower frequency is limited by the
size of the gallium tank which can only accommodate few
wavelengths at lower frequencies. The upper frequency is
limited by the time resolution of frame acquisition rate of
60 Hz. While there is no Nyquist frequencyper se, because
the waves are monochromatic and the wave frequency is
approximately known, the fitting routine used still requires
good time resolution to converge.

The measured dispersion relation with no imposed mag-
netic field is shown in Fig. 6 as diamonds, which is com-
pared with theoretical predictions by Eq.(18) with j0y=B0x

=0,

rv2 = srg + k2Tdk tanhskhd s29d

using the published value of surface tension coefficient20

(solid line). Agreement is found between experiment and
theory only for the low frequencies, but not for high frequen-
cies. The measured wavelengths are shorter than predicted
values for a given driving frequency. However, anad hoc
surface tension coefficient, lowered by a factor of 2.5, agrees
fairly well with the experiment at all frequencies.

FIG. 4. Examples of measured movements of reflected laser spots on the
screen as functions of time(diamonds). Solid lines indicate fitted curves to
the measurements(see text).

FIG. 5. The wave phase(top) and amplitude(bottom) as functions ofx for
the example given by Fig. 4. The uncertainty of each point is smaller than
the symbol size.
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The validity of direct comparisons of “transient ”waves
(Fig. 5) with the theoretical predictions[Eq. (29)] derived
under the assumption of continuous waves deserves some
discussions here. Recall that the quantityv2 in Eq. (29)
originates from the second time derivative of a continuously
oscillatory wave:z9=−v2z where z=a expfivtg. Like Eq.
(27), a transient wave can be expressed as

z=
1

2
Stanh

t

t
+ 1Da expfivtg,

without losing generality. After some algebra, the second
time derivative is given by

z9 = − v2zF1 +
2

v2t2

sech2st/tdtanhst/td
tanhst/td + 1

−
2i

vt

sech2st/td
tanhst/td + 1

G ,

where typicallyvt=2pft@1 as evident in Fig. 5. Whent
!t, the above equation leads to an angular frequency ofv
− i /t, which represents a “growing”wave aroundt=0. When
t@t, the above equation reduces to

z9 = − v2zF1 +
4

v2t2expS−
2t

t
D −

4i

vt
expS−

2t

t
DG .

The correction terms tov are very smalls&10−4d since typi-
cally the data at least up tot=5t are used. Therefore, the
continuous wave assumption is justified for the transient data
described here.

The apparent reduction of surface tension is likely due to
a thin oxide layer formed on the gallium surface. The oxide
layer becomes visible when a clean liquid gallium is exposed
to air for a few hours if left still, or appears in only a few
minutes if surface waves are driven. A decrease in surface
tension due to oxidation is qualitatively consistent with a
small chemistry experiment performed by the authors. After
covering of small blob of gallium with a coating of 1 mole

hydrochloric acid solution, the surface became very shiny as
the acid cleaned the oxide layer from the surface. At the
same time the surface was cleaned, the gallium pulled itself
up into a tight ball, implying increased surface tension. Later,
as the acid evaporated and the surface reoxidized, the gal-
lium lost its uniform tight shape, implying that the surface
tension decreased. In addition, attempts to keep the surface
free of oxidation were made by displacing oxygen with pure
nitrogen and argon gases, however, without apparent success.
According to separate experiments25 to study surface atomic
physics of pure gallium, controlled oxidation can be
achieved only under ultrahigh vacuum with a base pressure
of 10−9 Torr and an oxygen partial pressure of 10−11 Torr.
These conditions were not available for the experiments re-
ported here.

