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ABSTRACT

We have developed a local, linear theoretical model for lower hybrid drift waves that can be used for plasmas in the weakly collisional
regime. Two cases with typical plasma and field parameters for the current sheet of the magnetic reconnection experiment have been
studied. For a case with a low electron beta (be ¼ 0:25, high guide field case), the quasi-electrostatic lower hybrid drift wave is unstable, while
the electromagnetic lower hybrid drift wave has a positive growth rate for a high-be case (be ¼ 8:9, low guide field case). For both cases,
including the effects of Coulomb collisions reduces the growth rate but collisional impacts on the dispersion and growth rate are limited
(�20%).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052555

I. INTRODUCTION

Magnetic reconnection converts magnetic energy into plasma
thermal and flow energy via topological rearrangements of the mag-
netic field lines. Energy conversion processes during magnetic recon-
nection result in many free energy sources for waves and instabilities
near the diffusion region, such as strong gradients of the magnetic field
and plasma parameters. Among them, the lower hybrid drift wave
(LHDW) has been widely observed near the diffusion region in both
space (e.g., Refs. 1–7) and laboratory plasmas (e.g., Refs. 8–10). The
free energy source of LHDWs is the cross field current.11 The large
density gradients near the separatrix can particularly be a free energy
source by inducing a perpendicular current via a diamagnetic drift.

LHDWs have been a candidate for generating anomalous resis-
tivity because it can interact differently with magnetized electrons and
non-magnetized ions, resulting in momentum exchange between the
two species (e.g., Refs. 7–9 and 12–16). For reconnection with a negli-
gible guide field, the fast-growing, short-wavelength (kqe � 1; k is the
magnitude of the wave vector k, qe is the electron gyroradius),

quasi-electrostatic LHDW (ES-LHDW) is found to be localized at the
edge of the current sheet8 due to the stabilization by the high plasma
beta (b).17 On the other hand, the long-wavelength (k

ffiffiffiffiffiffiffiffiffi
qeqi
p � 1; qi is

the ion gyroradius), electromagnetic LHDW (EM-LHDW) that propa-
gates obliquely to the magnetic field exists in the electron diffusion
region.9 However, extensive efforts via numerical particle-in-cell (PIC)
simulations15,16 show that the EM-LHDW does not play an important
role in fast reconnection and electron energization near the electron
diffusion region during antiparallel reconnection.

Recent observations by the magnetospheric multiscale (MMS)
mission show that the ES-LHDW can be generated inside or near the
electron diffusion region,5–7 when there is a sizable guide field. The
ES-LHDW can drive electron heating and vortical flows6 near the elec-
tron diffusion region. Moreover, the ES-LHDW is capable of generat-
ing anomalous drag between electrons and ions.7

Motivated by these observations, Yoo et al.7 have developed a
local, linear theoretical model that explains the dynamics of both ES-
and EM-LHDWs in the presence of a guide field. This model is based
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on collisionless closures for the electron heat flux with the assumption
of a gyrotropic electron pressure tensor. The results from the model
agree with the activities of the ES- and EM-LHDWs inside a current
sheet at the magnetopause.7

In laboratory experiments, such as the magnetic reconnection
experiment (MRX), the effects of Coulomb collisions on magnetic
reconnection and electron heating are not negligible. The classical
Spitzer resistivity,18 for example, can balance the reconnection electric
field in the collisional regime and can even account for 10%–20% of
that in the collisionless regime.19,20 This indicates that Coulomb colli-
sions may also affect the dynamics of LHDWs in laboratory plasmas.

These collisional effects on LHDWs have not been considered
previously, even though LHDWs in the reconnection current sheet
have been extensively studied via theoretical analyses and numerical
simulations (e.g., Refs. 11, 14, 21–23). This paper provides the first
quantitative study of the effects of Coulomb collisions on LHDWs.
Through this model, we can address how the dynamics of LHDWs in
laboratory plasmas are different from those in collisionless plasmas
and when collisional effects become important. To include the effects
from collisions, we have advanced the previous models7,24 by using
closures of the electron heat flux, heat generated by collisions, and
resistivity that can be used for plasmas with arbitrary collisionality.25,26

For a self-consistent modeling of the heat flux and energy conserva-
tion, we also have allowed a first-order perturbation of the perpendicu-
lar electron temperature (T?e1), which was set to be zero in a previous
model by Yoo et al.7 Unlike previous models, the zeroth-order electron
temperature anisotropy is not allowed in the current model because
the available closures were developed under the assumption of isotro-
pic electron pressure at equilibrium. Except these changes, all other
assumptions are the same: we used a kinetic equation for unmagne-
tized ions, fluid equations for electrons, and a gyrotropic pressure ten-
sor for electrons.

This linear model can be used to quantify the effects of LHDWs
on electron heating and reconnection dynamics in weakly collisional
plasmas; with measured wave amplitudes and quasi-linear arguments,
wave-associated anomalous terms and heat generated by collisions
with ions can be directly estimated. It should be noted that the wave-
associated heating power cannot be estimated by collisionless models.

In Sec. II, we explain the theoretical model for LHDWs in a local
geometry. Then, in Sec. III, we numerically calculate dispersion rela-
tions of LHDWs for two cases. The biggest difference in the two cases
is the value of electron beta, be. For the low-be case, which represents
conditions near the electron diffusion region during reconnection with
a strong guide field, the ES-LHDW is unstable. For the high-be case,
which represents conditions in the same region but with a negligible
guide field, the EM-LHDW has positive growth rates. In both cases,
collisional effects on LHDWs with typical MRX parameters are not
significant (�20 %). Finally, in Sec. IV, we discuss the results and pro-
pose future research.

II. DERIVATION OF THE DISPERSION RELATION

Figure 1 shows the geometry of our local theoretical model for a
LHDW inside a current sheet. Here, the subscript 0 indicates equilib-
rium quantities. We chose the ion rest frame, and electrons have veloc-
ity (ue0) on the x–z plane. The equilibrium magnetic field is along the
z direction and the density gradient direction is along the y direction.
In this model, there is neither equilibrium temperature gradient nor

ion temperature anisotropy. The equilibrium electron temperature is
also assumed to be isotropic, but anisotropy is allowed in the per-
turbed electron temperature. The wave vector (k) lies on the x–z plane
due to our assumption of negligible ky. Thus, our theoretical model is
local and valid only when the wavelength of the LHDW is much
smaller than the thickness of the current sheet in the y direction.24

To balance the force associated with the pressure (density) gradi-
ent, there is an equilibrium electric field along the y direction. By using
the ion and electron force balance equations, the equilibrium electric
field E0 can be expressed in terms of other plasma parameters. From
the ion force balance along the y direction, we have

en0E0 ¼ Ti0
dn0

dy
¼ en0Ti0; (1)

where n0 is the equilibrium density, Ti0 is the equilibrium ion tempera-
ture, and e ¼ ðdn0=dyÞ=n0 is the inverse of the density gradient scale.
From the y component of the electron momentum equation, we have

�en0ðE0 � ue0xB0Þ ¼ Te0
dn0

dy
; (2)

where ue0x is the x component of the equilibrium electron flow veloc-
ity and Te0 is the equilibrium electron temperature. Then, the equilib-
rium electric field is

E0 ¼
Ti0

Te0 þ Ti0
ue0xB0: (3)

The inverse of the gradient scale is given by

e ¼ eue0xB0

Te0 þ Ti0
: (4)

Note that Eqs. (3) and (4) are the same as those in the collisionless
model in Yoo et al.,7 because the resistivity term is zero along the y
direction.

FIG. 1. Geometry of the local theory for the LHDW dispersion calculation. We are
working in the ion rest frame with the z direction toward the equilibrium magnetic
field (B0) and the y direction along the density gradient direction. Due to the force
balance, the equilibrium electric field E0 is also along the y direction. The equilib-
rium electron flow velocity ue0 and wave vector k reside on the x–z plane. The
angle between k and B0 is given by h.
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All perturbed quantities have a normal mode decomposition pro-
portional to exp ½iðk � x � xtÞ� with the wave vector k ¼ ðk?; 0; kkÞ.
Here, the subscript 1 indicates perturbed quantities. For the dispersion
relation, Maxwell’s equations without the displacement current term
are used,

k � ðk � E1Þ ¼ �ixl0J1: (5)

The displacement current term is ignored because the phase velocity
of the wave is much smaller than the speed of light.

Assuming the equilibrium ion distribution function to be locally
Maxwellian, the perturbed ion current density (Ji1) is given by24

Ji1 ¼ �
in0e2

mikvti
ZðfÞE1 þ

Z00ðE1 � k̂Þ
2

k̂ � i
e

2k

� �
Z00E1yk̂

" #
; (6)

where mi is the ion mass, vti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti0=mi

p
is the ion thermal speed,

f ¼ x=kvti, and ZðfÞ is the plasma dispersion function. This is from a
perturbed Vlasov equation for unmagnetized ions. This means that any
dynamics slower than the ion cyclotron frequency have been ignored,
including collisional effects on ion dynamics. In our regime of interest,
the ion collision frequency is smaller than the ion cyclotron frequency.
The perturbed ion temperature can be also obtained, which is

Ti1 ¼
ie
k

E1 � k̂ 2Z0 þ Z000

4

� �
� iE1y

e
k

� �
Z0 þ Z000

4

� �" #
: (7)

The perturbed electron current density Je1 is obtained from fluid
equations. This is different from the classical formulation of LHDWs,
where the kinetic (Vlasov) equation is used for electron dynamics (e.g.,
Refs. 17, 27, and 28). Since electrons are magnetized, a gyrotropic elec-
tron pressure tensor is assumed. In this case, the 3þ 1 fluid model (n,
u, pk, and p?; pk and p? are the parallel and perpendicular pressure,
respectively) is appropriate.25 In this fluid model, off diagonal terms of
the electron pressure tensor are ignored.

