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We investigate numerically the Princeton magnetorotational instability (MRI) experiment and the effect of
conducting axial boundaries or endcaps. MRI is identified and found to reach a much higher saturation than for
insulating endcaps. This is probably due to stronger driving of the base flow by the magnetically rather than
viscously coupled boundaries. Although the computations are necessarily limited to lower Reynolds numbers
(Re) than their experimental counterparts, it appears that the saturation level becomes independent of Re when
Re is sufficiently large, whereas it has been found previously to decrease roughly as Re−1/4 with insulating
endcaps. The much higher saturation levels will allow for the positive detection of MRI beyond its theoretical
and numerical predictions.
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I. INTRODUCTION

Magnetorotational instability (MRI) was discovered by
Velikhov [1], more systematically studied by Chandrasekhar
[2], and applied to accretion disks by Balbus and Hawley
[3]. Since the specific angular momentum (�r2) of such
disks increases outward, they are hydrodynamically stable
against Rayleigh’s axisymmetric centrifugal instability. Nu-
merical [4,5] and experimental [6,7] evidence indicates that
generic Keplerian and quasi-Keplerian flows are completely
stable against purely hydrodynamic modes. It is therefore
believed that the turbulence and angular-momentum transport
in accretion disks is driven mainly by MRI [8]. The Princeton
MRI experiment has been designed to demonstrate the insta-
bility in a Taylor-Couette flow [9–11]. Relevant linear-stability
analyses have been carried out at various levels of geometric
fidelity [12–14]. Nonlinear calculations have been performed
in axisymmetry with periodic boundary conditions [15] or
insulating boundary conditions [16] and in three dimensions
with pseudovacuum boundary conditions [17]. The latter found
that the saturation level of MRI decreases roughly as Re−1/4

with increasing Reynolds number (Re) at fixed magnetic
Reynolds number (Rm). This can be explained heuristically
by balancing viscous interaction at the boundaries against
magnetic stresses in the bulk fluid. It was then considered that
conducting endcaps may improve MRI. A linear boundary-
layer calculation in the spirit of [18] but for a conducting
boundary (see also [19,20]) gives the ratio of magnetic to
viscous boundary-layer stresses as

�mag

�visc
=

√
2�

(1 + �2)1/4

(
�δ2

ν

)1/2

. (1)

Here � = σf B2
0/ρ� is an Elsasser number based on the fluid

conductivity (σf ) and density (ρ), the imposed field normal to
the boundary (B0), and the angular velocity �, which is as-
sumed to be slightly different for the boundary than for the fluid
at large distances from it. The conductivity (σs) and geometri-
cal thickness (ds) of the boundary enter this expression via an

effective electrical thickness δ = σsds/σf . In the experimental
parameter regime, the ratio (1) is ∼103, i.e., the magnetic
coupling is 1000 times stronger than viscous coupling.

In this work, we use numerical calculations to test the effect
of conducting endcaps on the MRI saturation level and other
aspects of the flow. The basic equations are discussed in Sec. II,
results in Sec. III, and experimental implications in Sec. IV.

II. EQUATIONS

We solve the dimensionless Navier-Stokes and induction
equations

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u + (∇ × B) × B, (2)

∂ B
∂t

= ∇ × (u × B) + 1

σRm
∇2 B, (3)

using cylindrical coordinates (r,θ,z) in a domain modeled after
the Princeton MRI experimental setup, where the inner and
outer cylinders have radii r1 = 7 cm and r2 = 21 cm, the height
h = 28 cm, and the thickness of the newly installed copper
endcaps ds = 2 cm [11]. The magnetic induction equation
is solved for both fluid and solid endcaps. A quasispherical
vacuum region in which B = ∇� surrounds the walls and
endcaps, and on the outer boundary of this region we set
the magnetic potential � = B0z. The radius of the spherical
vacuum is ten times the height of the cylindrical setup.

