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Kinetic simulations underestimate the effects of waves during magnetic reconnection
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Collisionless plasma systems are often studied using fully kinetic simulations, where protons and electrons
are treated as particles. Due to their computational expense, it is necessary to reduce the ion-to-electron mass
ratio mi/me or the ratio between plasma and cyclotron frequencies in simulations of large systems. In this Letter
we show that when electron-scale waves are present in larger-scale systems, numerical parameters affect their
amplitudes and effects on the larger system. Using lower-hybrid drift waves during magnetic reconnection as
an example, we find that the ratio between the wave electric field and the reconnection electric field scales as√

mi/me, while the phase relationship is also affected. The combination of these effects means that the anomalous
drag that contributes to momentum balance in the reconnection region can be underestimated by an order of
magnitude. The results are relevant to the coupling of electron-scale waves to ion-scale reconnection regions,
and other systems such as collisionless shocks.

DOI: 10.1103/PhysRevResearch.6.L042072

In collisionless plasma systems, such as those found
in space and astrophysical environments, electron and ion
distribution functions show quite some deviation from the
Maxwell-Boltzmann distribution (e.g., Refs. [1–6]). The use
of the Vlasov equation, with three dimensions in velocity
space, and three in position space, is necessary to understand
the complex dynamics of such physical systems. Kinetic sim-
ulations that evolve the particle distributions or approximate
the distributions using macroparticles (e.g., Refs. [7–11]) are
a powerful tool used to solve the Vlasov equation.

In spite of the advances in modern computing capabili-
ties, fully kinetic simulations, which treat ions and electrons
as particles, are still limited. Many physical systems require
multiple spatial and temporal scales to be resolved, leading to
compromises in the physical parameters used in simulations.
Using Earth’s magnetosphere as an example, studies of lo-
calized magnetic reconnection regions involve dimensions of
tens to hundreds of ion inertial lengths in two or three dimen-
sions (e.g., Refs. [12–15]), while studies of the collisionless
shock can go from hundreds to up to over a thousand ion
inertial lengths (e.g., Refs. [16–18]). Other simulations study-
ing kinetic phenomena in the magnetotail use an artificially
smaller system, yet still require scales of tens to hundreds
of ion inertial lengths [19,20]. To simulate these scales while
still resolving electron kinetic physics, a reduced electron-ion
mass ratio is generally employed, reducing the separation of
scales, and the ratio between electron plasma and cyclotron
frequencies is also reduced, reducing the ratio between the
speed of light and the electron Alfvén speed c/VAe.
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Kinetic simulations have been successful in the study of
magnetic reconnection, and the use of reduced parameters
in such simulations is supported by the result that during
collisionless reconnection at ion spatial scales, the reconnec-
tion rate is insensitive to the exact electron physics [21–23].
However, there are instances where the numerical parameters
have affected the results qualitatively. It was shown that large
mass ratios allowed the development of a new regime of re-
connection with embedded exhaust current layers [24], while
Ref. [25] showed that increasing the frequency ratio leads to
Debye scale turbulence developing in the reconnecting layer.
Artificially low mass ratios also allow the development of
drift-kink instabilities that disrupt current sheets [26]. The use
of reduced parameters also significantly affects results in other
fields such as shock physics. It is known that observations of
electric field fluctuations in shock crossings are much stronger
than those found in simulations because of the use of reduced
parameters [27,28].

In this Letter we use the specific example of lower-hybrid
drift waves during magnetic reconnection to quantitatively
study the effects of numerical parameters and their impor-
tance when coupling electron-scale waves to the ion-scale
reconnection region and beyond. Lower-hybrid drift waves are
driven by the diamagnetic drift [29–32] and are often found
in magnetic reconnection regions. Their importance in the re-
connection region is an area of active research [33–36], where
they can contribute to electron momentum balance through
correlated density and electric field fluctuations known as
anomalous drag, or cause electron heating.

