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1 The edge plasma temperature

The edge temperature pedestal and H-mode were dis-

covered on Asdex Iin the early 80s

Also, the “edge transport barrier”, which provides a steep t emperature gradient
In front of the last closed magnetic surface, was introduced

In the LIWF regime the temperature pedestal is equal to core t emperature. At
the same time, the understanding of the LIWF regime gives a ne w view on the
temperature pedestal in conventional plasma.

Apparently obvious, the concept of the “edge transport

barrier” contains many hidden inconsistencies
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Where is the plasma edge ?

IS It not just the separatrix by definition ?
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The plasma edge, understood as a transition zone from diffus Ive transport to a
convective one, is located approximately at one mean free pa th
T2
_ keV 1.1
N|.Dom = 121 (1)
n20

from the plasma facing surface. For  Tggqqe > 1 keV the mean free path
A||,D,m can be aslarge as =~ 1 km or more.

4

PPP
%Ewg‘i%ﬁ% Leonid E. Zakharov, ASIPP Seminar, July 09, 2008, ASIPP Hefei, Anhui Province, China




Tedge IS @ boundary condition

Edge plasma temperature Is determined self-

consistently by the particle fluxes (Krasheninnikov)

Across the last mean free path, A p, in front of PFC surface the energy is carried
out by the moving particles

5 Feore—edge
_Fedge —wall edge / Pe de ngtge wall (12)
2 1 — R.;
Tedge SEIVES @S a boundary condition for the confinement zone
21— 21—
Ted9e — = / P.dv, TEo9e — / Pdv (1.3
5 [core— edge & 5 [ core— edge

In the Lithium Wall Fusion (LIWF)

edge—wall __ l-wcore—edge

on — — ~ T
electron,ion ’ edge core

The transport plasma properties near the edge

do not affect T edge
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DIlI-D made crucial input to LIWF

Resonance Magnetic Perturbation experiments have confirme d our,
LIWF, views. The pedestal T edge In not affected by RMP.
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RMP Interpretation

The toroidal plasma has 3 different plasma edges: two for ele ctron

and ion temperatures, and a separate for the plasma density

The edge for the electron temperature is situated at the tip o f the temperature
pedestal.

For the ion temperature and the plasma density, the edge seem s to be at the
separatrix.

In the zone of the electron temperature pedestal the confine-
ment is essentially absent. Instead of mysterious “transpo rt

barrier” properties, the T.(x) profile is determined by recy-
cling (Simple Recycling Model)

21— Re(x)

edge =
Te () = 5core— edge/ PedV,

(1.4)
Re(w) =1- Redge

edge

where x = 0 is at the separatrix.
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Scrape Off Layer Currents

SOLCs are present even in the most quiet plasma

SOL current and MHD activity in DIII-D
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Figure 3. Pictorial discharge summary; the left-hand panel shows I, € (ms)
- (ms)

in units of megaamperes, P, in units of 20 MW, gqs divided by 6,
B, and the nominal no-wall limit (here, 4 1i). The right-hand panel

E Figure 4. Signals from tile current sensors in tile ring #12 A in the
sho

‘[ Todd Evans, Hiro Takahashi and Eric Fredrickson (NF,2004) h  ave found a




2 Sheath potential

Collisionless Scrape Off Layer introduces new physics

Conventional estimate of sheath potential

op ~ 3T, (2.1)

IS not applicable. The mirror ratio along field lines in
the SOL and confinement of trapped particles in SOL
determine the sheath potential

(PE ~ Te. (2.2)

A blanket of trapped particles is expected
between the SOL and wall

Lithium PFC satisfies, at the very least, the condition of low recycling, R; << 1

The importance of the secondary electron emission is not yet known
The scales
4.76 /To 10ke T; 10k
Py = —— < pOF = 238V < pp = 141002 [um]  (2:3)
T

T Br

3{PPPL give a chance to magnetic insulation (upon its necessity). 9
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3 No ELMs, blobs in LIWF regime