The computational units of length, time, magnetic field,
and conductivity are r1, �−1

1 , r1�1
√

ρμ0, and σf of the
working liquid metal GaInSn, respectively. Here �1 is the
angular velocity of the inner cylinder and ρ is the density
of the fluid. Note that all permeabilities have the vacuum
value, μ0. The three dimensionless parameters governing this
magnetohydrodynamic system are the Reynolds number Re ≡
�1r

2
1 /ν, the magnetic Reynolds number Rm ≡ �1r

2
1 σf μ0,

and the Lehnert number B0 ≡ VA/�1r1 = B̃0/
√

ρμ0�1r1,
where B̃0 is the imposed field in dimensional units. Other
dimensionless measures of the field strength can be expressed
in terms of the Lundquist number Lu ≡ VAr1μ0σf = B0Rm,
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the Elsasser number � ≡ V 2
A /η� = B2

0 Rm, and the
Hartmann number Ha ≡ r1VA

√
μ0σf /ν = B0

√
Re Rm.

The experimental design limit for �1 is 4000 rpm,
and so Re ∼ O(107), Rm ∼ O(10), and B0 ∼ O(0.1).
The dimensionless thickness of the endcaps is ds = 0.3
(approximately), and their electrical conductivity is σs = 19.

In the regime where MRI occurs but centrifugal instability
does not, it is required that �1 > �2 but r2

1 �1 < r2
2 �2:

the “quasi-Keplerian” regime. Inserting r2 = 3r1 we are
led to the condition for MRI, 1/9 < �2/�1 < 1. In the
calculations we take �2/�1 = 0.1325. To suppress Ekman
(or Ekman-Hartmann) circulation driven by the boundary
layers at the endcaps, both in these calculations and in the
actual experiment, the endcaps are divided into two rings.
No-slip conditions are applied at the boundaries, with angular
velocities

�1 = 1, r = 1, − 2 � z � 2: inner cylinder;

�3 = 0.55, 1 < r < 2, z = −2,2: inner ring;

�2 = 0.1325, r > 2: outer ring (z = 0,h) and cylinder (r2 = 3). (4)

The initial fluid velocity is piecewise uniform rotation matched
to the rings. The initial magnetic field is the imposed uniform
vertical field B0. Following [17], departures from this initial
field configuration are quantified by the volume-averaged
radial field (“Br signal”):√

1

V

∫
V

(
Br

B0

)2

dV . (5)

The numerical calculations are carried out with the spectral
finite element Maxwell Navier-Stokes solver (SFEMANS) [21].
A Fourier spectral method is used in azimuth (θ ), and
finite elements in the meridional plane. In the experimentally
accessible regime, MRI is expected to be axisymmetric, and
so the calculations presented here are axisymmetric, although
some nonaxisymmetric calculations were made to test for shear
layer instabilities [17,22,23]. Up to 18 000 triangular finite
elements were used in the meridional plane.

III. RESULTS

The endcaps drive secondary circulation, so that MRI
must be detected as a modification or bifurcation of the
circulation rather than a linear instability [17]. Calculations
at the experimental Re ∼ 107 would be prohibitive, so we
begin by seeking MRI at Re = 1000 and later study trends up
to Re = 32 000.

Figure 1(a) shows the Br signal versus B0 for different
Rm. The Br signal reaches its maximum at the intermediate
B0 but is weak at both low and high B0. This result is
consistent with the fact that MRI needs magnetic field but will
be suppressed by a strong field [2], and it is also consistent
with the onset of MRI predicted by the local analysis [12],
the global analysis [13], and the numerical calculation with
pseudovacuum boundary condition [17]. Figure 1(b) shows the
linear growth rate versus B0 predicted by the methods of [13]
for the same Re in vertically periodic cylinders with vertical
wavelength 2h, which approximates the magnetic geometry at
saturation (Fig. 2). Evidently, the Br signal at saturation and
the expected MRI linear growth rate have similar dependence
on the field strength.