There are numerous simulation, experimental, and ob-
servational studies of the role of the lower-hybrid drift
instability (LHDI) during magnetic reconnection, in which it
is shown that they cause particle transport and mixing (e.g.,
Refs. [13,14,37]). Although it is known that generating the
waves requires proper scale separation between electrons and
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ions [38–40], existing studies do not discuss saturation and
how numerical parameters affect calculations of the waves’
contribution to momentum balance in the larger reconnection
region [13,37,39,40]. Theoretical studies of the waves them-
selves [41] consider their saturation, but do not account for
their coupling to magnetic reconnection. These limitations
mean that quantitative comparisons between simulations and
observations or experiments are not adequate when consider-
ing the broader effects of the waves.

Recently, it has been shown in experiments and observa-
tions that during guide-field reconnection (where there is a
magnetic field parallel to the initial current sheet), the LHDI
is excited by the electron flow in the reconnection exhaust
[35,36]. While waves are seen in simulations of these events,
there are still discrepancies in both particle acceleration and
electron momentum balance related to the wave amplitudes
[42,43]. We perform simulations using the guide-field re-
connection configuration to study the effects of numerical
parameters on wave amplitudes and momentum balance. Due
to computational limitations, we then use an alternative setup
to study the waves driven by the LHDI in isolation and eval-
uate their scaling with numerical parameters systematically.
Our results show that the normalized wave amplitudes and
anomalous drag increase as parameters become more realistic.

We first give a brief introduction to the theory of LHDI
saturation and how it relates to the reconnection electric field.
The LHDI is driven by a diamagnetic current drifting across
the magnetic field [29–31]. The simplest estimate of the satu-
ration amplitude of the LHDI is given in Ref. [41] as

E = nmeV
2

d /
[
4
(
1 + ω2

pe/ω
2
ce

)]
, (1)

where E is the electric field energy density, n is the local
density, Vd is the relative velocity between electrons and ions,
me is the electron mass, and ωpe/ωce is the ratio between
electron plasma and cyclotron frequencies. This equates the
free energy to the wave and particle energy in the electrostatic
limit. Other saturation mechanisms such as ion trapping exist
and will be discussed later [41,44,45].

To compare the wave fields to magnetic reconnection, we
note that in the collisionless limit, the reconnection electric
field is generally around 0.1B0vA0, where B0 is the upstream
magnetic field and vA0 is the ion Alfvén speed calculated using
upstream quantities [21–23]. In the guide-field configuration
we study, Vd is given by the difference between the electron
and ion outflow speeds, and is proportional to the electron
Alfvén speed vAe0 = B0/

√
μ0n0me, where n0 is the upstream

electron density [46]. This can be substituted into the expres-
sion for the energy density, and after some manipulation, we
find

δE

B0vA0
∼ ωce

ωce0

ωpe

ωce

√
1 + (ωpe/ωce)2

√
mi

me
. (2)

The first term ωce/ωce0 is the ratio of the local to upstream
electron cyclotron frequency and can be treated as a scaling
factor in this study, and other quantities on the right-hand side
are measured locally. This expression explicitly scales with
the mass ratio and the frequency ratio while the normalized
reconnection electric field is not sensitive to the mass and
frequency ratios.

We perform two types of simulations to study the variation
of the lower-hybrid waves with numerical parameters—
“reconnection” simulations and “wave” simulations. The
two-dimensional reconnection simulations use the same phys-
ical parameters as Ref. [42] where the initial conditions
consist of a Harris sheet superposed on an asymmetric
background, while wave simulations capture the growth of
lower-hybrid waves in a current layer. The reconnection sim-
ulations illustrate the coupling of lower-hybrid waves to the
reconnection process, while the wave simulations allow a
study using more realistic parameters.

We first study the development of lower-hybrid waves
during asymmetric guide-field reconnection, and the ini-
tial conditions for the base case are exactly the same
as Ref. [42], which was based on magnetic reconnection
experiment (MRX) results. The asymmetric layer is de-
fined by BL/BH = 1.25, TeL = TeH = TiH , nL/nH = 0.5, and
TiL/TeH = 1.23 where the subscripts represent the asymp-
totic values on either side of the current sheet. Were this
magnetopause reconnection, L would correspond to the mag-
netosphere and H the magnetosheath. A constant guide field
Bg = 1.8BH is present, and the electron beta on the high-
density side is βeH = 2μ0nH TeH/(B2

H + B2
g ) = 0.3. Instead of

performing three-dimensional (3D) simulations, we rotate the
x-z plane in our two-dimensional simulations by 5.7◦ so that
the magnetic field is almost perpendicular to the simulation
plane in the unstable region found in Ref. [42], which is
favorable for the excitation of lower-hybrid waves.