A widespread belief in MHD theory is that the high edge curren t

density is destabilizing (“peeling modes”)

e N
< B 1)
et S ek R R L P

In presence of a separatrix, the finite edge current density | S

stabilizing as well as the low edge density. No ELMs, blobs.
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KINX code Stability Diagram

Peeling-ballooning diagram of Phyl Snyder initiated theory o f ELMs

Phys. Plasmas 12, 056121 (2005 = —1le— - _ =
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Peeling-ballooning diagram “Heuristic diagram” (Zakharov, Keldysh Institute calculation,
(P.Snyder) 2005) (Medvedev, 2003)

New understanding is that the finite current density at separ atrix is stabilizing for ELMs,
while pressure remains destabilizing.

1-D energy principle is now written to check a single point p = 0, jegde # 0

— x_./ /%
W — 7{ 7§w D iyp* (1) dldl — 22 Jc[ - dl, ¢ =——""u'-
OLEAC B 2 B, “

P
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DIlI-D reported the QHM regime in 2000

Taken from “Quiescent Double Barrier H-mode Plasmas in the D lII-D Tokamak” by K.H.Burrell,

APS-2000, Quebec City, Canada
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JET exhibited ELM free periods

Quiescent period in JET ITB experiments is consistent with th IS the-
ory
#51672
@ 3 | | | | | _ _
o) M JET has a quiescent regime as
= Yk transient phase from ELM-III to
= i ITB

L ELM-|
b

)
—
IIIIIII
=
I
—
IIIIII

MHD (a.u.)
o )
o

“Edge issues in ITB plas-

: mas in JET”
© = ’ | | | -l-typep . Plasma Phys. Control. Fusion 44
€ ap el (2002) 2445-2469 Y. Sarazin, M.
- Becoulet, P. Beyer, X. Garbet, Ph.

d
@ Ghendrih, T. C. Hender, E. Joffrin, X.

Litaudon, P. J. Lomas, G. F Matthews,
V. Paralil, G. Saibene and R. Sartori.

1 019m-2)

The authors emphasized the crucial role of the edge current d ensity
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LI on NSTX eliminated ELMs

ELMs were suppressed after Li conditioning on NSTX

ELMS —» Faint EIms— No ELMS Transition () ELMS — Faint EiIms— No ELMS Transition (lI)
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Four shots are shown (D.Mansfield): before Li evaporation, a fter depositing
~200 mg, then +1700 mg, and +400 mg.

It was a surprise, although consistent with tendencies,

how easy ELMs were suppressed
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4  Global stability

The stability data base for RDF is already in a good shape

By/lL=12 10 8

8
7 | wall
- stabilized
6 |
5 |
Bn o |
4 i A
2 I o.
1 | X0
0

In 2004, beta in NSTX has
approached the record level
of 40 %

Stability with respect to
global ideal kink modes of
LIWF plasma is not differ-
ent from the conventional
plasma.

No Greenwald limit in LIWF

LIWF regime eliminates g=1. No sawteeth, no internal reconn ection
events. In all aspects stability is better (or the same).
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5 Non-inductive startup. LI & CHI

LIWF is compatible with both inductive and CHI start-up

EqCHI
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In 2006 CHI startup generated 160 kA current in
NSTX From R.Raman at al., PPPL-4207 (2007)

With Li electrodes, even in the worst case scenario, CHI will create
a perfect, transient Li plasma with Z

(typical for C-wall machines)
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6 LIWF and stationary plasma

LIWF suggests the self-consistent approach to the stationa

plasma

Three forces are acting on impurities on the
way from PFC to the plasma:

s

1. A small electro-static force ZeEgof.,

directed back to the plate.
2. Fricton Ry o< Z?2 with the ion flow,

also directed back to the plate.

3. Thermo-force Rp Z2 driving impuri-
ties into the plasma.

In addition, there is a direct plasma-wall in-
teraction through the radial bursts of blobs.