The first-order electron momentum equation is given by

imen0 x� k � ue0ð Þue1 ¼ ik � Pe1 þ en0ðE1 þ ue1 � B0 þ ue0 � B1Þ
þ eðE0 þ ue0 � B0Þne1 � Re1; ð8Þ

where Pe1 is the perturbed electron pressure tensor and Re1 is the per-
turbed resistivity. The perturbed electron density ne1 is given by the
electron continuity equation, which is

ðx� k � ue0Þne1 ¼ ðk � ue1 � ieue1yÞn0: (9)

To close the momentum equation, we need closures for Pe1 and
Re1. For Pe1, we only need closures for p?e1 and pjje1, since we assume a
gyrotropic pressure tensor as mentioned earlier. To obtain p?e1 and pke1,
we start from the following kinetic equation:

@fe

@t
þ v � rfe �

e
me
ðEþ v � BÞ � @fe

@v
¼ CðfeÞ; (10)

where fe is the electron distribution function and CðfeÞ is the collision
operator. First, multiplying the kinetic equation with meðvz � uezÞ2
and integrating over the velocity space yield

@pke
@t
þr � ðuepke Þ þ r � qke þ 2

@uez

@z
pke ¼ Cjje ; (11)

where

pke ¼ me

ð
ðvz � uezÞ2fedv; (12)

qke ¼ me

ð
ðv � ueÞðvz � uezÞ2fedv; (13)

Cjje ¼
ð

CðfeÞmeðv � ueÞ2dv: (14)

Similarly, multiplying the kinetic equation with me½ðvx � uexÞ2 þ ðvy

�ueyÞ2�=2 and integrating over the velocity space yield

@p?e
@t
þr � ðuep?e Þ þ r � q?e þ

@uex

@x
þ
@uey

@y

� �
p?e ¼ C?e ; (15)

where

p?e ¼ me

ð
1
2
ðvx � uexÞ2 þ ðvy � ueyÞ2
h i

fedv; (16)

q?e ¼ me

ð
1
2
ðvx � uexÞ2 þ ðvy � ueyÞ2
h i

ðv � ueÞfedv; (17)

C?e ¼
ð

1
2

CðfeÞ ðvx � uexÞ2 þ ðvy � ueyÞ2
h i

dv: (18)

Linearizing Eq. (11) yields

�ixpke1 þ eue1yn0Te0 þ iðk � u0Þpke1 þ iðk � ue1Þn0Te0

þ ik � qke1 þ 2ikkue1zn0Te0 ¼ Cjje1: (19)

By using pjje1 ¼ ne1Te0 þ n0T jje1 and Eq. (9), Eq. (19) can be written as

iðx� k � u0Þn0T jje1 ¼ ik � qke1 þ 2ikkue1zn0Te0 � Cjje1: (20)

Similarly, linearizing Eq. (15) yields

iðx� k � u0Þn0T?e1 ¼ ik � q?e1 þ ik?ue1xn0Te0 � C?e1: (21)

We now need fluid closures for qjje1; q?e1; Cjje1, and C?e1. First, the 3þ 1
fluid model gives us7

qke ¼
ẑ

mexce
� pkerTeþTerpke �

Te

2
rpke �Tkerp?e

� �
þqkezẑ ; (22)

where xce ¼ eB0=me; pke ¼ 2ðpke � p?e Þ=3 and T jje ¼ pjje =ne. After lin-

earization, the x component of qke1 is

qke1x ¼
2Te0

3ðTe0 þ Ti0Þ
n0ue0xðT jje1 � T?e1Þ ¼ rten0ue0xðT jje1 � T?e1Þ; (23)

where rte ¼ 2Te0=3ðTe0 þ Ti0Þ. For q?e , we derive a closure in
Appendix A, which can be written as

q?e ¼
ẑ

mexce
� � 5

6
pke þ

17
6

p?e

� �
rTe

�

� 2
9

Tke þ
4
9

T?e

� �
rpke þ

8
9

Tke �
2
9

T?e

� �
rp?e

�
þ q?ezẑ : (24)

After linearization, the x component of q?e1 is

q?e1x¼�
2Te0

3ðTe0þTi0Þ
n0ue0xðT jje1�T?e1Þ¼�rten0ue0xðT jje1�T?e1Þ: (25)
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For qke1z and q?e1z , we employ a closure for plasmas with arbitrary
collisionality, which can be written as25

qke1z ¼
6
5

hke1 þ rke1; (26)

q?e1z ¼
2
5

hke1 �
1
2
rke1; (27)

where

hke1 ¼�
1
2

i�k jj �K hhn0vteT�e1 þ i�kjj �K hrvtep
jj
e1

þ �K hRn0Te0ðue1z � ui1zÞ þ i�K hSvtep
jj
e1; (28)

rke1 ¼
4
3

i�kjj �K hrn0vteT�e1 � i�kjj �K rrvtep
jj
e1

þ �K rRn0Te0ðue1z � ui1zÞ þ i�K rSvtep
jj
e1: (29)

Here, T�e1 ¼ Te1 þ 2pjje1=5n0; vte ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te0=me

p
is the electron thermal

speed, and �kjj ¼ kjjkc is the normalized parallel wave number. The
electron collision length is defined as kc � vtesee, and the electron–
electron collision time see is given by

see ¼
6
ffiffiffi
2
p

p3=2e2
0
ffiffiffiffiffiffi
me
p

T3=2
e0

n0e4 ln Kee
; (30)

where ln Kee is the Coulomb logarithm for electron–electron collisions
and e0 is the permittivity of free space. In Eqs. (28) and (29), �K AB rep-
resents a kernel function that is obtained from a 6400 moment solu-
tion.25 The kernel function �K AB has the following form:

�K AB ¼
a�k

a
jj

1þ d1
�k

d
jj þ d2

�k
2d
jj þ d3

�k
3d
jj þ d4

�k
4d
jj þ d5

�k
5d
jj þ d6

�k
6d
jj
; (31)

where the values of coefficients, such as a, a, and d in Eq. (31), are given
in Table I in Ji and Joseph.25 For a negative �k jj; �K ABð�kjjÞ ¼ �K ABð��k jjÞ
if a¼ 0 or a¼ 2. When a¼ 1, �K ABð�kjjÞ ¼ ��K ABð��kjjÞ. These closures
are consistent with those of Hammett and Perkins29 in the collisionless
limit, and they become consistent with those of Braginskii30 in the colli-
sional limit.

The heat generated by the collision terms Cjje1 and C?e1 also needs
a closure and can be written as

Cjje1 ¼
2
3

Qe1 þ Sjje1; (32)

C?e1 ¼
2
3

Qe1 �
1
2

Sjje1; (33)

where Qe is the heat generated by collisions and Sjje is related to the
temperature anisotropy.25 The closure for Sjje1 is given by25

Ske1 ¼
4
3

�kjj �K hS
n0

see
T�e1 þ

�kjj
see

�K rSp
jj
e1 þ i

8
3

�K RS
n0Te0

vtesee

� ðue1z � ui1zÞ �
2:05� �K SS

see
pjje1: (34)

The heat generated by collisions can be written as26

Qe ¼ 3
mene

misei
ðTi � TeÞ � uei � Re; (35)

where sei is the electron–ion collision time and uei ¼ ue � ui is the
relative flow velocity between electrons and ions. Assuming the ion
charge status Zi is unity, sei is

sei ¼
6
ffiffiffi
2
p

p3=2e2
0
ffiffiffiffiffiffi
me
p

T3=2
e0

n0e4 ln Kei
; (36)

where ln Kei is the Coulomb logarithm for electron–ion collisions.
Linearizing Qe yields

Qe1 ¼ 3
mene1

misei
ðTi0 � Te0Þ þ 3

men0

misei
ðTi1 � Te1Þ

� ue0 � Re1 � uei1 � Re0: (37)

We also need an expression for the resistivity. Since there is no tem-
perature gradient in the equilibrium quantities, the zeroth-order resis-
tivity Re0 can be written as26

Re0 ¼ �ajj
men0

sei
ue0z ẑ � a?

men0

sei
ue0xx̂: (38)

For Zi ¼ 1, the two coefficients are26

ajj ¼ 0:504; (39)

a? ¼ 1� 1:46r þ 1:06

r
5
3 � 0:081r

4
3 þ 2:97r þ 2:13

; (40)

where r ¼ xcesee. There are additional terms in Re1 since temperature
gradients exist in the first order. The parallel (z) component of Re1 is25

Rjje1 ¼ � i
�k jj �K hR

vtesee
n0T�e1 � i

3
4

�kjj �K rR

vtesee
pjje1 � ð1� �K RRÞ

� n0me

see
uei1z þ i

2�K RS

vtesee
pjje1: (41)

Equation (41) can be written as

Rjje1¼�ikkn0c
jj
ezT jje1� ikkn0c

?
ezT?e1�ðmen0=seeÞð1� �K RRÞuei1z; (42)

where

cjjez ¼
3
5

�K hR þ
1
2

�K rR �
4�K RS

3�kjj
; (43)

c?ez ¼
2
5

�K hR �
1
2

�K rR þ
4�K RS

3�kjj
: (44)

The x component of Re1 is26

R?e1 ¼ �a?
men0

sei
uei1x � a?

meue0x

sei
ne1 � ik?b?n0Te1; (45)

where b? for Zi ¼ 1 is given by26

b? ¼ 6:33r þ 2:47

r
8
3 þ 2:75r

7
3 þ 3:99r2 þ 5:31r

5
3 þ 8:23r þ 3:52

: (46)

Finally, the y component of Re1 is given by R�e1 ¼ a�men0uei1y=sei.
Here, the coefficient a� for Zi ¼ 1 is26

a� ¼ rð2:53r þ 0:81Þ
r

8
3 þ 2:54r

7
3 þ 6:14r2 þ 7:35r

5
3 þ 11:22r þ 4:09

: (47)
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With these closures, the first-order momentum equation [Eq.
(8)] can be used to obtain the perturbed electron current density Je1.
Then, the Maxwell equation [Eq. (5)] can be written as

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
@

1
A E1x

E1y

E1z

0
@

1
A ¼ 0: (48)

The detailed derivation of each component of tensor D can be found
in Appendix B.