B. Wave propagation with magnetic field

The effects of a horizontal magnetic field on the surface
wave dispersion relation are studied by repeating the above
experiments with varying strength of the applied field. Also
shown in Fig. 6 are the results obtained under a parallel
imposed field ofB=500 G at the measurement locations. At
a given driving frequency, the wavelength is observed to
increase withB. At B=500 G, the lengthened wavelength is
still shorter than the predictions usingT=T0, but the ob-
served changes are more than 10% atf <12 Hz. Interest-
ingly, the measurements agree well with the predictions us-
ing T=T0/1.5. To quantify the observed changes better, the
measured dispersion relation is fitted by Eq.(29) with T as a
free parameter. The fittedT is shown as a function ofBx in
Fig. 7.

The observed change in the dispersion relation of the
surface wave propagation due to magnetic field cannot be
simply explained by linear theory. According to Eq.(18), the
real part of the dispersion relation does not depend on mag-
netic field if the dc current density is zero. This is better seen
in Eq. (29), which is valid in the limit of weak magnetic field
sa=B0x

2 /rhv!1d, a condition well satisfied in our experi-
ments. For example, forf <12 Hz andB=500 G,a=0.022.
The next order corrections to the dispersion is on the order of
a2<5310−4, which is much smaller than the measured
changes. Furthermore, the observed changes cannot be ex-

FIG. 6. The measured dispersion relation of MHD surface waves in gallium
without magnetic field(diamonds) and with B0=380 Gauss(cross). Theo-
retical curves by Eq.(29) are shown for three cases:T=T0=0.718 N/m
(solid line); T=T0/1.5 (dashed line); andT=T0/2.5 (dotted line).

FIG. 7. The fitted surface tension coefficient normalized by published value
(Ref. 20) for clean galliumT0=0.718 N/m as a function of imposed mag-
netic field.
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plained by nonlinear effects, which is on the order of the
ratio of rsV1·= dV1 to r]V1/]t (see Sec. II A) or simply
ka,10−2. The effect due to omission of the wave-induced
magnetic fieldB1 is also small

B1

B0
,

m0j1
kB0

,
m0V1

kh
,

m0va

kh
, 6 3 10−5.

We therefore seek explanations outside of the physics in
the linear MHD dispersion relation. One possible explana-
tion of the observed changes in effective surface tension
force with an imposed magnetic field is changes in atomic
physics in the surface oxide layer or the adjacent pure gal-
lium layers. The structure of surface of liquid metal has been
a hot topic in recent years, especially after rapid development
of experimental techniques, such as x-ray reflectivity mea-
surements, to directly study the surface structure. A recent
review paper is given by Penfold on this topic.26 A theoreti-
cally predicted phenomenon called surface-induced atomic
layering27 due to the sharp discontinuity in density across a
liquid-vapor surface has been confirmed experimentally.25

The effect of oxidation on the liquid gallium free surface has
also been studied28 by x-ray scattering. It was found that the
oxide layer has a uniform thickness of about 5 Å, which does
not increase with further oxygen exposure and temperature
increase. The dependence of these surface properties on the
magnetic field has been reported neither experimentally nor
theoretically. However, it would not be surprising to have
some dependences on magnetic field since liquid gallium has
larger degrees of covalency(less close to a free-electron
metal) and directional bonding.26 We should note that the
dispersion relation remains unchanged when the magnetic
field is imposed horizontal but perpendicular to wave
propagation.19 This fact constrains a theory of surface ten-
sion modification by a magnetic field: the magnetic field can
only modify the surface tension along the direction of the
magnetic field.

C. Wave damping without magnetic field

The linear theory predicts that waves interact with a par-
allel magnetic field, leading to damping in deep fluids[Eq.
(21)]. However, as shown in Fig. 5, wave damping exists
even without magnetic field. To quantify the wave damping
rate, the amplitudes are fitted to the function of

asxd = a0 expfkisx − x0dg, s30d

wherea0 andki are fitting parameters andx0 is thex position
of the first laser measurement. The magnitude ofki charac-
terizes the damping rate. The fitted curve is also shown in
Fig. 5, where the error inki, dki, is estimated by equating
the measurement uncertaintiesdasxd to a0sx−x0dexpfkisx
−x0dgdki. (One should note that there exist also systematic
errors inki due to deviations from the perfecte-folding be-
yond statistical uncertainties in the measurements. Using re-
sidual fitting errors, the systematic errors inki are estimated
to be about four times larger than the statistical counterparts.)
Figure 8 shows that the normalized damping rateki /k, in-
creases withk, but saturates at about 0.1 at largek.