Li laye Li layer

1 P2 PL g

0 5 1 15

At high T edge the thermo-force is absent in the SOL,

leadingto Zgrr >~ 1

Interaction with side walls is not expected (blobs are absen
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/ Alphas are not confined In ST

4

Orbits
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Large Shafranov shift in STs makes core fueling
possible

The charge-exchange penetration length at
E = 80 keV

The distance between magnetic axis and the
plasma surface in projected RDF

Re — Ry = 0.3 — 0.5 [m)]

80 keV NBI can provide core fueling and control
of fusion power

Even at 8.4 MA 60 % of alphas can be intercepted

at first orbits (e.g. by LI jets)
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8 Burn-up of tritium

Burn-up of tritium is proportional to the energy confinement time,

and can be very efficient in LIWF

frB = n(0V) pr16kev TE = 0.03n20TE  (8.1)

With g ~10 sec in the LIWF regime, the burn-up of tritium

could be a significant fraction of unity ( fre ~0.3)

On the other hand, due to reliance on ignition criterion nTTE ~ const ,

With 77 ~1 sec, BBBL70 is locked into very low,  frp ~0.02-0.03

rate of tritium burn-up

19
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O Helium pumping

Conventional approach is based on gas-dynamic method

Collisional flow of neutral gas Collisionless free flow of ionized gas
\ Buff Buffer
v:;:suelzjlm Coluere volume
Her — He
Pin > Pout =0
4 Vacuum Pin —O|Ut_| |—
_l.g N vessel 2
c c
3 3
© ©
Dominant gas-dynamic scheme: LIWF scheme:
a) Free stream of He+’++ along B,
a) high pressure in the divertor b) Back flow is limited by
. L / .
b) D,T,He are pumped out together c) Helium density in the vessel plays no

role, while I is in the hands of engineers.




Compact “honeycomb” membrane

Honeycomb channel duct utilizes condition Bjoi < Bior




10 Bootstrap current

Bootstrap current is required for a stationary regime

urrent density distribption, [MA/m"2]
Liwall ST CTE L[ ] [MPa] a pressure
Bootstrap current (theory) =
3 \ | \\ — Te=Tirconst=1/ b keV
! — flian _~ i ° ¥ ///“‘/‘ (
)P e
N il
j B.S profile cross-section g- and j -profiles pressure profile
Ballooning stable high-beta configuration with a self-cons Istent bootstrap cur-

rent

According to theory,

In the LiWall regime ST can be "over-driven” with bootstrap cu rrent

22

PPP
%Ewg‘ﬂ%ﬁ% Leonid E. Zakharov, ASIPP Seminar, July 09, 2008, ASIPP Hefei, Anhui Province, China




11 LIWF and DD fusion

Hot-ion regime and expulsion of the fusion products is suita ble for

DD fusion

Fusion reactions

T ev  +Ds. e
DiLD :1),01MV p302MV,
50/50% | H €0.82 Mev  TT2.45 Mev (11.1)
D+ He’— He;f.6 Mev T P14.7 MeV s
D+T = He;, yyop + M141 Mev
lon Larmor radii of charged products
10 10 10
PT,cm — _\/gv Pp,cm = _\/{37 14'7}9 Poa,em — T—/V 3.5,
Br Br Br (11.2)
10 )
PHe.om = —V 1.23 — can be confined
9 BT
nD + D,D + H e3 fusion, the ash products have the same Larmor radii
PT,cm =~ Pp,cm ~ Pao,cm (11.3)

and can be expelled on the first orbits.
LIWF is uniquely compatible with J.Sheffield’s view on DD fus lon

Unfortunately the cyclotron radiation makes the scheme unr ealistic

23
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12 Spherical Tokamaks and RDF

STs together with the LIWF regime are the only candidate for RD

1. Volume ~30 m3.

2. DT power ~ 0.2-0.5 GW.

3. Neutron coverage fraction of the
central pole is only 10 %.

4. FW surface area 50-60 m2

On properties of insulation, see [1] R.H. Goulding,
S.J. Zinkle, D.A. Rasmussen, and R.E. Stoller, "Tran-
sient effects of ionizing and displacive radiation on
the dielectric properties of ceramics," J. Appl. Phys.
79 (6), 2920 (1996).