III. COLLISIONAL EFFECTS ON THE DISPERSION

Dispersion relations for the lower hybrid drift waves are obtained
from jDj ¼ 0, where jDj is the determinant of the tensor D; from this
equation, the normalized angular frequency X is computed numeri-
cally for the given k and h. Required input parameters are B0, n0,
Te0; Ti0; ue0z , and ue0x . In addition, the ion mass has to be specified.

Compared to the previous collisionless model in Yoo et al.,7 there
are two significant changes in the current model: the inclusion of the
first-order perturbation of the perpendicular electron temperature
(T?e1) and the use of collisional closures. To understand the effects of
each change, we obtain dispersion relations from four different
models—(i) the collisionless model in Ref. Yoo et al.,7 (ii) a model
with collisional closures but without T?e1, (iii) the current model in the
collisionless limit see !1, and (iv) the current model.

First, we obtain dispersion relations with typical plasma and field
parameters near the electron diffusion region of the MRX during
reconnection with a guide field; B0 ¼ 180 Gauss, n0 ¼ 2� 1013 cm�3,
Te0 ¼ Ti0 ¼ 10 eV, ue0z ¼ �130 km/s, and ue0x ¼ 50 km/s. Here, the
ion species is singly ionized helium. Justified by previous measure-
ments in MRX,19,31 we assume that Zi ¼ 1. With these parameters,
seexce ¼ 157; be is 0.25 and VA is 44 km/s. Note that ue0x exceeds
VA, which is a necessary condition for LHDWs to have large growth
rates.

Figure 2 shows dispersion relations from the four models. Left
(right) panels are contour plots of the real (imaginary) part of the
angular frequency as a function of kqe and h. Here qe ¼ vte=xce is the
electron gyroradius. From now on, x represents the real part of the
angular frequency and c represents the imaginary part. Both x and c
are normalized to the (angular) lower hybrid frequency, xLH. All four
models are qualitatively similar, showing strong growth rates
(c � 0:6xLH) for the ES-LHDW. The ES-LHDW propagates almost
perpendicular to B0 (h � 90	) with x � xLH. The peak growth rate
occurs at kqe � 0:7 and h � 91	. Here kqe � 0:7 corresponds to
k � 0:6 cm. These similarities among the four models indicate that
the effects of Coulomb collisions on the ES-LHDW are limited for typ-
ical MRX parameters. Moreover, inclusion of T?e1 also has a limited
impact on the dispersion.

For a better comparison between the four models, the dispersion
relation and growth rate of the ES-LHDW are presented in Fig. 3 for
h ¼ 91	. It is worth noting that including Coulomb collisions
decreases the growth rate c. This is understandable since collisions
decrease the reaction of electrons to the external perturbation, such
that they reduce the positive feedback from the plasma. The change in
x is not straightforward but is related to frequency shift due to addi-
tional terms of ue1x and ue1z . For example, the parallel force balance
equation Eq. (B48) has the resistivity Rjje1, which adds additional terms

in aez in Eq. (B50). These additional terms can cause a shift in x (note
that aez has a dependency on x via ae).

It is interesting to see that including T?e1 in the electron dynamics
decreases both x and c of the ES-LHDW. Interpreting this trend is
complicated, because T?e1 impacts both the x and z components of the
electron momentum equation. For the x component, the first term
(ik?n0T?e1) on the right side of Eq. (B55), which is the perturbed per-
pendicular electron pressure gradient term, directly contains T?e1. For
the parallel momentum balance of Eq. (B48), T?e1 affects T jje1 via qjje1x in
Eq. (23). The parallel resistivity [Eq. (42)] also has a term with T?e1
(�ikkn0c?ezT?e1).

The dispersion relation is calculated after setting c?ez ¼ 0 to
remove contributions from T?e1 in the z component of the electron
force balance equation. As shown in Fig. 4, this change (green line)
decreases x and increases c, compared to the reference case with T?e1
(red line). Changes in x and c are not significant.

The change in x with T?e1 is caused by the ik?n0T?e1 term in the x
component of the electron momentum equation. As shown in Fig.
4(a), without the term (magenta line), x increases significantly com-
pared to the reference case with T?e1 (red line). Removing the ik?n0T?e1
term also increases c for most values of k. Again, these changes are
caused by the frequency shift due to the additional term with ue1x ;
from Eqs. (B35) and (B55), the inertial term effectively changes from
imen0ðx� k � ue0Þue1x to imen0ðx� k � ue0 � 0:5�c?uxk?vteÞue1x .

We have repeated the dispersion calculation for the EM-LHDW
that propagates obliquely to B0. The plasma and field parameters used
for calculations are B0 ¼ 30 Gauss, n0 ¼ 2� 1013 cm�3, Te0 ¼ Ti0

¼ 10 eV, ue0z ¼ �50 km/s, and ue0x ¼ 130 km/s. Again, the ion spe-
cies is singly ionized helium and Zi ¼ 1. With these parameters,
seexce ¼ 26:2; be is 8.9 and VA is 7.3 km/s. These parameters repre-
sent typical MRX values near the electron diffusion region during
reconnection with a negligible guide field.

As shown in Fig. 5, dispersion relations from the four models
again qualitatively agree with each other; these models expect positive
growth rates for the EM-LHDW. Models without T?e1 have the maxi-
mum growth rate around kqe � 0:6 and h � 55	, while those with
T?e1 have the maximum growth rate around kqe � 0:5 and h � 50	.
The wavelength with the largest growth rate is about 4 cm. In is inter-
esting to see that all models expect that the mode has frequency signifi-
cantly less than xLH in the ion rest frame. This agrees with
measurements in MRX and numerical simulations that show that
most of the power of the EM-LHDW exists below xLH.9,16

For comparison between the four models, x and c as a function
of k for h ¼ 55	 are presented in Fig. 6. Similar to the ES-LHDW case,
collisional effects decrease c regardless of the existence of T?e1 in the
model. This is consistent with the aforementioned explanation; colli-
sions decrease the reaction of electrons to the external perturbation,
thereby decreasing the positive feedback. For the EM-LHDW, colli-
sions generally decrease x especially when T?e1 is not included in the
model (blue lines). Including T?e1 further decreases both x and c for
this mode (red lines).

IV. SUMMARY AND DISCUSSION

In summary, we have developed a local, linear model of LHDWs
that includes effects of Coulomb collisions and T?e1. This model works
best for plasmas with weak collisionality. Without collisions, some
assumptions for the 3þ 1 model may not be valid, as the zeroth-order
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distribution function is not close to a Maxwellian. In addition, in the
collisionless plasma, agyrotropy can be developed, while a gyro-
tropic electron pressure tensor is assumed in this model. For colli-
sional plasmas, we need to consider the zeroth-order electric field
along the x and z directions; for the zeroth-order electron force bal-
ance, additional components of E0 are needed to balance the

zeroth-order resistivity Re0. If there are too many collisions, we
need additional first-order terms (eE0xne1 and eE0zne1) in the x and
z components of the electron momentum equation [Eq. (8)]. From
Eq. (38), required equilibrium electric field components are given
by E0z ¼ �ajjB0ue0z=xcesei and E0x ¼ �a?B0ue0x=xcesei. From
Eq. (3), E0x=E0 is given by

FIG. 2. Dispersion relation of the LHDW with typical MRX parameters near the electron diffusion region with a high guide field. Left (right) panels show the real (imaginary)
part of the angular frequency as a function of k and h. (a) Collisionles model without T?e1. (b) Collisional model without T

?
e1. (c) Model with T?e1 in the collisionless limit

(see !1). (d) Collisional model with T?e1 (the most complete model). The results from the four models qualitatively agree with each other; the quasi-electrostatic LHDW that
propagates almost perpendicular to B0 is unstable. The maximum growth rate appears around kqe � 0:7 and h � 91	. The growth rate of the mode decreases with the colli-
sional effects (b) and (d), compared to the corresponding collisionless cases (a) and (c).
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E0x

E0
¼ � a?Te0

Te0 þ Ti0

1
xcesei

� � 1
xcesee

; (49)

because a? � Te0=ðTe0 þ Ti0Þ � 1 and sei � see for Zi ¼ 1. This
means that E0x is negligible compared to E0, as long as electrons are
fully magnetized (xcesee 
 1), which is one of the basic assumptions
of this model. From a similar argument, E0z is also negligible unless
jue0zj 
 jue0xj. For the two cases presented here, the effects of both
E0x and E0z are expected to be minimal since jue0zj � jue0xj and
xcesee 
 1.