Absent a magnetic field, waves can be damped by finite
viscosity, which has been ignored in the linear theory de-
scribed earlier because of its smallness. The normalized
damping rate due to bulk viscous forces is estimated via Eq.
(24),

ki

k
= −

nk2

v
. − s1 – 4d 3 10−4,

using the published value20 for gallium viscosity n.3
310−7m2/s and the measured values for other quantities.
The damping rate due to boundary viscous layers can be
estimated via Eq.(25)

ki

k
= −

1

2Î2

2h + w

wh
Î n

v
. − s2 – 4d 3 10−3,

which is larger than that due to bulk viscous effects, but it,
too, is too small to explain the observed wave damping with-
out magnetic field.

An alternate explanation again can be based on existence
of the surface oxide layer, which has been described in Secs.
III A and III B. It was found from the x-ray scattering
experiments28 that the thermal capillary waves, which limits
the x-ray reflectivity at higher temperatures on an unoxidized
gallium surface, were largely suppressed by oxidization. This
suggests that the oxide layer is a solid phase, and other spec-
troscopy showed that the oxide layer is amorphous, suggest-
ing that the oxide layer is rigid but not elastic, and can cause
wave damping. Qualitatively, it was observed that the gal-
lium surface becomes less excitable as the oxide layer forms.
In fact, deviations from the exact exponential decay, as seen
in Fig. 5, may be due to nonuniformness of the oxide layer,
which often is visible. We note that in general the wave
damping due to this mechanism can also depend on the wave
amplitude, and this effect was not investigated in our experi-
ment (Fig. 8). On the other hand, quantitative theoretical
estimates are not possible without detailed knowledge of
physical properties of the layer, which is beyond the scope of
the present paper.

D. Wave damping with magnetic field

According to the linear theory described in Sec. II, MHD
surface waves in the deep liquid limit are not damped by a
perpendicular magnetic field to the propagation direction, but

FIG. 8. The normalized wave damping rateki /k vs k without magnetic field.
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not by a perpendicular magnetic field. These predictions are
basically confirmed by experiments. Figure 9 shows the
wave amplitudes as a function of magnetic field perpendicu-
lar to the propagation direction for several frequencies while
everything else is kept the same. No wave damping by mag-
netic field is observed. In contrast, the waves are damped by
an imposed magnetic field along the propagation direction,
as shown in the single point measurements, Fig. 10. The
plotted amplitudes are normalized by the amplitude without
magnetic field. It is seen that the wave amplitude is reduced
by a factor of 2 when a magnetic field of 500 G is imposed.

Linear theory predicts wave damping by a parallel mag-
netic field as shown in Eq.(21). The damping rate, given by

expF−
B0x

2 vkr

2hsrv2 + 2Tkr
3d

DxG , s31d

where Dx.4.1 cm is the distance between the paddle and
the measurement location, is also shown in Fig. 10 as the
dotted line. The observed damping rates are much larger than

the predictions, but would be consistent with predictions if
instead 6Dx was used in Eq.(31) as also shown in Fig. 10 as
the dashed line. Here we need to point out that the wave
damping given by Eq.(31) accounts only for the MHD ef-
fects during the wavepropagation, but not for the wavegen-
eration by the paddle, which is also subject to the MHD
interactions. Such MHD effects are well conceivable since
the cross-field motions tend to bend the magnetic field lines
in a probably nonlinear fashion, although detailed theoretical
modeling is beyond the reach of the present linear theory.
The observed damping enhancement likely reflects such
MHD effects during the wave generation. Note that experi-
ments in water did confirm that the wave driving hardware
alone is unaffected by the magnetic field.19