To suppress meridional circulation and isolate MRI sig-
natures, we have also performed simulations in which
the rotation of the insulating endcaps follows the ideal

Taylor-Couette flow profile, �(r) = a + b/r2. Although not
feasible experimentally, such differentially rotating endcaps
would permit a basic state of purely azimuthal motion
following the ideal profile at all heights, and deviations
could be interpreted as evidence for MRI (or perhaps other
instabilities) rather than Ekman circulation. Figure 1(c) shows
the Br signal versus B0 for these simulations. Note that the Br

signal vanishes as B0 → 0, unlike Fig. 1(a), as one expects in
the absence of Ekman circulation. Apart from this, the general
similarity of panels (a) and (c) suggests that the Br signal in
both cases is dominated by MRI, or at least not by meridional
circulation of the basic state. We also tested conducting
endcaps with the smoothly varying rotational profile of ideal
Taylor-Couette flow, and the results are slightly different from
the previous insulating endcaps (the difference arises from the
numerical error of the code). This suggests that the higher
saturation levels of MRI with conducting endcaps may be due
to the stronger driving of the base flow by conducting endcaps.

Figure 1(d) shows the dependence of Br on Rm at several
B0. For the three weaker fields, the variation with Rm is
monotonic but changes slope at an Rm that itself decreases
with B0: at Rm ≈ 9 for B0 = 0.10, at Rm ≈ 8 for B0 = 0.15,
and at Rm ≈ 4 for B0 = 0.25. It is known that Br can be
induced by either the Ekman-Hartmann circulation or MRI,
and moreover, in different parameter regimes the circulation-
induced Br and the MRI-induced Br may depend differently
on the dimensionless parameters. At least in uniform rotation,
the thickness of the boundary layer and the mass flux through
it decrease monotonically with increasing Elsasser number
(B2

0 Rm) at fixed Re [18,20], and the Br signal behaves
similarly. MRI, on the other hand, grows fastest at intermediate
B0, as Fig. 1(b) illustrates. Therefore, we take the data in Fig. 1
as evidence for the onset of MRI.

Figure 2 shows the meridional distributions of ur , uz, Br ,
and Bz at Re = 1000, Rm = 20, and B0 = 0.15, which is
well within the MRI regime as discussed above, i.e., Rm >

Rmc = 8 for B0 = 0.15 as shown by Fig. 1(d). Figure 2(a)
shows that the radial flow mainly lies in the boundary layer.
Figure 2(b) shows the pumping arising from the Ekman-
Hartmann boundary layer. The combination of Figs. 2(a)
and 2(b) shows the pattern of circulation, i.e., in two opposing
cells, clockwise at z > 0 and counterclockwise at z < 0.
Figure 2(c) shows that Br varies almost monotonically with

063107-2



NUMERICAL SIMULATIONS OF THE PRINCETON . . . PHYSICAL REVIEW E 94, 063107 (2016)

0.01 0.05 0.1 0.15 0.25 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

B
0

B
0

1 V
(B

r
/B

0)
2 d

V

 

 

Rm=2
Rm=5
Rm=10
Rm=20

0

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3 0.4 0.5

γ /
Ω
1

Rm=5
Rm=10
Rm=20

0.01 0.05 0.1 0.15 0.25 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

B
0

1 V
(B

r
/
B

0)
2 d

V

 

 

Rm=5
Rm=10
Rm=20

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Rm

1 V
(B

r
/
B

0)
2 d

V

 

 

B
0
=0.10

B
0
=0.15

B
0
=0.25

B
0
=0.50

(a) (b)

(c) (d)

FIG. 1. The Br signal at Re = 1000. (a) The Br signal versus B0 for different Rm, with conducting endcaps rotating as in Eq. (4). (b) Linear
growth rate of MRI versus B0 for periodic vertical boundary conditions with period 2h. (c) Like (a) but for insulating endcaps rotating with the
ideal Taylor-Couette profile. (d) The Br signal versus Rm for different B0, with endcaps as in (a).

FIG. 2. Meridional distributions. (a) The radial velocity ur . (b) The axial velocity uz. (c) The radial field Br . (d) The axial field Bz.
Conducting endcaps at Re = 1000, Rm = 20, and B0 = 0.15.