To verify this argument, we have calculated dispersion relations
of LHDWs after including two additional terms (eE0xne1 and eE0zne1)

and have found that impacts from these terms are actually negligible.
The basic reason for not including additional components of E0 in the
current model is that including E0x may require an additional electron
flow component along the y direction, since there will be a corre-
sponding E� B drift of electrons, while ions are unmagnetized. This
means that collisions may impact the dynamics of LHDWs by chang-
ing the equilibrium itself. A future work will address this effect in a
self-consistent manner. As the main purpose of the current study is to
study collisional effects on LHDWs, we minimize other changes for
simplicity. The parallel component of the equilibrium electric field E0z ,
on the other hand, can be easily added in the model without creating
complexity. Moreover, E0z in the electron diffusion region during

FIG. 3. 1D dispersion relation of the ES-LHDW for h ¼ 91	. (a) x=xLH as a function of kqe. Including the collisional effects (solid lines) increases the real frequency, while
models with T?e1 (red lines) have lower x. (b) c=xLH as a function of kqe. Collisional effects (solid lines) decrease c, compared to the results from the corresponding collision-
less cases (dashed lines).

FIG. 4. 1D dispersion relation of the ES-LHDW for h ¼ 91	. (a) x=xLH as a function of kqe for four cases with collisional effects. The blue (red) line indicates the reference
case without (with) T?e1. If T

?
e1 is removed from the x component of the electron momentum equation (cyan line), x becomes significantly larger. Removing the contribution

from T?e1 in the z component of the electron momentum equation (green line), on the other hand, reduces x. (b) c=xLH as a function of kqe for four cases with collisional
effects. Effects of T?e1 on c are not important, as all four cases show similar values.
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reconnection with a strong guide field may significantly exceed the
value required to balance the classical resistivity.32 In the future, we
will study the possible impacts of E0z on LHDWs with values mea-
sured in MRX during guide field reconnection.

With this model, we have calculated two sets of LHDW disper-
sion relations for typical MRX parameters. The first case uses parame-
ters from the electron diffusion region during reconnection with a
significant guide field, while the second one uses those with a negligi-
ble guide field. Due to the presence of the guide field, the first case has

a low electron beta (be ¼ 0:25), such that the ES-LHDW is unstable
in that region. For the second case (be ¼ 8:9), on the other hand, the
ES-LHDW is stabilized by the high beta effect17 and the EM-LHDW is
unstable instead.

It will be interesting to study the critical value of be that deter-
mines whether the ES- or EM-LHDW is unstable. Initial studies show
that the critical value is determined by the value of ue0x=VA; for a rela-
tively low (�1) value of ue0x=VA like the first case, be also has to be
low (�0:5) to have the ES-LHDW unstable. For a high value (>10) of

FIG. 5. Dispersion relation of the LHDW with typical MRX parameters near the electron diffusion region with a negligible guide field. Left (right) panels show the real (imagi-
nary) part of the angular frequency as a function of k and h. (a) Collisionless model without T?e1. (b) Collisional model without T

?
e1. (c) Model with T

?
e1 in the collisionless limit

(see !1). (d) Collisional model with T?e1 (the most complete model). Again, the results from the four models qualitatively agree with each other; the electromagnetic LHDW
that propagates obliquely to B0 is unstable. The maximum growth rate appears around kqe � 0:5 and h � 50	. The growth rate of the mode decreases with collisional effects
(b) and (d), compared to the corresponding collisionless cases (a) and (c).
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ue0x=VA, on the other hand, the ES-LHDW exists at the higher
be � 1. We plan to conduct a statistical study with data from MMS
and/or MRX, which will be compared to the results from the current
theoretical model.

Based on the two cases we have studied, collisional effects on
LHDWs in typical MRX current sheets are limited. In both cases,
including Coulomb collisions in the model decreases the growth rate.
However, the difference in c is relatively small (�20%). This is because
the wavelengths of LHDWs (0.5–5 cm) are smaller than the mean free
path of electrons (�10 cm) and electrons are fully magnetized
(xcesee 
 1) for these parameters.

To further investigate how collisions may impact on the disper-
sion relation, we have artificially varied see and sei. For the ES-LHDW,
artificially high collisions significantly affect the dispersion relation
and the growth rate, as shown in Figs. 7(a) and 7(b). When the colli-
sions are enhanced by a factor of 5 (red dashed line), the real fre-
quency becomes larger for kqe > 0:2 than the reference value (blue
solid line). There is also a significant decrease in the growth rate for
kqe > 0:7. Changes in less collisional cases, on the other hand (green
solid and dashed lines), are minimal. With the reduced collision time
(see ! 0:2see), the mean free path (seevte) becomes about 2 cm, which
corresponds to kqe � 0:2. This supports the insertion that collisions
have large impacts on modes with a wavelength comparable to the
mean free path (k � 2pseevte).

For the case of the EM-LHDW, the effects from collisions
become significant when collisions are enhanced by a factor of 5 or
more (see ! 0:2see and sei ! 0:2sei). As denoted by the red line in
Fig. 7(c), the overall shape of the dispersion relation changes notice-
ably, when see is reduced to 0:2see. The mean free path with 0:2see is
about 2 cm (the same electron temperature and density as the first
case), and the change starts around 0:2kqe. When see reduces even
further to 0:1see (red dashed line), the deviation from the reference
line starts around 0:1kqe. For both cases, there are also significant
reductions in c, as shown in Fig. 7(d) especially for kqe < 0:7.

This means that parameters for the two cases studied here are
actually in the weakly collisional regime and that the dynamics of

LHDWs are susceptible to collisional effects only when collisions are
strong. For example, if the base electron temperature for both cases is
3 eV, the dispersion relation from this collisional model will be vastly
different from that of the collisionless model.

Including T?e1 in the model has limited impacts on the dispersion;
it generally decreases the frequency and growth rate of LHDWs, but
changes in x and c are less than 20% for both cases. These changes
mostly come from the additional pressure gradient term (ik?n0T?e1) in
the electron momentum equation along the x direction. This limited
impact is related to the existence of Lorentz force terms along the per-
pendicular direction;7 because of these terms, the electron force bal-
ance is less sensitive to the pressure gradient term along the
perpendicular direction.

It should be noted that the current theoretical model ignores the
global structure of the current sheet by assuming that there is no wave
propagation along the density gradient direction (y direction in Fig. 1).
To address the effects from the global current sheet structure, an
eigenmode analysis21,33 or numerical simulations22,23 will have to be
carried out, which will be one of our future works. In MRX, where the
current sheet is actually broader (�10de; de is electron skin depth),
this local approximation is generally valid, as the length scale along the
y direction is larger than the wavelength of LHDWs.

This model assumes that there is no equilibrium temperature
gradient across the current sheet. In MRX, electrons are locally heated
in the current sheet.20,34 However, inside the current sheet the temper-
ature gradient is rather small, compared to that of density. Therefore,
the effects of the temperature gradient are expected to be negligible.24

This study will provide a theoretical framework for quantifying
anomalous terms and heating associated with LHDWs in MRX. With
the solved dispersion relation, we can express every fluctuating quan-
tity in terms of a measurable quantity. For example, the first-order
density perturbation [Eq. (B81)] can be expressed in terms of the fluc-
tuation in the reconnection electric field (dErec) that can be measured
with a probe.8,35 Then, the wave-associated anomalous drag term
D ¼ �hdnedEreci=hnei36 can be estimated by measuring dErec. Here,
the assumption is that the linear relation holds, such that we can use

FIG. 6. 1D dispersion relation of the EM-LHDW for h ¼ 55	. (a) x=xLH as a function of kqe. Models with T
?
e1 (red lines) have lower x. The impact of Coulomb collisions on

x is negligible. (b)c=xLH as a function of kqe. Collisional effects (solid lines) decreases c, compared to the results from the corresponding collisionless cases (dashed lines).
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ne1 � dne. Furthermore, this model can provide direct estimates of
wave-associated heating in Eq. (35) via the same quasi-linear argu-
ment. This estimate cannot be done with other collisionless models. In
the future, we will establish quasi-linear calculations and conduct mea-
surements of LHDWs in MRX to find out how LHDWs affect the elec-
tron and reconnection dynamics.
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APPENDIX A: DERIVATION OF THE HEAT FLUX
CLOSURE

From the kinetic equation in the ðt; r;w � v � VÞ coordinates
(V is the fluid velocity),

df
dt
� ðw � rVÞ � @

@w
f þr � ðwf Þ þ @

@w
� ðAf Þ

þ q
m

w � B � @
@w

f ¼ Cðf Þ; (A1)

where

d
dt
¼ @

@t
þ V � r; (A2)