Furthermore, the wave damping due to magnetic field
parallel to the propagation direction is observed in between
the measurements at seven locations. As an example, Fig. 11
shows the normalized wave amplitudes as functions ofx for
B=0, 206 G, and 501 G, respectively. It is clearly seen that
the wave is damped more rapidly when a stronger magnetic
field is applied. To better quantify the wave damping, mea-
surements at each given magnetic field are fitted to the func-
tion shown in Eq.(30) to obtain a spatial damping rateki.
The results are shown in Fig. 12 as squares. Despite certain
scatters in the obtained damping rates, a trend for increased
damping rate with magnetic field is apparent. The theoreti-
cally predicted damping rates given by Eq.(21) kisBd are
calculated by using the measured values for all other param-
eters. Plotted also in Fig. 12 as the dashed line iskis0d
+kisBd where kis0d is the measured damping rate atB=0.
The agreement is reasonable given the scatter and errors in
the experimentally determined damping rates.

V. IMPLICATIONS TO FUSION APPLICATION

Given theoretical and experimental results and their
physics understanding described in the previous sections,
discussions are in order with regard to their implications to
the proposed application of a free-surface liquid metal first
wall in the fusion reactors.2–4 Below we discuss two specific
effects: magnetic damping of surface waves, and an instabil-
ity when the Lorentz force is used to support a free-surface
liquid metal layer against gravity.

FIG. 9. The wave amplitude measured by the first laser as a function of
magnetic field perpendicular to the propagation direction for several
frequencies.

FIG. 10. The wave amplitude measured by the first laser as a function of
magnetic field parallel to the propagation direction. The dotted and dashed
lines represent predictions by linear theory using actual distance between the
paddle and measurementDx and a distance of 6Dx, respectively.

FIG. 11. The normalized wave amplitudes as functions ofx for several
magnitudes of magnetic field parallel to the propagation direction.
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A. Magnetic damping of surface waves

An important dimensionless parameter here isa
=B2/rhv. For a typical magnetic field strength of 10 T in
the magnetic fusion reactors,a is much larger than unity
unless f .100 kHz for lithium or f .10 kHz for gallium.
However, the surface tension becomes important and
strongly stabilizing [Eq. (21)] at these high frequencies.
Therefore, one expects that the large magnetic fields in the
magnetic fusion reactors will stabilize surface disturbances
very effectively along the field direction in the deep fluid
limit. In addition, a finite vertical magnetic component will
further stabilize the surface as shown in previous
studies.15,21,29

However, there is no magnetic damping on disturbances
propagating in a horizontal, but perpendicular, direction, as
shown in the previous sections. Even for the case when the
disturbances propagate parallel to magnetic field, the damp-
ing effect does not exist if the wavelength is much longer
than 2ph so that the liquid is shallow, i.e.,kh!1. This is
seen by taking tanhsKhd<Kh in Eq. (18) to yield

rv2 = srg + j0yB0x + k2Tdk2h,

where the damping effect does not appear to first order inkh.
Intuitively, this can be understood as waves do not store
energy in bending field lines when fluid motion in the verti-
cal direction is suppressed in the shallow limit. Ifh=5 mm,
then the critical wavelength above which there is no large
stabilizing effect from magnetic field is about 3 cm. Viscous
damping[e.g., Eq.(25)] in the case may become important.
Therefore, in the application of a free-surface liquid metal
first wall in a fusion reactor, it may not be possible to depend
on magnetic damping to suppress disturbances. However,
surface conditions, such as existence of an oxide layer, may
provide more effective stabilization for possible distur-
bances, as observed experimentally in the preceding section.
Of course, the detailed atomic physics and chemistry, as well
as their manifestation as surface tension, need to be under-

stood before they can be better applied in the reactor envi-
ronment.

