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Abstract

A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes
and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of
equilibrium data consists of four 2- or 3-D functions of coordinates and four 1-D radial profiles together
with their first derivatives. The C reconstruction routines, accessible also from Fortran, allow the
calculation of basis functions and their first derivatives at any position inside the plasma. After this all
vector fields and geometric coefficients required for the above mentioned types of codes can be calculated
using only algebraic operations with no further interpolation or differentiation.

For easy navigation the enumeration in the Table of Contents, and the “(to ToC)” right after the section
names are the forward and backward hyperlinks between Table of Contents and the beginning of sections.
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1 Introduction (to ToC)

In plasma simulations, which deal with highly anisotropic equations, the equilibrium codes play a funda-
mental role in supplying the information about the magnetic configuration. For more sophisticated plasma
models: stability, transport, particle orbit or gyro-kinetic, this information is needed in flux coordinates
related to the geometry of the magnetic field.

While the equilibrium configurations depend essentially only on two radial profiles and the shape of the
plasma boundary, the request of other codes may contain numerous 2- or 3-dimensional functions represent-
ing components of the magnetic fields, current density, curvature of the field lines, or the magnitude of the
magnetic field and its derivatives; all of these functions are inter-related. Because of finite accuracy of the
equilibrium codes it is always a matter of preference as to what should be taken as input data and what
should be calculated inside the “client” codes.

There are two extreme approaches to making such a decision, and both rely on the exchange of data files.
One of them requires all functions necessary for the client code at all necessary positions to be supplied by
the equilibrium codes. Working only for closely related pairs of codes and making them highly dependent,
this approach requires vast storage capacities because the required data (e.g., some combinations of metric
coefficients) are not very smooth. Being widespread in the plasma physics community, it is totally irrelevant
to the situation when the client codes (like particle motion) need physics variables at unpredictable positions
inside the plasma.

Another extreme approach uses only primitive information from the equilibrium codes, like coordinates of
grid points and a few radial profiles, while all necessary functions are reconstructed internally inside the client
codes. The problem here is in calculation of space derivatives, entering into many physics variables. With
no universal mathematical rules of doing numerical differentiation, this approach unavoidably introduces its
own inaccuracies and causes potential convergence problems in interaction with equilibrium codes.

The proposed Equilibrium Spline Interface (ESI) consists of data (stored in files or shared memory) and
a C-source file (e.g., escZ.c) with C- or FORTRAN callable ESI initiation and reconstruction routines. This
paper and other documentation on the current state of ESI can be found in esiZ.c.d file.

The interface is compact and comprehensive. ESI data represent a Hermit polynomial representation of
only well behaved functions in terms of their values and first derivatives on a mesh. A limited set of basis
functions which consists of four radial profiles and four 2-D (for axisymmetric configurations like tokamaks)
or 3-D (for stellarators) functions of space coordinates.

The reconstruction routines can calculate basis functions and their first derivatives at any point inside
the plasma. Then, the client code can calculate the necessary vector or scalar field variables by algebraic
operations without use of higher derivatives.

Sect. 2 introduces notations and basis of ESI functions and their relations with the physics variables
and plasma profiles. Sec. 3 describes initiation of ESI and a call main reconstruction routine at the use
side. Sec. 4 contains basic geometrical relationships, while Sec. 5 provides the self consistent recipes for
calculating parameters of magnetic configurations.

Sect. 6 outlines the use of ESI for tracing field lines and particle orbits. The Hamiltonian canonical
coordinates are introduced for guiding center motion in 3-D nested configurations. Boozer coordinates are
not canonical, as is often mistakenly believed. Sect. 7 shows sufficiency of ESI for MHD stability codes.

Finally, Sect. 8 and Sect. 9 describes the data storage structure, file formats and the set of ESI routines.