FIG. 7. 1D dispersion relations with various collisionalities for the two cases. (a) x=xLH as a function of kqe for the ES-LHDW case. When see is artificially decreased to
0:2see (red dashed line), which means that collisions are enhanced by a factor of 5, there is a significant increase in x when kqe > 0:4. The same change is also applied to
the other collision time, sei. The blue line indicates the reference value without any change in the collision time. (b)c=xLH as a function of kqe for the ES-LHDW case. When
collisions are enhanced (red solid and dashed lines), there are noticeable changes in c. (c)x=xLH as a function of kqe for the EM-LHDW case. When collisions are enhanced,
there are large changes in the dispersion. (d)c=xLH as a function of kqe for the EM-LHDW case. When collisions are enhanced (red solid and dashed lines), the growth rate
with smaller kqe decreases notably.
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A ¼ 1
m

F� þ qðV� BÞ½ � � dV
dt
: (A3)

For the pjj fluid equation, we need to obtain the closure,

qjj ¼
ð

d3vmw2
jjwf ¼ qjjjjẑ þ qjj?; (A4)

q ¼ h ¼
ð

d3v
1
2

mw2wf ¼ hjjẑ þ h?; (A5)

where

qjjjj ¼
ð

d3vmw3
jjf ¼

6
5

hjj þ rjj; (A6)

q?jj ¼
ð

d3v
1
2

mw2
?wjjf ¼

2
5

hjj �
1
2
rjj (A7)

have been obtained in Ji and Joseph,25 and the qjj? has been obtained
in Yoo et al.7 Now we obtain

q? ¼
ð

d3v
1
2

mw2
?wf ¼ q?jj ẑ þ q??: (A8)

Note that q? can be obtained from

h? ¼ q? ¼
ð

d3v
1
2

mw2w?f ¼ 1
2

qjj? þ q??: (A9)

We adopt the closure (transport) ordering d=dt � 0 and the linear
response theory, linear in thermodynamic drives, i.e., rT , rpjj and
rp?.

We take the moments
Ð

d3v 1
2 mw2w of the kinetic equation:ð

d3v
1
2

mw2w
df
dt
¼ d

dt
q : ignored by the closure ordering;ð

d3v
1
2

mw2wðw � rVÞ � @
@w

f : ignored by the linearization;ð
d3v

1
2

mw2wr � ðwf Þ ¼ r �
ð

d3v
1
2

mw2wwf

� �
:

We should decompose wwww into orthogonal polynomials (see Ji
and Held37) for the consistent truncation in the expansion of a dis-
tribution function.

c ¼ w
vT
¼ wffiffiffiffiffiffiffiffiffiffiffiffi

2T=m
p : (A10)

In terms of orthogonal basis

c2cc ¼ c2 cc� 1
3

c2I

� �
þ 1

3
c4I

¼ c2 � 7
2

� �
cc� 1

3
c2I

� �
þ 7

2
cc� 1

3
c2I

� �
þ 1

3
c4I

¼ �p21 þ 7
2
p20 þ 2

3
1
2

c4 � 5
2

c2 þ 15
8

� �
Iþ 2

3
5
2

c2 � 15
8

� �
I

¼ �p21 þ 7
2
p20 þ 2

3
p02Iþ 5

3
c2 � 3

2

� �
þ 5

2
� 5

4

� �
I

¼ �p21 þ 7
2
p20 þ 2

3
p02Iþ � 5

3
p01 þ 5

4

� �
I; (A11)

ð
dv

1
2

mw2wwf ! 1
2

mv4
T

7
2
p20 þ � 5

3
p01 þ 5

4

� �
I

� �

¼ 7
2

1
2

v2
Tpþ 1

2
mv4

T
5
4

nI

¼ 7
2

T
m

pþ 5
2

T
m

pI

¼ 7
2

T
m
p� T

m
pI: (A12)

Hereafter! will be used to drop b terms, which will be nullified by
the b� operation,

r � p ¼ 3
2

b@jjpjj �
1
2
rpjj ! �

1
2
rpjj: (A13)

For the @
@w � ðAf Þ term

A ¼ 1
m

F� þ qðV� BÞ½ � � dV
dt
¼ 1

mn
ðrpþr � pÞ: (A14)ð

dv
1
2

mw2w
@

@w
� ðAf Þ ¼ �

ð
dvmA � @

@w
1
2

w2w

� �
f

¼ �
ð

dvm A � ww þ 1
2

w2A

� �
f

¼ �p � A� 3
2

pA

¼ �A � p� 5
2

pA: (A15)

All together r � ðwf Þ þ @
@w � ðAf Þ

all¼r� 7
2

T
m

pþ5
2

T
m

pI

� �
� 1

mn
ðrpþr�pÞ �p

�5
2

p
1

mn
ðrpþr�pÞ

¼ 7
2m
rT �pþTr�p1ð Þþ

5
2m

prTþTrp
0

� �
� 1

mn
ðrpþr�pÞ �p�5

2
p

1
mn

rp
0
þr�p1

� �
¼ 7

2m
rT �pþ 1

m
Tr�pþ 5

2m
prT� 1

mn
ðrpþr�pÞ �p; (A16)ð

d3v
1
2

mw2w
@

@w
� w � Bfð Þ ¼ � 1

2
m
ð

d3v w � Bfð Þ � @
@w

w2wð Þ

¼ � 1
2

m
ð

d3v w � Bfð Þ � 2ww þ w2Ið Þ

¼ � 1
2

m
ð

d3vw2w � Bf

¼ �h� B; (A17)

q
m

ð
d3v

1
2

mw2w
@

@w
� w � Bfð Þ ¼ �Xh� ẑ : (A18)

The final equation becomes up to OðX0Þ

terms dropped by closure orderingð Þ þ allþ ðterms / bÞ
� Xh� ẑ ¼ ðcollision terms / bÞ

h? ¼
1
X

ẑ � all
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h? ¼
1

mX
b� 5

2m
rT � pþ 1

m
Tr � pþ 5

2m
prT � 1

mn
ðr � pÞ � p

� �
:

(A19)

Since we are interested in q? up to OðX�1Þ, we consider only the
CGL viscosity, which is OðX0Þ

p ¼ 3
2
pjj bb� 1

3
I

� �
; (A20)

r � p ¼ 3
2

b@jjpjj �
1
2
rpjj

¼ � 1
2
rpjj þ b terms (A21)

and

ðr � pÞ � p ¼ 3
2

b@jjpjj �
1
2
rpjj

� �
� 3

2
pjj bb� 1

3
I

� �

¼ 1
4
pjjrpjj þ b terms; (A22)

all ¼ 7
2m
rT � pþ 1

m
Tr � pþ 5

2m
prT � 1

mn
ðrpþr � pÞ � p

¼ � 7
4m

pjjrT � T
2m
rpjj þ

5
2m

prT þ
pjj

2mn
rp

� 1
4mn

pjjrpjj þ b terms; (A23)

q? ¼
1

mX
b� �7

4
pjjrT�T

2
rpjj þ

5
2

prTþ
pjj
2n
rp� 1

4n
pjjrpjj

� �
;

(A24)

q?? ¼ q? �
1
2

qjj?; (A25)

where7

qjj? ¼
1

mX
b� pjjrT þ Trpjj � T

2
rpjj �

pjj

n
rp?

� �
: (A26)

Finally,

q? ¼ q?jj ẑ þ q??: (A27)

One can rewrite equations in terms of pjj and p? using

pjj ¼
2
3
ðpjj � p?Þ; (A28)

p ¼ 1
3

pjj þ 2p?
� �

¼ nT: (A29)

APPENDIX B: DERIVATION OF TENSOR D

In terms of T jje1 and T?e1; qke1z and q?e1z [Eqs. (26) and (27)] can
be expressed as

qke1z ¼ �i�cjjqjjn0vteT jje1 � i�cjjq?n0vteT?e1 þ �cjjqun0Te0uei1z; (B1)

q?e1z ¼ �i�c?qjjn0vteT jje1 � i�c?q?n0vteT?e1 þ �c?qun0Te0uei1z; (B2)

where six dimensionless parameters are defined as

�cjjqjj ¼
9

25
�kjj �K hh �

8
5

�kjj �K hr þ
2
3

�kjj �K rr �
4
5

�K hS �
2
3

�K rS; (B3)

�cjjq? ¼
6

25
�kjj �K hh þ

4
15

�k jj �K hr �
2
3

�kjj �K rr þ
4
5

�K hS þ
2
3

�K rS; (B4)

�cjjqu ¼
6
5

�K hR þ �K rR; (B5)

�c?qjj ¼
3

25
�kjj �K hh þ

2
15

�kjj �K hr �
1
3

�k jj �K rr �
4

15
�K hS þ

1
3

�K rS; (B6)

�c?q? ¼
2

25
�kjj �K hh þ

8
15

�k jj �K hr þ
1
3

�kjj �K rr þ
4

15
�K hS �

1
3

�K rS; (B7)

�c?qu ¼
2
5

�K hR �
1
2

�K rR: (B8)

Here, uei1z ¼ ue1z � ui1z is the first-order relative flow velocity along
the z direction.