We show the results from two simulations with mi/me =
25 and mi/me = 400, both having ωpeH/ωceH = 2 (the real-
istic value is approximately 125 in the MRX experiment).
Both simulations have dimensions Lx × Lz = 40di × 20di, us-
ing 1536 × 768 and 12 288 × 6144 grid cells, respectively.
The asymmetric conditions cause a density gradient across the
outflow region, and the initial configuration has the plasma
beta lowest in the upper-right quadrant. Lower-hybrid drift
waves develop, similar to the original 3D simulation with
mi/me = 100 [42]. The fluctuating electric fields of the lower-
hybrid waves are illustrated in Fig. 1. The normalized wave
amplitudes are clearly higher in the mass ratio 400 simulation.
The main reason for the larger normalized amplitude is be-
cause the normalized outflow uex/vA0 increases as mass ratio
increases as implied by Eq. (2).

Although these results suggest that the normalized wave
electric field increases as realistic parameters are approached,
it is challenging to perform a systematic scan because these
waves only appear after reconnection has developed, and there
are differences in evolution between simulations (such as
plasmoid formation that changes the overall structure of the
reconnection region). As such, we perform a set of simulations
focused only on the generation and evolution of the waves.

The initial setup for a wave simulation is a Vlasov confine-
ment equilibrium with a narrow current layer in the center of
the x domain [47]. This has previously been used for studies
of the contribution of the LHDI to anomalous resistivity [41].
The ion density is given by

ni(x) = 1 + ε − tanh
[
α
(

x2

a2 − 1
)]

1 + ε + tanh (α)
, (3)
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FIG. 1. Normalized wave electric field Ex/(B0vA0) in the
mi/me = 25, ωpe0/ωce0 = 2 and mi/me = 400, ωpe0/ωce0 = 2 simu-
lations. “×” marks the locations of the x lines.

where

ε = n∞[1 + tanh (α)]

1 − n∞
. (4)

The ion temperature is uniform and isotropic, and the electron
temperature components Txx and Tzz are uniform, while the ini-
tial magnetic field, electric field, and other electron quantities
are determined self-consistently using the recursive relations
derived in Ref. [47]. We set α = 5, a = 20, and n∞ = 0.4,
where α and a control the thickness of the current layer and
n∞ is the asymptotic density on the positive x side of the
simulation. The electron distributions are expressed as a sum
of Hermite polynomials. We cut off the infinite sum at 4 as
adding higher-order terms does not change the distribution
significantly. Similar configurations have been used to study
the LHDI in other contexts [45]. Note that the recursive rela-
tions here do not depend on the mass ratio.

The computational domain is Lx × Ly = 40de × 50de cov-
ered by 320 × 450 cells, and the plasma parameters for the
baseline case defined at x = 0 are ωpe0/ωce0 = 1, Ti0/Te0 =
1.25, and βe = 0.16. The ion-to-electron mass ratio is
mi/me = 100 and there are 400 particles per species per cell.
These parameters are chosen so the plasma in the current layer
is similar to the unstable region in Ref. [42]. These simu-
lations are much smaller than the reconnection simulations,
allowing us to perform a wider parameter scan by varying
mi/me from 100 to 1836, and ωpe/ωce from 0.5 to 8. The
resolution is increased appropriately as simulation parameters
change so that the electron Debye length is resolved. The
number of particles per cell is increased to 3200 for the
ωpe0/ωce0 = 8 simulations. The initial conditions are shown
in Fig. 2 for mi/me = 1836, ωpe0/ωce0 = 2.