2 The basis functions of ESI (to ToC)

The curvilinear coordinates a, θ, ζ for describing magnetic configurations for plasma confinement can be
represented parametrically by equations

r = r(a, θ, ζ), z = z(a, θ, ζ), ϕ = ϕ(a, θ, ζ), (2.1)
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where r, ϕ, z are laboratory cylindrical coordinates. Coordinates are assumed to be nested and their Jacobian
J

J ≡ 1

(∇a×∇θ) · ∇ζ (2.2)

is not vanishing.
In the ideal situation, the magnetic surfaces are also nested and it is possible to consider so-called “flux”

coordinates, when

B · ∇a = 0. (2.3)

The vector potential of the magnetic field B has the following covariant representation

A = −Φ̄′η∇a+ Φ̄∇θ + Ψ̄∇ζ. (2.4)

In nested coordinates the dependencies on angles θ, ζ in function Φ̄ can be eliminated by adding ∇u to the
vector potential and then by massaging the radial coordinate a = a+ ξ(a, ζ)

Φ̄ = Φ̄(a). (2.5)

After this, Φ(a) ≡ 2πΦ̄(a) becomes the flux of the magnetic field through the contour a = const, ζ = const.
Only the reverse field pinch (RFP) configuration would require Φ̄ = Φ̄(a, ζ).

In the function Ψ̄ = Ψ̄(a, θ, ζ), it is not possible to eliminate the dependence on angle coordinates in all
situations. The best representation

Ψ̄ = Ψ̄00(a) +
∑

m,n

ψmn(a, θ, ζ), Ψ̄00(a) ≡
1

4π2

∮ ∮
Ψ̄dθ dζ (2.6)

can be achieved in a special coordinate system, called the Reference Magnetic Coordinates (RMC), where
only resonant Fourier harmonics ψmn enter into Ψ̄. In equilibrium configurations these oscillating terms
determine the magnetic islands, which make the topology of the magnetic field different from the coordinate
system.

The averaged 2πΨ̄00 is equal to the poloidal Ψ flux of the magnetic field through the contours a =
const, θ = const. For the purpose of ESI we consider only simple nested magnetic configurations, where

Ψ̄ = Ψ̄00(a) = Ψ̄(a). (2.7)

ESI can be easily extended in order to cover the general case (2.6) as well.
The periodic function η = η(a, θ, ζ) is oscillating in both θ, ζ

∫
ηdθ =

∫
ηdζ = 0. (2.8)

For special purposes, it can be eliminated by massaging the angles

θ → θ̄ = θ + α, ζ → ζ̄ + β, Φ̄′α+ Ψ̄′β = Φ̄′η (2.9)

in order to produce the so-called “straight field line” coordinates

A = Φ̄∇θ̄ + Ψ̄∇ϕ. (2.10)

“Barred” notations a, θ̄, ζ̄ are used for the straight field line coordinates.
In RMC, the magnetic field has the following contravariant representation

B = ψ′
θ(∇θ ×∇ζ) − (Ψ̄′ + ψ′

a + Φ̄′η′ζ)(∇ζ ×∇a) + Φ̄′(1 + η′θ)(∇a×∇θ),

Ba ≡ B · ∇a =
ψ′

θ

J
, Bθ ≡ B · ∇θ = −

Ψ̄′ + ψ′
a + Φ̄′η′ζ
J

, Bζ ≡ B · ∇ζ =
Φ̄′(1 + η′θ)

J
,

(2.11)
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where ψ with resonant harmonics describes magnetic islands. In flux coordinates (B · ∇a = 0, ψ = 0), the
magnetic field B has a simpler form

B = −(Ψ̄′ + Φ̄′η′ζ)(∇ζ ×∇a) + Φ̄′(1 + η′θ)(∇a×∇θ). (2.12)

In 2-D case B is reduced to
B = Ψ̄′(∇a×∇ϕ) + F̄∇ϕ. (2.13)

The definitions (2.1, 2.12) introduce two (out of a total of four in ESI) 1-D profiles

Φ̄′(a), Ψ̄′(a) (2.14)

and, together with |B|, four basis functions of ESI interface

r = r(a, θ, ζ), z = z(a, θ, ζ), |B| = B(a, θ, ζ), η′θ ≡ η′θ(a, θ, ζ),

η′ζ ≡ η′ζ(a, θ, ζ), ϕ = ϕ(a, θ, ζ).
(2.15)

In ESI, the units of r, z are in [m], B is in [T], η, ϕ are dimensionless, while fluxes Φ,Ψ are in [V·sec]. Units
of a, θ, ζ are not essential.