063107-3



XING WEI et al. PHYSICAL REVIEW E 94, 063107 (2016)

0 100 200 300 400 500
10

−3

10
−2

10
−1

time

1 V
(B

r
/
B

0)
2 d

V

0 100 200 300 400 500
10

−3

10
−2

10
−1

time

1 V
(B

r
/
B

0)
2 d

V

(a) (b)

FIG. 3. Conducting and insulating endcaps at Rm = 20. (a) The Br signal versus time for different Re at B0 = 0.15. (b) The Br signal
versus time for different Re at B0 = 0.25. Solid lines denote conducting endcaps and dashed lines denote insulating endcaps. Black, red, blue,
green, magenta, and cyan colors correspond, respectively, to Re = 1000, 2000, 4000, 8000, 16 000, and 32 000. Time unit is �−1

1 .

height and the strongest Br appears at z ≈ ±1.5 away from the
boundary layer where the strongest ur appears. The different
locations of the strongest Br and ur suggest that Br is mainly
induced not by circulation (i.e., interaction of ur and B0) but
by MRI. Figure 2(d) shows that the strongest Bz appears at the
midplane z = 0, where uz is almost zero. Again, this suggests
that Bz is mainly induced not by circulation (i.e., interaction
of uz and Br ) but by MRI.

We have also made calculations at higher Re, in order to
extrapolate toward the experimental regime. Figure 3 shows
the time evolution of the Br signal at Rm = 20 for different
Re and magnetic boundary conditions. The left and right
panels are for, respectively, B0 = 0.15 and 0.25, and both of
them are in the MRI regime. With insulating endcaps, the
Br signal becomes almost time independent after the initial

0.10.2 0.4 0.8 1.6 3.2

x 10
4

10
−2

10
−1

Re

1 V
(B

r
/
B

0)
2 d

V

 

 

con B
0
=0.15

con B
0
=0.25

ins B
0
=0.15

ins B
0
=0.25

FIG. 4. The Br signal at Rm = 20 versus Re for different B0 and
magnetic boundary conditions, as in Fig. 3.

transient. With conducting endcaps, the Br signal fluctuates
for Re � 8000. The variation of the time-averaged Br signal
with Re is shown in Fig. 4. Clearly, the Br signal is higher
with conducting than with insulating endcaps, and the contrast
increases with increasing Re (Fig. 4). At the highest Re =
3.2 × 104, the Br signal with conducting endcaps is around
30 (70) times that with insulating endcaps for B0 = 0.15
(0.25). This is qualitatively consistent with Eq. (1). The
Br signal scales differently with Re for the two boundary
conditions. With insulating endcaps the Br signal decreases
with increasing Re, though more slowly above Re = 8000.
With the conducting endcaps, the signal is approximately
constant at large Re, as might be expected if the flow is sus-
tained mainly by magnetic rather than viscous coupling to the
boundaries.

FIG. 5. The radial profile of specific angular momentum L ≡ r2�

at several heights, as marked. Other parameters (Re, Rm, B0) as
in Fig. 2.
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FIG. 6. Viscous and Maxwell fluxes. (a) and (b): radial viscous fluxes −r3∂ω/∂r at the inner and outer walls. (c) and (d): axial viscous
fluxes −r3∂ω/∂z and Maxwell fluxes −Rer2BφBz at the top and bottom. Rm = 10 for (a) and (c) and Rm = 20 for (b) and (d). Re = 1000
and B0 = 0.15.

IV. DISCUSSION

In this work we carried out the preliminary numerical
calculations for the Princeton MRI experiment to test the effect
of conducting (copper) endcaps. Although the fluid Reynolds
number of the numerical calculations is far away from the
experimental regime, Re = O(107), these calculations have
guided the redesign of the experiment. Firstly, MRI has been
identified in a regime of intermediate B0 and modest Rm.
According to these calculations, with conducting endcaps,
MRI is very likely to be discovered at Rm � 5 and B0 ≈
0.2–0.3. In the experiment, the maximum Rm reaches 9 and B0

can be selected within the range 0–0.3. Secondly, conducting
endcaps greatly increase the MRI signal, to a level ∼20%
at experimentally accessible Rm and B0. This is sufficiently
strong to be detected by the Hall probe newly installed on the
experimental setup.