With Eqs. (7), (9), (37), (38), (42), and (45), Qe1 can be written as

Qe1 ¼ 1� �K RR þ
ajjsee

sei

 !
n0meue0z

see
uei1z þ

�cQjjn0

see
T jje1

þ �cQ?n0

see
T?e1 þ AQ; (B9)

where

�cQjj ¼�
mesee

misei
þ

i�kjjue0z

vte

3�K hR

5
þ

�K rR

2
�4�K RS

3�kjj

 !
þi�k?b?ue0x

3vte
; (B10)

�cQ? ¼ �
2mesee

misei
þ

i�kjjue0z

vte

2�K hR

5
�

�K rR

2
þ 4�K RS

3�kjj

 !
þ 2i�k?b?ue0x

3vte
;

(B11)

AQ ¼
3meðTi0 � Te0Þ

misei
þ a?meu2

e0x

sei

� �
ne1 þ

3men0

misei
Ti1

þ 2a?men0:ue0x

sei
uei1x: (B12)

With Eqs. (32)–(34), and (B9), Cjje1 and C?e1 can be written as

Cjje1 ¼ �cjjCjj
n0T jje1

see
þ �cjjC?

n0T?e1

see
þ �c jjCu

n0Te0uei1z

seevte
þ 2

3
AQ; (B13)

C?e1 ¼ �c?Cjj
n0T jje1

see
þ �c?C?

n0T?e1

see
þ �c?Cu

n0Te0uei1z

seevte
þ 2

3
AQ; (B14)

where six dimensionless parameters are given by

�cjjCjj ¼
2
3

�cQjj þ
4
5

�kjj �K hS þ
2
3

�kjj �K rS �
2ð2:05� �K SSÞ

3
; (B15)

�c jjC? ¼
2
3

�cQ? þ
8

15
�kjj �K hS �

2
3

�k jj �K rS þ
2ð2:05� �K SSÞ

3
; (B16)

�cjjCu ¼
4
3

1� �K RR þ
ajjsee

sei

 !
ue0z

vte
þ 8i

3
�K RS; (B17)

�c?Cjj ¼
2
3

�cQjj �
2
5

�kjj �K hS �
1
3

�kjj �K rS þ
2:05� �K SS

3
; (B18)

�c?C? ¼
2
3

�cQ? �
4

15
�kjj �K hS þ

1
3

�kjj �K rS �
2:05� �K SS

3
; (B19)

�c?Cu ¼
4
3

1� �K RR þ
ajjsee

sei

 !
ue0z

vte
� 4i

3
�K RS: (B20)

With these closures, Eqs. (20) and (21) can be written as
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iraeT jje1¼�cjjjjT
jj
e1þ�cjj?T?e1þ�cjjuTe0

ue1z

vte
��cuxTe0

ue1x

vte
��cnTe0

ne1

n0
þAjjt ;

(B21)

iraeT?e1 ¼ �c?jj T
jj
e1 þ�c??T?e1 þ�c?u Te0

ue1z

vte
þ i�k? ��cux

	 

Te0

ue1x

vte

��cnTe0
ne1

n0
þ A?t ; (B22)

where

ae ¼ ðx� k � ue0Þ=xce; (B23)

�cjjjj ¼ �k jj�c
jj
qjj � �cjjCjj þ irtek?seeue0x; (B24)

�cjj? ¼ �kjj�c
jj
q? � �c jjC? � irtek?seeue0x; (B25)

�c jju ¼ i�kjj�c
jj
qu � �cjjCu þ 2i�kjj; (B26)

�cux ¼
8a?seeue0x

3seivte
; (B27)

�cn ¼
2mesee

misei

Ti0

Te0
� 1

� �
þ 4a?seeu2

e0x

3seiv2
te

; (B28)

�c?jj ¼ �kjj�c
?
qjj � �c?Cjj � irtek?seeue0x; (B29)

�c?? ¼ �kjj�c
?
q? � �c?C? þ irtek?seeue0x; (B30)

�c?u ¼ i�kjj�c
?
qu � �c?Cu; (B31)

Ajjt ¼ �
2mesee

misei
Ti1 � i�kjj�c

jj
qu � �cjjCu

� �
Te0

ui1z

vte
þ 8a?seeue0x

3seivte
Te0

ui1x

vte
;

(B32)

A?t ¼ �
2mesee

misei
Ti1 � i�k jj�c

?
qu � �c?Cu

� �
Te0

ui1z

vte
þ 8a?seeue0x

3seivte
Te0

ui1x

vte
:

(B33)

With Eqs. (B21) and (B22), T jje1 and T?e1 can be written as

T jje1 ¼ �cjjuzTe0
ue1z

vte
þ �cjjuxTe0

ue1x

vte
þ �cjjnTe0

ne1

n0
þ Ajji ; (B34)

T?e1 ¼ �c?uzTe0
ue1z

vte
þ �c?uxTe0

ue1x

vte
þ �c?n Te0

ne1

n0
þ A?i ; (B35)

where

�cjjuz ¼
irae � �c??
	 


�c jju þ �c jj?�c?u

irae � �cjjjj

� �
irae � �c??
	 


� �ck?�c?jj

; (B36)

�cjjux ¼ �
irae � �c??
	 


�cux � �cjj? i�k? � �cux

	 

irae � �cjjjj

� �
irae � �c??
	 


� �ck?�c?jj
; (B37)

�cjjn ¼ �
irae � �c?? þ �cjj?

� �
�cn

irae � �c jjjj

� �
irae � �c??
	 


� �ck?�c?jj
; (B38)

�c?uz ¼
irae � �c jjjj

� �
�c?u þ �c?jj �c

jj
u

irae � �cjjjj

� �
irae � �c??
	 


� �ck?�c?jj
; (B39)

�c?ux ¼
irae � �cjjjj

� �
i�k? � �cux

	 

� �c?jj �cux

irae � �c jjjj

� �
irae � �c??
	 


� �ck?�c?jj
; (B40)

�c?n ¼ �
irae � �c jjjj þ �c?jj

� �
�cn

irae � �c jjjj

� �
irae � �c??
	 


� �ck?�c?jj
: (B41)

The additional ion terms Ajji and A?i can be expressed as

Ajji ¼ �c jjijjA
jj
t þ �c jji?A?t ; (B42)

A?i ¼ �c?ijjA
jj
t þ �c?i?A?t ; (B43)

where

�c jjijj ¼
irae � �c??

irae � �cjjjj

� �
irae � �c??
	 


� �ck?�c?jj
; (B44)

�cjji? ¼
�cjj?

irae � �cjjjj

� �
irae � �c??
	 


� �ck?�c?jj

; (B45)

�c?ijj ¼
�c?jj

irae � �cjjjj

� �
irae � �c??
	 


� �ck?�c?jj

; (B46)

�c?i? ¼
irae � �c jjjj

irae � �cjjjj

� �
irae � �c??
	 


� �ck?�c?jj

: (B47)

The z component of Eq. (8) is

imen0ðx� k � u0Þue1z ¼ ikkp
k
e1 þ en0ðE1z þ u0xB1yÞ � Rjje1: (B48)

From the Faraday’s Law (xB1 ¼ k � E1), B1y ¼ ðkkE1x � k?E1zÞ=x.
With Eqs. (9), (42), (B34), (B35), and (B48), ue1z is expressed as

iaezue1z ¼ i�cxzue1x þ �cyzue1y þ Aez þ Aiz; (B49)

where

aez ¼ ae �
kjjvte

2xce
�cjjuz þ cjjez�c

jj
uz þ c?ez�c

?
uz �

2ið1� �K RRÞ
�kjj

"

þ
kkvte

aexce
1þ �cjjn þ cjjez�c

jj
n þ c?ez�c

?
n

� �#
; (B50)

�cxz ¼
kjjvte

2xce
�c jjuxþcjjez�c

jj
uxþc?ez�c

?
uxþ

k?vte

aexce
1þ�cjjnþcjjez�c

jj
nþc?ez�c

?
n

� �� �
;

(B51)

�cyz ¼
ekjjv2

te

2aex2
ce

1þ �cjjn þ cjjez�c
jj
n þ c?ez�c

?
n

� �
; (B52)

Aez ¼
E1z

B0
þ ku0x

x
E1x cos h� E1z sin h

B0
; (B53)

Aiz ¼
ikk
eB0

Ajji þ cjjezAjji þ c?ezA?i

� �
� 1� �K RR

xcesee
ui1z: (B54)

The x component of Eq. (8) is

imen0 x� k � ue0ð Þue1x ¼ ik?ðn0T?e1 þ Te0ne1Þ þ en0ðE1x

þ B0ue1y � ue0zB1yÞ � R?e1: (B55)

With Eqs. (9), (45), (B34), (B35), (B49), and (B55), ue1y can be
expressed as
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ceyue1y ¼ iaexue1x � Aex � Aix �
�czxk?vte

2aezxce
ðAez þ AizÞ; (B56)

where cey; aex , and Aex are

cey ¼ 1þ �cnxek?v2
te

2aex2
ce
þ

�czx�cyzk?vte

2aezxce
; (B57)

aex ¼ ae �
�cnxk2

?v2
te

2aex2
ce
� �czx�cxzk?vte

2aezxce

� k?vte

2xce

b?�cjjux

3
þ 1þ 2b?

3

� �
�c?ux �

2ia?see

�k?sei

" #
; (B58)

Aex ¼
E1x

B0
� ku0z

x
E1x cos h� E1z sin h

B0
; (B59)

Aix ¼
ik?
eB0

b?Ajji
3
þ 1þ 2b?

3

� �
A?i

" #
� a?ui1x

seixce
: (B60)

Here, two dimensionless parameters are given by

�cnx ¼ 1þ b?�c jjn
3
þ 1þ 2b?