Note, that the basic functions (2.14,2.15) represent any nested magnetic configurations, even unrelated
to a static equilibrium.

In magneto-static equilibrium

∇p̄ = j× B, j = ∇× B, p̄ ≡ µ0p, j ≡ µ0j,

B · ∇p̄ = 0, j · ∇a = 0,
(2.16)

where p is the plasma pressure in [MPa], j is the current density in [MA/m2], and µ0 = 0.4π, one can
introduce two additional 1-D profiles, i.e., P (a), T (a)

P (a) ≡ dp̄

dΨ̄
, T (a) ≡ F̄

dF̄

dΨ̄
, F̄ ≡ 0.2F . (2.17)

Here F = 5F̄ is the total poloidal current in [MA] through the contour a = const, θ = const (analog of
magnetic flux Ψ). In axisymmetric configurations

F̄ = rBϕ. (2.18)

ESI relies on the fact that four space coordinated functions (2.15) and four 1-D profiles (2.14), (2.17)
together with their first derivatives contain all necessary information for transport, stability, particle motion
and gyro-kinetic codes. They are called hereafter the “basis” functions.

As a special case, ESI accepts 2-D data on a rectangular grid r, z from free boundary codes in the form of
Ψ̄(r, z), Ψ̄′

r, Ψ̄
′
z, Ψ̄

′′
rz. This is not sufficient to generate all possible information for other magnetic confinement

codes. The special ESI routine can convert r − z data into basis functions of flux coordinates.
ESI reconstruction routines do not provide the second derivatives of basis functions. The following

sections describe the self-consistent rules of using basis function for different kind of numerical codes without
use of second derivatives.

3 Main reconstruction routine of ESI (to ToC)

Technically, ESI consists of a data set (file, or a segment of the shared memory), which should be provided
by an equilibrium code, and a universal C-source file (esiZ.c), which contains ESI initiation routines, the
main reconstruction routine, and an unspecified set of service routines (see Fig.1)
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Equilibrium
code

{ esiZ.o User’s
code

ESI file

Shared
memory

ESI data & routines
Fig.1. Data generating equilibrium code, ESI, and the user’s sides.

The source code esiZ.c is self-contained and can be compiled by a simple command

cc -c -o esiZ.o esiZ.c

All its routines are int functions, which return 0 in the case of success, and non-zero otherwise. In order
to initiate ESI from a data file (which should be created by an equilibrium code), the user should use the
C-code, like

if(File2ESI(FileName)){
printf("Failure: %s is not an ESI-file\n’’,FileName);

}

or FORTRAN-code, like

external integer file2esi
if(file2esi(FileName).ne.0) then

write(*,’(aaa)’)’Failure: ’,FileName,’ is not an ESI-file’
endif

The FORTRAN file name FileName in file2esi should contain a space character ’ ’ at the end !
In the case of using shared memory the corresponding function is Shmem2ESI(int key), where ’key’

is a unique identification number for the memory segment, known to mutually communicating equilibrium
and user codes.

The main reconstruction routine of ESI takes coordinates from a number of points inside the plasma and
puts the values of the basis profiles and space functions into the arrays, allocated at the user side. The user
code should provide the storage for these arrays. The example is the following C-code

int n;
double a[N],gq[N];
double F[N],Fa[N],gFa[N][N],gFaa[N],gYa[N],gYaa[N]
,T[N],Ta[N],P[N],Pa[N]
,r[N],ra[N],rq[N],z[N],za[N],zq[N]
,B[N],Ba[N],Bq[N],gh[N],gha[N],ghq[N];

int isw[N];
double gz[N],rz[N],zz[N],Bz[N],ghz[N];