The discontinuous rotation profile (4), if it extends from
the endcaps into the fluid (forming a so-called Shercliff layer),

might be expected to excite nonaxisymmetric instabilities
of the Kelvin-Helmholtz type [11,22]. To test this, nonax-
isymmetric simulations were performed with azimuthal wave
numbers up to m = 4 and Reynolds numbers up to Re =
32 000. Negligible energy was found in the nonaxisymmetric
components (m > 0). This is in accord with the experimental
results of [11], who found that Shercliff-layer instabilities grow
robustly in this apparatus (but before the endcaps were made
conducting) only when the Elsasser number � = σB̃2

0/ρ� is
�1, whereas � � 1 in the simulations of this paper.

Also possibly relevant is Rayleigh’s centrifugal instabil-
ity, which may arise where the specific angular momen-
tum decreases outward, ∂|r2�|/∂r < 0. We plot the radial
angular-momentum profile in Fig. 5 for the same parameters
as in Fig. 2. Evidently, the angular momentum increases
radially outward except near the inner cylinder, 1.0 < r <

1.2, and at 2.3 � r � 2.6. According to Fig. 2(c), however,
Br is largest at 1.5 � r � 2.0, where the flow is locally
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centrifugally stable (d|L|/dr > 0). In short, it seems unlikely
that the Br signal is dominated by Shercliff-layer or Rayleigh
instabilities.

To summarize, we have the following evidence for the
presence of MRI in our simulations:

(1) the similarity of the normalized Br signal at nonlinear
saturation to the linear MRI growth rate—in particular, the
monotonic dependence on magnetic Reynolds number Rm
and nonmonotonic dependence on the background field B0

[Fig. 1(b)];
(2) the similarity of the signal to that obtained in simula-

tions where Ekman simulation is suppressed [Fig. 1(c)];
(3) a change in the slope of the dependence of the signal

on Rm at the predicted threshold of MRI [Fig. 1(d)];
(4) different spatial distributions of radial velocity ur

(largest near boundaries) and radial field Br (largest in the
bulk) (Fig. 2);

(5) absence of nonaxisymmetric modes; and
(6) lack of spatial correlation of the signal with conditions

favoring centrifugal instability.
To end this paper we briefly discuss the flux of axial angular

momentum. In the axisymmetric case, the radial and axial
components of this flux are

Fr = ρr

(
uruφ − BrBφ

ρμ0
− νr

∂ω

∂r

)
,

(6)

Fz = ρr

(
uφuz − BφBz

ρμ0
− νr

∂ω

∂z

)
,

where ω = uφ/r is the angular velocity. In a steady state, or in
the time average, ∇ · F = 0, and the flux integrated over the
boundaries should vanish. Since the Reynolds stresses uruφ

and uφuz vanish at the boundaries, we compare the viscous
and Maxwell fluxes. We normalize the stresses with ν�1 such
that a prefactor Re appears in the dimensionless expression
of the Maxwell fluxes. We are concerned with the viscous

and Maxwell fluxes across the boundaries, namely, 2πrFr

versus z at r = r1 and r2 and 2πrFz versus r at z = ±h/2.
Figure 6 shows the radial fluxes at the inner and outer walls
[Figs. 6(a) and 6(b)], and the axial fluxes at the top and
bottom endcaps [Figs. 6(c) and 6(d)] at Rm = 10 and 20.
For the radial fluxes, the Maxwell fluxes vanish because the
walls are insulating and the viscous flux at the inner wall
dominates over the one at the outer wall. At the endcaps, the
magnetic flux is lower than the viscous at the low Rm = 10 but
exceeds the viscous at the large Rm = 20. Figures 6(c) and 6(d)
show that both the viscous and Maxwell fluxes change their
signs between the inner and outer rings. The integral of the
difference between the top and bottom endcaps is greater than
that between the outer and inner walls, and thus the transport
of angular momentum is substantially axial rather than purely
radial. This is not what is usually envisaged for MRI transport
in accretion disks. However, in the disks of protostars (and
perhaps other disks, including those of quasars), much of the
angular momentum may be removed via magnetic stresses
that couple to an outflow (magnetocentrifugal wind), and in
some parameter regimes this may be accompanied by MRI
turbulence within the disk [24].
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