3

� �
�c?n �

2ia?seeue0x

�k?seivte
; (B61)

�czx ¼
b?�cjjuz

3
þ 1þ 2b?

3

� �
�c?uz þ

�cnxkkvte

aexce
: (B62)

Similarly, the y component of Eq. (8) is

imen0 x� k � u0ð Þue1y ¼ en0ðE1y � B0ue1x � ue0xB1z þ ue0zB1xÞ
þ eðE0 � ue0xB0Þne1 � R�e1: (B63)

With Eqs. (3), (9), and (B49), ue1x can be expressed as

cexue1x ¼ �iaeyue1y þ
3irtekku0x

2aeaezxce
ðAez þ AizÞ þ Aey þ Aiy; (B64)

where cex; aey; Aey , and Aiy are

cex ¼ 1þ 3rtek?ue0x

2aexce
1þ

�cxzkk
aezk?

� �
; (B65)

aey ¼ ae � i
a�

xcesei
� 3rteeue0x

2aexce
1þ

�cyzkk
aeze

� �
; (B66)

Aey ¼
E1y

B0
� k

x

ðu0x sin hþ u0z cos hÞE1y

B0
; (B67)

Aiy ¼
a�

xcesei
ui1y: (B68)

With Eqs. (B56) and (B64), ue1y is given by

ue1y ¼ i iCe
yxðAexþAixÞþCe

yyðAeyþAiyÞþ iCe
yzðAezþAizÞ

h i
; (B69)

where

Ce
yx ¼ cey �

aexaey

cex

� ��1

; (B70)

Ce
yy ¼ Ce

yx
aex

cex
; (B71)

Ce
yz ¼ Ce

yx

�czxk?vte

2aezxce
þ

3rteaexkkue0x

2cexaeaezxce

� �
: (B72)

Similarly, ue1x is given by

ue1x ¼ iCe
xxðAex þ AixÞ þ Ce

xyðAey þ AiyÞ þ iCe
xzðAez þ AizÞ; (B73)

where

Ce
xy ¼ cex �

aexaey

cey

� ��1
; (B74)

Ce
xx ¼ Ce

xy

aey

cey
; (B75)

Ce
xz ¼ Ce

xy

3rtekku0x

2aeaezxce
þ

aey�czxk?vte

2ceyaezxce

" #
: (B76)

Then, ue1z can be written as

ue1z ¼ iCe
zxðAex þ AixÞ þ Ce

zyðAey þ AiyÞ þ iCe
zzðAez þ AizÞ; (B77)

where

Ce
zz ¼ �

1
aez
þ �cxzCe

xz

aez
þ

�cyzCe
yz

aez
; (B78)

Ce
zx ¼

�cxzCe
xx

aez
þ

�cyzCe
yx

aez
; (B79)

Ce
zy ¼

�cxzCe
xy

aez
þ

�cyzCe
yy

aez
: (B80)

The final goal is to obtain the perturbed current density of
electrons, which is given by Je

1 ¼ �en0ue1 � eue0ne1. Thus, an
expression for ne1 is required. From Eqs. (9), (B69), (B73), and
(B77), ne1 is given by

ne1¼
kn0

x�k �ue0
iC0ex ðAexþAixÞþC0ey ðAeyþAiyÞþ iC0ez ðAezþAizÞ
h i

;

(B81)

where

C0ex ¼ Ce
xx sin hþ Ce

yxe=kþ Ce
zx cos h; (B82)

C0ey ¼ Ce
xy sin hþ Ce

yye=kþ Ce
zy cos h; (B83)

C0ez ¼ Ce
xz sin hþ Ce

yze=kþ Ce
zz cos h: (B84)

Now, we are ready for computing the dispersion relation. Equation
(5) is

k2
kE1x � k?kkE1z � ixl0J1x ¼ 0; (B85)

k2E1y � ixl0J1y ¼ 0; (B86)

k2
?E1z � k?kkE1x � ixl0J1z ¼ 0: (B87)

By multiplying by d2
i (di � c=xpi is the ion skin depth; xpi is ion

plasma frequency), the above equation can be written as

K2 cos2hE1x � K2 sin h cos hE1z � iX
B0

en0
J1x ¼ 0; (B88)

K2E1y � iX
B0

en0
J1y ¼ 0; (B89)
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K2 sin2hE1z � K2 sin h cos hE1x � iX
B0

en0
J1z ¼ 0; (B90)

where K � kdi and X ¼ x=xci.
From Eq. (6), each component of iXB0Ji

1=en0 is

iXB0

en0
J i

1x ¼ fZE1xþ
fZ00 sinh

2
E1x sinh� i

e
k

E1yþE1z cosh
� �

; (B91)

iXB0

en0
J i

1y ¼ fZE1y; (B92)

iXB0

en0
J i

1z ¼ fZE1zþ
fZ00 cosh

2
E1x sinh� i

e
k

E1yþE1z cosh
� �

: (B93)

From Eqs. (B73) and (B81), iJe
1x=en0 is given by

iJe
1x

en0
¼ Ce0

xxðAex þ AixÞ � iCe0
xyðAey þ AiyÞ þ Ce0

xzðAez þ AizÞ; (B94)

where Ce0
xx ¼ Ce

xx þ kue0xC0ex =ðx� k � ue0Þ; Ce0
xy ¼ Ce

xy þ kue0xC0ey =

ðx� k � ue0Þ, and Ce0
xz ¼ Ce

xz þ kue0xC0ez =ðx� k � ue0Þ. Similarly,
from Eqs. (B77) and (B81), iJe

1z=en0 is given by

iJe
1z

en0
¼ Ce0

zxðAex þ AixÞ � iCe0
zyðAey þ AiyÞ þ Ce0

zzðAez þ AizÞ; (B95)

where Ce0
zx ¼ Ce

zx þ kue0zC0ex =ðx� k � ue0Þ; Ce0
zy ¼ Ce

zy þ kue0zC0ey =

ðx� k � ue0Þ, and Ce0
zz ¼ Ce

zz þ kue0zC0ez =ðx� k � ue0Þ. Since there
is no y component in ue0; iJe

1y=en0 is simply

iJe
1y

en0
¼ iCe

yxðAex þ AixÞ þ Ce
yyðAey þ AiyÞ þ iCe

yzðAez þ AizÞ: (B96)

In terms of dimensionless parameters, XB0Aex; XB0Aey , and XB0Aez

can be written as

XB0Aex ¼ X� KUe0z cos hð ÞE1x þ ðKUe0z sin hÞE1z; (B97)

XB0Aey ¼ X� KðUe0x sin hþ Ue0z cos hÞ½ �E1y; (B98)

XB0Aez ¼ ðKUe0x cos hÞE1x þ X� KUe0x sin hð ÞE1z: (B99)

Ue0 ¼ ue0=VA and VA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0min0
p ¼ dixci is the Alfv�en speed.

With Eq. (7), Aiz in Eq. (B54) is

Aiz ¼�cizx
iJ i

1x

en0
þ �c izz

iJ i
1z

en0
þ �cizT

B0
E1 � k̂ 2Z0 þ Z000

4

� ��

�iE1y
e
k

� �
Z0 þ Z000

4

� ��
; (B100)

where three dimensionless parameters are given by

�cizx ¼
4a?ð�cjjiz þ �c?iz Þseekkue0x

3seixce
; (B101)

�cizz ¼� �cjjiz i�kjj�c
jj
qu��cjjCu

� �
þ�c?iz i�kjj�c

?
qu��c?Cu

� �� �
kkvte

2xce
þ ið1� �K RRÞ

xcesee
;

(B102)

�cizT ¼
2ð�c jjiz þ �c?iz Þmesee cos h

misei
: (B103)

Here, two additional parameters �cjjiz and �c?iz are defined as

�cjjiz ¼ ð1þ cjjezÞ�c
jj
ijj þ c?ez�c

?
ijj; (B104)

�c?iz ¼ ð1þ cjjezÞ�c
jj
i? þ c?ez�c

?
i?: (B105)

Similarly, Aix is

Aix ¼�cixx
iJ i

1x

en0
þ �cixz

iJ i
1z

en0
þ �cixT

B0
E1 � k̂ 2Z0 þ Z000

4

� ��

�iE1y
e
k

� �
Z0 þ Z000

4

� ��
; (B106)

where three dimensionless parameters are given by

�cixx ¼
4a?ð�c jjix þ �c?ixÞseek?ue0x

3seixce
� a?

seexce
; (B107)

�cixz ¼ � �cjjix i�kjj�c
jj
qu � �cjjCu

� �
þ �c?ix i�kjj�c

?
qu � �c?Cu

� �� �
k?vte

2xce
; (B108)

�cixT ¼
2ð�c jjix þ �c?ixÞmesee sin h

misei
: (B109)

Two additional parameters �cjjix and �c?ix are

�cjjix ¼
b?

3
�cjjijj þ 1þ 2b?

3

� �
�c?ijj; (B110)

�c?ix ¼
b?

3
�c jji? þ 1þ 2b?

3

� �
�c?i?: (B111)

The last ion term is Aiy ¼ ða�=xceseiÞJ i
1y=en0.