The number N should not be less than the number of points requested in reconstruction. The last line is
necessary only for the 3-D case. The FORTRAN analog of the same would be

integer n;
double precision a(N),gq(N)
double precision F(N),Fa(N),gFa(N)(N),gFaa(N),gYa(N),gYaa(N)

& ,T(N),Ta(N),P(N),Pa(N)
& ,r(N),ra(N),rq(N),z(N),za(N),zq(N)
& ,B(N),Ba(N),Bq(N),gh(N),gha(N),ghq(N)

integer isw(N);
double precision gz(N),rz(N),zz(N),Bz(N),ghz(N);
external integer link2esi,link2esi3d,esi2all,esi2all3d

The meaning of this arrays are specified in the Table 1.
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Set of output radial profiles Table 1
C-code Math C-code Math
F[],Fa[] F̄ , F̄ ′ isw[] index of the particle
gFa[],gFaa[] Φ̄′, Φ̄′′ gYa[],gYaa[] Ψ̄′, Ψ̄′′

T[],Ta[] F̄ F̄ ′/Ψ̄′ P[],Pa[] p̄′/Ψ̄′

Set of 2-D and 3-D output space functions
C-code Math C-code Math
r[],ra[],rq[],rz[] r, r′a, r

′
θ, r

′
ζ z[],za[],zq[],zz[] z, z′a, z

′
θ, z

′
ζ

B[],Ba[],Bq[],Bz[] B,B′
a, B

′
θ, B

′
ζ gh[],gha[],ghq[],ghz[] η, η′a, η

′
θ, η

′
ζ

The addresses of these arrays should be given to ESI, at least once, using

i=Link2ESI(F,Fa,gFa,gFaa,gYa,gYaa,T,Ta,P,Pa
,r,ra,rq,z,za,zq,B,Ba,Bq,gh,gha,ghq,isw);

i=Link2ESI3d(rz,zz,Bz,ghz);

from C-code or from FORTRAN as

i=link2esi(F,Fa,gFa,gFaa,gYa,gYaa,T,Ta,P,Pa
& ,r,ra,rq,z,za,zq,B,Ba,Bq,gh,gha,ghq,isw)

i=link2esi3d_(rz,zz,Bz,ghz)

Again, the last line is necessary only for the 3-D case. At present, the main reconstruction routine does not
use the index array isw[i], which can be used as a marker of points to control some service routines.

After all of this, the call of the main reconstruction routine is simple, as soon as the coordinates of n ≤ N
points a, θ (and ζ in 3-D case) are put into array a[],gq[] (and gz[])

i=ESI2all(a,gq,n);

or for 3-D case

i=ESI2all3d(a,gq,gz,n);

The FORTRAN analog of the same is

i=esi2all(a,gq,n);
i=esi2all3d(a,gq,gz,n);

After these calls the information is is the mentioned arrays. In addition to the main reconstruction routine,
ESI contains a set of service routine for calculating specialized information. Some of them are listed at the
end of this document, and their set can be extended.

4 Metrics of toroidal configurations (to ToC)

The metric tensor gik (i = 1, 2, 3, k = 1, 2, 3) of the coordinate system {a, θ, ζ} = {x1, x2, x3} is defined by
the element of length dl

dl2 ≡ dr2 + dz2 + r2dϕ2 = gaada
2 + 2gaθdadθ + gθθdθ

2 + 2gaζdadζ + 2gθζdθdζ + gζζdζ
2,

gaa = r′ar
′
a + z′az

′
a + r2ζ′aζ

′
a, gaθ = r′ar

′
θ + z′az

′
θ + r2ζ′aζ

′
θ,

gθθ = r′θr
′
θ + z′θz

′
θ + r2ζ′θζ

′
θ, gaζ = r′ar

′
ζ + z′az

′
ζ + r2ζ′aζ

′
ζ ,

gθζ = r′θr
′
ζ + z′θz

′
ζ + r2ζ′θζ

′
ζ , gζζ = r′ζr

′
ζ + z′ζz

′
ζ + r2ζ′ζζ

′
ζ ,

J =
√
g, g ≡ Det(gik).