B. Stability of a liquid metal layer supported by
Lorentz force against gravity

In order to completely cover the plasma in a fusion re-
actor, some parts of a liquid metal layer need to be supported
against gravity. One proposed method is to use the Lorentz
force by inducing electric current in the liquid metal with an
appropriate angle to the background magnetic field so that
the resulting Lorentz force is upward to offset the gravity
force.4 This scheme works if the supported liquid metal is
stable. However, the obtained dispersion relation, Eq.(18),
suggests that this is not the case.

Using the coordinate shown in Fig. 1, now the gravity
force rg points upward and the Lorentz force,uj0 ^ B0u
= u j0xB0y− j0yB0xuùrg, points downward. Thus the termrg in
Eq. (18) needs to be replaced by −rg. As discussed in Sec.
II D, only one of the two terms of the Lorentz forcej0yB0x

appears in the dispersion relation. This only term will also
disappear when thex direction or the propagation direction is
set to be perpendicular toB0. The resultant dispersion rela-
tion then becomes

rv2 = s− rg + k2Tdk tanhskhd, s32d

which predicts instability for sufficiently smallk or long
wavelength. This is essentially the Rayleigh–Taylor instabil-
ity. Figure 13 shows the growth rates for both lithium and
gallium cases. The critical wavelength is determined by the
surface tension, which may vary depending on the surface
conditions, as described in this paper. The typical growth
time is on the order of 0.1 s for lithium, which sets the maxi-
mum time scale for the liquid metal to stay in the layer
supported by the Lorentz force. This can be translated into a
minimum speed with which liquid metal is forced to flow
across certain distances in the reactor chamber. For example,
for a distance of 1 m, the minimum speed is 10 m/s if only
one e-folding time is allowed for this instability to grow.
Again, the existence of a surface oxide layer can slow down
its growth.

VI. CONCLUSIONS

Effects of magnetic field on small-amplitude surface
waves on liquid metal are studied in detail both theoretically

FIG. 12. The wave damping rate(squares) as a function of magnetic field
parallel to the propagation direction. The dashed line represents predictions
by linear theory(see text).

FIG. 13. The growth rate as functions of wavelength for lithium or gallium
layer supported by the Lorentz force against gravity in the deep liquid limit.
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and experimentally in the small magnetic Reynolds number
limit. Theoretically, a linear dispersion relation is derived
when horizontal magnetic field and electric current is im-
posed, including effects from surface tension. Waves damp in
the deep liquidsskh@1d if traveling parallel to the magnetic
field. Under a weak magnetic fieldsB2/rhv!1d, waves are
weakly damped with no effects on propagation characteris-
tics while in the opposite limit the waves are strongly
damped with shortened wavelengths. Experimentally, the
planar MHD surface waves on liquid gallium are studied in
detail with a weak magnetic field and in the deep liquid limit
by using a computer-controlled paddle in a table-top device.
Gallium was chosen simply due to its easy use. A noninva-
sive diagnostic accurately measures surface waves at mul-
tiple locations by reflecting an array of lasers off the surface
onto a screen, which is recorded by an ICCD camera. The
measured dispersion relation is consistent with the linear
theory with a reduced surface tension likely due to surface
oxidation. It is observed that surface waves are damped when
a horizontal magnetic field is imposed parallel to the propa-
gation direction. No damping is observed with a perpendicu-
lar magnetic field. These results are in excellent agreement
with the linear theory. The existence of a strong wave damp-
ing without magnetic field suggests the importance of the
surface oxide layer. Implications to the liquid metal wall
concept in fusion reactors are discussed. Magnetic damping
can suppress surface disturbances with short wavelengths
propagating along the magnetic field, but waves with long
wavelengths or propagating across magnetic field are unaf-
fected. A liquid metal layer supported by the Lorentz force
against gravity is unstable to the Rayleigh–Taylor instability
when a perturbing wave vector is perpendicular to the mag-
netic field and its wavelength is sufficiently long, possibly
leading to a practical limitation of these applications.
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