ITER-like device (=2 700 m2 surface)
would have to process

700 kg of tritium for developing
the First Wall.

The possibility of an unshielded copper central stack is

a decisive factor in favor of STs

3PPPL 24
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Neutron coverage fraction

Spherical Tokamaks are suitable for the mission of RDF

Fraction of neutron loss
Liwall IST In the central pole

o

|
Ul

——

IST

o
5

o
Central Pole area consuming heutrons
Neutron coverage fraction
=

High magnetic field tokamaks

0
-2 : : 1.5 2 2.5 3

5 1 15 2R
0 [m] Aspect ratio, R/a

w
(6]

1. High magnetic fields are not the option for reactor development (unfavorable geometry for neutrons,
no data on stability limits, etc.)

2. Philosophy of an externally driven “Component Test Facility” based on conventional regime does not
work.

3. There is no plasma physics reasons NOT TO ignite the high-beta device. In this regard, the LIWF
suggests different options.

In ST large area can be used for tritium breeding and designin g the FW

25
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13 The LIWF path toward a reactor

The BBBL70 endless path is unacceptable for the society

According to old teaching, at least, next two generations wi Il not see the fusion
power

DIlI-D

never
Cmod —-| ITER — 1922 — | DEMO —PROTO —- ended
NSTX ...0’s

The LIWF concept stratifies the path to the power reactor

DIII-D
cmod I T E R
DT
Power
NSTX STO reactor
T>.1sS—>1T>.1S8
1-2yrs [2-3yr DT+
“fission
reactor
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No needs In P or for R&D of LIWF

The LIWF plasma regime of either RDF or power
reactor can be developed without assistance of
fusion power (even in the Princeton area).

The phase of “burning plasma” (as it is intro-
duced presently) is not necessary.

Tritium can be Introduced just at the last stage
of development before the real operation.
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LIWF vs BBBL70

LIWF is consistent with common sense in all reactor issues

Hot-a, 3.5 MeV

Cold He ash

P, =1/5Ppr

Power extraction from
SOL

Plasma heating

Use of plasma volume
Tritium control

Tritium burn-up
Plasma contamination

He pumping
Fusion producing Bpr

"let them go as they want”
residual, flashed out by core fueling
goes to walls, Li jets

conventional technology for %Pa
“hot-ion” mode: NBl — 7 — e

100 %

pumping by Li

>10%

eliminates the Z2 thermo-force,
clean plasma by core fueling

Li jets, as ionized gas, pin < Pout
Bpr > 0.50

Issue LIWF BBBL70 concept of “fusion”
The target RDF as a useful tool Political “burning” plasma
Operational point: Pypr = E/Tg ignition criterion fpepTe = 1

“confine them”
“politely expect it to disappear”
dumped to SOL

no idea except to radiate 90 % of
P, by impurities

to heat first useless electrons,
thenions: a — e — 1

25-30 %

tritium in all channels and in dust
fundamentally limited to 2-3 %
invites all “junk” from the walls to
the plasma core

gas dynami01 Pin > Pout

diluted: BDT < 0.5,6

Currently adopted BBBL70 concept has little in common

with controlled fusion and its power reactors
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LIWF vs BBBL70 In plasma issues

LIWF has a robust plasma physics and technology basis. It con

understanding of fusion in unique way

tributes to present

Issue

LIWF

BBBL70 concept of “fusion”