(4.1)

Gradient vectors of cylindrical and curvilinear coordinates are related with each other by a matrix of
first derivatives D

D ≡

∣∣∣∣∣∣∣∣∣

r′a r′θ r′ζ

ϕ′
a ϕ′

θ ϕ′
ζ

z′a z′θ z′ζ

∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣

∇r
∇ϕ
∇z

∣∣∣∣∣∣∣∣
= D ·

∣∣∣∣∣∣∣∣

∇a
∇θ
∇ζ

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

∇a
∇θ
∇ζ

∣∣∣∣∣∣∣∣
= D−1 ·

∣∣∣∣∣∣∣∣

∇r
∇ϕ
∇z

∣∣∣∣∣∣∣∣
. (4.2)
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The Jacobian J of the coordinate system can be calculated as the determinant D of the matrix of first
derivatives of cylindrical coordinates

D = Det(D), J = rD =
√
g, (4.3)

where g is the determinant of the matrix gik.
In axisymmetric configurations, only gaa, gaθ, gθθ, gϕϕ are non-vanishing

dl2 ≡ dr2 + dz2 + r2dϕ2 = gaada
2 + 2gaθdadθ + gθθdθ

2 + r2dϕ2,

gaa = r′ar
′
a + z′az

′
a, gθθ = r′θr

′
θ + z′θz

′
θ, gϕϕ = r2, D = r′θz

′
a − r′az

′
θ.

(4.4)

ESI reconstruction routines provide all necessary derivatives for calculation of gik, elements of matrix D,
and Jacobian J at the user side. The derivatives of gik,D, J are not defined by ESI.

4.1 Behavior near the origin a = 0 (to ToC)

In configurations with a smooth current density near the axis a = 0, flux coordinates have a special be-
havior near the axis. Thus, in some coordinate systems (n.n. 0,1,2,3,7 in Table 2), Fourier coefficients of
r(a, θ, ζ), z(a, θ, ζ)

r = r0 +

m≤Mθ∑

m=1

[
rme

imθ + r∗me
−imθ

]
, z = z0 +

m≤Mθ∑

m=1

[
zme

imθ + z∗me
−imθ

]
(4.5)

vanish at a = 0 at a certain rate. If b = b(a) is a function proportinal to the distance from the axis, then
asymptotically

r0(a, ζ) ≃ R0(ζ) + r̄0(ζ)b
2, r1(a, ζ) ≃ r̄1(ζ)b, r2(a, ζ) ≃ r̄m(ζ)b2, rm>2(a, ζ) ≃ r̄m(ζ)bm. (4.6)

The ESC data generated by the equilibrium codes in these coordinates should reflect this behaviour for
r0, r1, r2, z0, z1, z2. All other coefficients should vanish near the axis, at least, like b2. This would allow
to resolve the details, essential for some instabilities.

In other coordinates like polar (IDθ=8 in Table 2), otherwise very good, such a bahavior is hidden more
deeply. This may slightly limit the application of ESI in such coorinates.

4.2 Conversion of laboratory r, ϕ, z into a, θ, ζ (to ToC)

For the purpose of diagnostics on the experimental machines, it is necessary to have an ablity of conversion
of laboratory coordinates r, ϕ, z into curvilinear coordinates a, θ, ζ. This is done in ESI by the Newton
iterative procedure ∣∣∣∣∣∣∣∣∣

da(k)

dθ(k)

dζ(k)

∣∣∣∣∣∣∣∣∣

=
(

D−1
)(k)

·

∣∣∣∣∣∣∣∣

r − r(k)

ϕ− ϕ(k)

z − z(k)

∣∣∣∣∣∣∣∣
,

a(k+1) = a(k) +da(k)

dθ(k+1) = θ(k) +dθ(k)

dζ(k+1) = ζ(k) +dζ(k)

, (4.7)

where k is the iteration counter.