Equations (B88)–(B90) can be written as

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
BB@

1
CCA

E1x

E1y

E1z

0
BB@

1
CCA ¼ 0: (B112)

Each component of the tensor D is

Dxx ¼K2 cos2h� Ce0
xx X� KUe0z cos hð Þ � Ce0

xzKUe0x cos h

�Ci
xx fZ þ fZ00 sin2h

2

� �
� Ci

xz
fZ00 cos h sin h

2

� Ci
xTX sin h 2Z0 þ Z000

4

� �
; (B113)

Dxy ¼Ce0
xy

a�

xcesei
fZ þ iCe0

xy X� KðUe0x sin hþUe0z cos hÞ½ �

þi
e
k

� �
Ci

xx
fZ00 sin h

2
þ i

e
k

� �
Ci

xz
fZ00 cos h

2

þ i
e
k

� �
Ci

xT Z0 þ Z000

4

� �
; (B114)

Dxz ¼� K2 sin h cos h� Ce0
xxKUe0z sin h� Ce0

xz X� KUe0x sin hð Þ

�Ci
xx

fZ00

2
sin h cos h� Ci

xz fZ þ fZ00 cos2h
2

� �

� Ci
xTX cos h 2Z0 þ Z000

4

� �
; (B115)
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Dyx ¼� i Ce
yx X� KUe0z cos hð Þ þ Ce

yzKUe0x cos h
h i

� iCi
yx fZ þ fZ00 sin2h

2

� �
� iCi

yz
fZ00 cos h sin h

2

� iCi
yTX sin h 2Z0 þ Z000

4

� �
; (B116)

Dyy¼K2� 1�
iCe

yya
�

xcesei

 !
fZ�Ce

yy X�KðUe0x sin hþUe0z cos hÞ½ �

� e
k

� �
Ci

yx
fZ00 sin h

2
� e

k

� �
Ci

yz
fZ00cos h

2
� e

k

� �
Ci
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4

� �
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(B117)

Dyz ¼ � i Ce
yxKUe0z sin hþ Ce

yz X� KUe0x sin hð Þ
h i

�iCi
yx

fZ00 sin h cos h
2

� iCi
yz fZ þ fZ00 cos2h

2

� �

� iCi
yTX cos h 2Z0 þ Z000

4

� �
; (B118)

Dzx ¼� K2 sin h cos h� Ce0
zx X� KUe0z cos hð Þ � Ce0

zzKUe0x cos h

�Ci
zx fZ þ fZ00 sin2h

2

� �
� Ci

zz
fZ00 cos h sin h

2

� Ci
zTX sin h 2Z0 þ Z000

4

� �
; (B119)

Dzy ¼Ce0
zy

a�
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� �
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; (B120)

Dzz ¼K2 sin 2h� Ce0
zxKUe0z sin h� Ce0

zz X� KUe0x sin hð Þ

�Ci
zx

fZ00

2
sin h cos h� Ci

zz fZ þ fZ00 cos2h
2

� �

� Ci
zTX cos h 2Z0 þ Z000

4

� �
; (B121)

where

Ci
xx ¼ 1þ Ce0

xx�cixx þ Ce0
xz�c izx; (B122)

Ci
xz ¼ Ce0

xx�c ixz þ Ce0
xz�cizz; (B123)

Ci
xT ¼ Ce0

xx�c ixT þ Ce0
xz�cizT ; (B124)

Ci
yx ¼ Ce

yx�c ixx þ Ce
yz�cizx; (B125)

Ci
yz ¼ Ce

yx�cixz þ Ce
yz�c izz; (B126)

Ci
yT ¼ Ce

yx�cixT þ Ce
yz�cizT ; (B127)

Ci
zx ¼ Ce0

zx�c ixx þ Ce0
zz�cizx; (B128)

Ci
zz ¼ 1þ Ce0

zx�cixz þ Ce0
zz�c izz; (B129)

Ci
zT ¼ Ce0

zx�c ixT þ Ce0
zz�cizT : (B130)

APPENDIX C: COMPARISON WITH CLASSICAL
MODEL

Since the current model has been established independently,
benchmarking with the classical model is desirable. Here, we used
the well-known model by Davidson et al.17 For this benchmarking,
we set both kjj and ue0z to be zero as in the classical model.

As shown in Fig. 8, the results from both collisional (blue line)
and collisionless (red line) models do not agree with results from
the classical model (black line). In particular, our models expect an
almost linear dispersion relation, but x increases slowly for small
kqe in the classical model. Another interesting difference is that the
peak growth rate occurs around kqe � 0:6 in our models, while it is
around kqe � 1 in the classical model. This discrepancy is not due
to the choice of our heat flux closures; there is not much difference
between our two models, which shows the insensitivity of the dis-
persion to p?e1. Moreover, the dispersion relation is independent of
pjje1 when kjj ¼ 0. We also have confirmed that this discrepancy is
not due to the inclusion of the perturbed ion current density, which
is ignored in the classical model.

We note that the basic set of equations used in the classical
model by Davidson et al.17 is different. The biggest difference is that
Poisson’s equation is used in the classical model, while we used
Faraday’s induction law. To understand the cause of this discrep-
ancy, we have developed another model to calculate the dispersion
relation. In this model, we follow the basic equations of the classical
model, while using our results for the perturbed density and current
density.

In our geometry, the first-order equations in Davidson et al.17

can be written as

E1y �
il0x

k2ð1� D2Þ
J1y ¼ 0; (C1)

E1x þ
ie
e0k
ðni1 � ne1Þ ¼ 0; (C2)

where D ¼ x=ðckÞ, which is from the displacement current. This
contribution is ignored, since the phase velocity of LHDWs is much
smaller than the speed of light (jD2j � 1). We have confirmed that
the dispersion relation is insensitive to the inclusion of D2.

For J1y; ni1, and ne1, we use the results from our models. The
perturbed ion density is given by24

ni1 ¼ i
n0e

mik2v2
ti

Z0ðkE1x � ieE1yÞ: (C3)

For the perturbed electron density, we will use one from the colli-
sionless model for simplicity, as there is not much difference
between two models. We also assume that Te0 ¼ Ti0. With kjj ¼ 0
and ue0z ¼ 0; ne1 can be expressed as7

ne1 ¼
kn0

ðx� kue0xÞB0
iCn

x E1x þ Cn
y 1� kue0x

x

� �
E1y

� �
; (C4)

where

Cn
x ¼ aeþ

e
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� �
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eþ
1

2ae

ekv2
te

x2
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þkue0x
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 !
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2
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te

x2
ce
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xce

 !" #�1

;

(C5)
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xce
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þ1

2
k2v2

te
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(C6)

The y component of the perturbed ion current is24

J i
1y ¼ �

ie2n0

mix
fZE1y: (C7)

The y component of the perturbed electron current is7

Je
1y ¼ �

ien0

B0
iCu

x E1x þ Cu
y 1� kue0x

x

� �
E1y

� �
; (C8)

where

Cu
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y ¼ ae �
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2aex2
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e þ
1

2ae

ekv2
te

x2
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þ kue0x
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þ 1
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x2
ce
þ eue0x
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 !#�1

: (C10)

With Eqs. (C3), (C4), (C7), and (C8), Eqs. (C1) and (C2) can be
written as

DyyE1y þ DyxE1x ¼ 0; (C11)

DxyE1y þ DxxE1x ¼ 0; (C12)

where

Dyy ¼ 1� fZ

K2ð1� D2Þ
� X� KUe0x

K2ð1� D2Þ
Cu

y ; (C13)

Dyx ¼ �
iXCu

x

K2ð1� D2Þ
; (C14)

Dxy ¼
id2

i

2K2k2
Di

e
k

� �
Z0 �

ix2
piC

n
y

x2
ciX

; (C15)

Dxx ¼ 1� di2

2K2k2
Di

Z0 þ
x2

piC
n
x

x2
ciðX� KUe0xÞ

; (C16)

where kDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0Ti0=e2n0

p
is the ion Debye Length. The dispersion

relation can be obtained by setting DxxDyy � DxyDyx ¼ 0.
The dispersion relation from this simplified model (green

line) agrees with the classical model, as shown in Fig. 8(a). This
means that the discrepancy is due to the use of Poisson’s equation,
where the Faraday induction term is ignored. With the parameters
for the ES-LHDW, be is about 0.25, which means that perturbed
magnetic field due to the perturbed plasma current may not be
negligible. This argument is supported by observations in labora-
tory and space,7,10 where magnetic field fluctuations exist
when there are strong electric field fluctuations associated with
ES-LHDW.

It is interesting to see that the growth rate from the simplified
model is considerably lower than that from the classical model, as
shown in Fig. 8(b). This difference is likely related to the lack of a
rigorous modeling of the heat flux in this simplified model.
Although the magnitude is different, both models show that the
peak growth rate is around kqe � 1.

This comparison shows that the use of electron fluid equations
is acceptable for dynamics of LHDWs. It should be also noted that
only our models include full electromagnetic effects, since the
induction term is included. These effects are important when b is
not negligible.

FIG. 8. Dispersion relation for the case of the ES-LHDW (Te ¼ Ti ¼ 10 eV, ne ¼ 2� 1013 cm�3, B0 ¼ 180 Gauss, ue0x ¼ 50 km/s, singly ionized helium). (a) Dispersion
relation for four cases. The blue and red lines indicate results from collisional and collisionless models, respectively. The green line denotes the case derived here with
Poisson’s equation and perturbed quantities in the collisionless model. The black lines indicate the results from the classical models.17 (b) Growth rate of the ES-LHDW for all
cases.
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