Physics:
Confinement
Anomalous electrons

Transport database

Sawteeth, IREs
ELMS, nGreenwald-limit
Plqg. CONtrol

Fueling
Fusion power control
Operational DT regime

diffusive, RTM= x—x. = D = x}*°
plays no role

easyly scalable by RTM (Reference
Transp. Model)

absent

absent

by RMP through neqge

existing NBI technology
existing NBI technology
identical to DD plasma

turbulent thermo-conduction

IS in unbreakable 40 year old mar-
riage with anomalous electrons
beliefs on applicability of scalings to
“hot e”-mode

unpredictable and inavoidable
intrinsic for low Teqge

through Tq4 and reduced perfor-
mance

no clean idea yet

no clean idea yet

needs fusion DT power for its devel-
opment

Time scale for RDF:

At ~ 15 years

At ~ oo

Cost:

~ $2-2.5 B for RDF program

~ $20 B with no RDF strategy

3 step RDF program of LIWF suggests a way for bootstraping its

With no tangible returns the BBBL70 is irrational and compro

funding

mizes credibility of fusion
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14  Summary.

LIWF Is a separate, self-consistent magnetic fusion con-

cept, rather than an “improvement” of the old one.

The old one cannot be improved. It Is not
possible to make progress in magnetic fusion
based on existing plasma regimes

New regimes and approaches,
suggested by the LIWF
concept, can put the power
reactor development
on a practical basis

3|PPPL _ 30
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Looking beyond RDF

The 3 steps strategy has a vision beyond the RDF

0.8 \ T
NCSX plasma cross—sections

Regarding LiWall regime, Spherical

Tokamaks are more similar to stellara-
tors rather than to tokamaks:

0.4 r

1. Both are suitable for low energy NBI
fueling

00 - 2. Both are “bad” for «c-particle con-

finement and good for SCI regime

While STs cannot serve as a reason-
able power reactor concept, the stel-

larators have no obvious obstacles to
be a power reactor.

04+

0.8 | |
0.8 12 16 2.C

The LIWF strategy Is consistent with both R&D and power
production phases of fusion energetics

3|PPPL 31
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Simulation of LIW regime for JET

ASTRA-ESC simulations of JET, B=2.6 T, 1=2.2 MA, 50 keV NBI

CJET R=2,96 5=,913 B=2,57 I=2,2 g=3.82 f=2;14 Time=2,002 dt:1.00?
LB HeSe 155 Hes 5B ge 155 Thes $eb ed 155 Thoi: 39 E-Sr 30 G_Fl

Hot-ion mode:

T; = 12.6 [keV],
T, = 9.45 [keV],
n.(0) = 0.3 - 10%°,

Lis - Big%e EoE Bod w05 BRew B Sem IE T_e 158 T4 3 e 3 n_i Y ESEEsua Output

Tel <Ter Tebh ned Tid <Ti> Tik <ne> Ipl qb@ HbmA SrtA betj li tauE FelE

S9,31 9,45 9,856 2,659 12,6 12,6 12,7 1,88 2,21 3,256 000 000 1,08 345 4,89 726 4 9 SeC
PMEI Pe Pi__ PDT_ O sg On R: Tbauicbi: = [ ]
1.59 726 .BBE 4.07 Z.56 _e"niﬁ-%nﬂ.g. i "k, T g TE * )

Pnpr = 1.6 [MW],

=== ASTRA 6.0 === 26-10-06 B:01 === MHodel: zmod === Data file: zjet ===

Graphic node Presentation Control In/0ut Status —_
[LE¥Fiar [ B%Fiar | Refresh ] [ Scales |[Warisbles ][ Tupe dats | [Port_PS) [Run | PDT 4'07 [MW]7
[2*Fia.t} |[ BFFit |[User graph] [[Windows |[Constants |[Save tuning|[Land_F5]
[E*FiE.t? |[Fhase space][ HNext ] [ Belect [ Grids |[Write data J([U-Files| [Quit] QDT — 2.56

[B*f{p=i} |[Eqilibrium |[ Eackward | [ Stule

3+2 MWs 50 keV NBI,
are available

1.5 Jl1 CHAAm]

Can be experimentally tested on JET with intense Be condition Ing
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