The evolution of the system is shown in Fig. 3 for the
simulation with mi/me = 1836 and ωpe0/ωce0 = 2. In this
case, the lower-hybrid drift waves develop in less than one
ion-cyclotron time, shown by the Ey signatures in the center
of the domain. The peak fluctuation amplitudes are measured

FIG. 2. Initial electron density, current and magnetic field pro-
files in wave simulations.

as the current layer starts to break up, corresponding to t�ci =
0.375 in the figure. This behavior is similar in all simulations,
though the instability growth rate (is proportional to ωLH [29])
relative to the ion cyclotron frequency increases with the mass
ratio as ωLH/�ci ∝ √

mi/me.
For each simulation, we calculate the root mean square of

the fluctuating electric field δEy,rms, and the anomalous drag
term 〈δneδEy〉/〈ne〉 by integrating along the y direction. The
maximum values are then evaluated along x. For comparison
between different simulations, these quantities are normalized
by B0vA0 evaluated at x = 0, t = 0 in each simulation.

The maximum values of the normalized δEy,rms during
the simulation are displayed in Fig. 4. For the electric field

FIG. 3. Electric field Ey in the mi/me = 1836, ωpe0/ωce0 = 2
simulation.
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FIG. 4. Comparison between electric field fluctuation ampli-
tude and scaling estimate. Top: Variation with mass ratio. Bottom:
Variation with initial ωpe0/ωce0 in simulations. The dashed line is
proportional to the local ωpe/ωce/

√
1 + (ωpe/ωce)2 where the plasma

frequency is calculated using ne = 0.7 and the cyclotron frequency
is calculated using B = 1.05B0.

fluctuations, there is a clear increase in the normalized val-
ues with mass ratio, in addition to a weaker variation with
ωpe/ωce.

Fitting the variation with mass ratio gives a scaling of
(mi/me)0.56 and a correlation coefficient r = 0.98, showing
good agreement with the

√
mi/me expression in Eq. (2), in-

dicating the importance of the mass ratio to the normalized
wave amplitudes in simulations.

The variation of the electric field amplitude does not
show exact agreement with the ωpe/ωce/

√
1 + (ωpe/ωce)2

relationship, but the general trend of a steeper increase at
small ωpe/ωce and smaller increase at larger, more realistic
conditions holds. Equation (2) does not include electron tem-
perature or electromagnetic effects, which partially account
for the larger discrepancies at ωpe/ωce � 1.

The largest initial ratio between the drift velocity and ion
thermal speed Vd/vthi ≈ 3.5 is found in the mi/me = 1836
simulations, which is within the empirical limits suggested
by Ref. [41] for the validity of Eq. (1), and close to the
Vd/vthi ≈ 3 boundary between Eq. (1) and the ion trapping
saturation mechanism found by Ref. [44]. While we see accel-
erated ions (not shown), there is surprisingly good agreement
with Eq. (1) at the larger ωpe/ωce relevant to laboratory and
magnetospheric conditions. The electron resonance is unlikely
to be important due to the low beta [48].

The variation of the normalized anomalous drag term
〈δneδEy〉/〈ne〉 is shown in Table I. Similar to δErms, there is an
increase of this term with the mass ratio. However, the scaling

TABLE I. Normalized amplitude of the anomalous drag term
〈δEyδn〉/〈ne〉 wave simulations.

〈δEyδne〉/(〈ne〉B0vA0)

ωpe0/ωce0

mi/me 0.5 1 2 4 8

100 0.0033 0.0041 0.0033 0.0041 0.0042
400 0.0090 0.0089 0.013 0.013 0.016
1836 0.034 0.044 0.038 0.03 0.031

is stronger, with an order of magnitude increase going from
mi/me = 100 to 1836. There is no clear trend in the variation
with ωpe/ωce, with an increase with ωpe/ωce at mass ratio 400
and a decrease at realistic mass ratio. While the electric field
fluctuations scale as

√
mi/me as shown earlier, the density

fluctuations in the simulations do not change with the mass
ratio.

The additional increase of the drag term with mass ratio
can be explained by the phase difference between δne and δEy

[35]. We examine the quasilinear expression for the anoma-
lous collision frequency from Ref. [32],

ν = Im

[
ky

4ω2
pi

k2
y v

2
thi

ζiZ (ζi )

]
ky=kM

E
meueyn

, (5)

where ζi = ω/(kvthi ), uey is the electron velocity driving
the instability, Z is the plasma dispersion function, and
kM is the wave number at maximum growth. Assuming
kMρe ∼ 1, after some manipulation and normalization, the
anomalous drag term is proportional to (ωpe/ωce)2/[1 +
(ωpe/ωce)2]

√
mi/me Im[ζiZ (ζi )]. We find that ζi < 1 for all

but the ωpe/ωce = 8, mi/me = 1836 case, and ζi increases
with mass ratio, such that Im[ζiZ (ζi)] increases for the studied
parameters (the maximum Im[ζiZ (ζi )] is at ζi ≈ 0.7).

Although this Letter focuses on the amplitudes of electro-
static lower-hybrid drift waves in guide-field reconnection,
there are wider implications, both for lower-hybrid waves
and kinetic simulations in general. Generalizing the setup to
3D allows the excitation of lower-hybrid drift waves with a
small k‖ with parallel electric fields that accelerate electrons
[42,45,49,50]. Variations in wave amplitudes would naturally
affect the expected electron energies. We also briefly address
the cancellation of the drag term due to anomalous viscosity
[14,33]. In our simulations, the ratio between the magnitude
of the drag and viscous terms is on average ≈1.3, such that
the cancellation is not perfect. It is likely that this result is due
to the shorter wavelengths seen in our simulations (kρe ≈ 1)
compared to the magnetopause observations (kρe ≈ 0.4) [33],
meaning that electrons are not as strongly magnetized. Mag-
netotail observations show agyrotropic distributions where
electron gyroradii have similar scales to the wavelength [36],
suggesting that the waves can contribute to momentum bal-
ance there.

In antiparallel or weak guide field reconnection simula-
tions, electrostatic lower-hybrid waves are found outside the
current sheet [34,38], and do not contribute significantly to
the reconnection electric field at the x line. Nonetheless,
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the conclusions of this Letter apply to the wave amplitudes.
Eigenmode studies [38] begin with a Harris equilibrium [51],
where the relative velocity between electrons and ions Vd ∝
T/(eB0L) where e is the unit charge and L is the width
of the current sheet. One may perform a similar analy-
sis for the electric field and find that δE/(B0vA0) ∼ [(βi +
βe)/L](c/ωLH )/

√
4(1 + ω2

pe/ω
2
ce). If L is di scale, the mass

ratio does not affect the normalized electric field, but if L is de

scale, the factor of
√

mi/me reappears. In an evolving system,
the current layer thins to sub-ion scales during reconnection,
and the electron drift velocity increases, suggesting that the
relative effects of the wave electric field would increase when
using realistic parameters. Systems with electron-scale recon-
nection also see stronger flows, though the generation of the
LHDI may be limited by their spatial extent. While waves at
the separatrix or outside the current sheet may not be impor-
tant for reconnection, observations show that they still affect
the electron temperature and mixing [33,37,52].

To summarize, we have shown that even though the recon-
nection rate in ion-scale regions is not sensitive to the reduced

parameters used in kinetic simulation, the global effects of
lower-hybrid drift waves are underestimated, both in terms
of their amplitudes relative to the reconnection electric field
and the contribution to momentum balance through corre-
lated density and electric field fluctuations. The results of this
Letter are applicable to simulations of other systems where
electron-scale waves and instabilities couple to larger scales.
For example, in collisionless shock simulations, fluctuating
electric fields are much smaller than the quasistatic electric
fields, in contrast to observations where the opposite is true
[27,28]. Our results suggest that a careful analysis of how
waves develop and saturate in multiscale simulations is nec-
essary, as current simulations could be underestimating their
relative effects.

This work was supported by the MMS Mission, NASA
Grants No. 80NSSC21K1462, No. 80NSSC21K1795, No.
NNH20ZDA001N-ECIP, and No. 80NSSC24K0094, and
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