5 Nested magnetic configurations (to ToC)

The vector potential A in Eq.(2.4) contains integrals from the basis profiles of ESI

Φ = 2π

∫ a

0

Φ̄′(a)da, Ψ = 2π

∫ a

0

Ψ̄′(a)da, η =

∫ θ

0

η′θdθ +

∫ ζ

0

(
1

2π

∮
η′ζdθ

)
dζ. (5.1)

There is a special service routine in ESI which calculates Ψ,Φ for the transport codes, while η and its
derivatives are calculated by the main reconstruction routine.
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5.1 Magnetic field (to ToC)

The contravariant representation of the magnetic field is given by Eq.(2.12), or in the 2-D case by Eq.(2.13).
It can be reconstructed from ESI basis functions in a straightforward manner. On the other hand the
derivatives of individual components of the magnetic field are not defined.

The covariant components of magnetic field Bi (integer subscript i is used to distinguish them from the
physical components),

B = B1∇a+B2∇θ +B3∇ζ, Bi = gikB
k, i = 1, 2, 3, k = 1, 2, 3 (5.2)

are useful for particle motion. Herethe summation convention is assumed.
In flux coordinates (no islands) B1 = Ba = 0 and only the following metric tensor combinations are

present in Eq.(5.2)

K ≡ gθθ

J
, M ≡ gaa

J
, N ≡ gaθ

J
, Naζ ≡ gaζ

J
, Nθζ ≡ gθζ

J
, L ≡ J

gζζ

. (5.3)

All of them can be calculated at the user side using the relationship between co- and contra-variant compo-
nents of the vector B.

In the case of an “ideal” (isotropic) equilibrium, the covariant components have a special form

B = (ν + σ′
a)∇a+ (Ī + σ′

θ)∇θ + (F̄ + σ′
ζ)∇ζ (5.4)

and can be calculated using

ν + σ′
a = −N(Ψ̄′ + Φ̄′η′ζ) +NaζΦ̄

′(1 + η′θ),

Ī + σ′
θ ≡ −K(Ψ̄′ + Φ̄′η′ζ) +NθζΦ̄

′(1 + η′θ),

F̄ + σ′
ζ = −Nθζ(Ψ̄

′ + Φ̄′η′ζ) +
1 + η′θ
L

Φ̄′.

(5.5)

For the case of axisymmetry

ν + σ′
a = −NΨ̄′, Ī + σ′

θ ≡ −KΨ̄′, F̄ =
1 + η′θ
L

Φ̄′, L =
D

r
. (5.6)

5.2 Current density (to ToC)

In equilibrium configurations the current density j has the following contravariant form

j = −(F̄ ′ − ν′ζ)(∇ζ ×∇a) + (Ī ′ − ν′θ)(∇a×∇θ), (5.7)

where I(a) is the toroidal current through the poloidal cross-section of magnetic surfaces. Both F̄ , F̄ ′,
together with p̄, p̄′ are calculated inside ESI using

F̄ ′ =
T Ψ̄′

F̄
, F̄ (a) =

√
F̄ 2

ref + 2

∫ a

aref

T (a)Ψ̄′da, p̄′ = P Ψ̄′, p̄(a) =

∫ a

av

P Ψ̄′da, . (5.8)

Here, aref is a reference radius, where the function F̄ has a prescribed value, F̄ (aref ) = F̄ref . Typically aref

corresponds to the plasma boundary. The exceptional case is the RFP configurations, where aref should
specify the surface with F̄ (aref ) = 0. The main ESI reconstruction routine delivers F̄ , F̄ ′, while p̄, p̄′ are
provided by a special service routine. For RFP case the sign of F̄ cannot be determined from the ESI data.
It is chosen using convention F̄ (0) > 0.

The radial component of equilibrium equation (2.16) (the pressure balance)

Jp̄′ = −(Φ̄′ + Φ̄′η′θ)(F̄
′ − ν′ζ) + (Ψ̄′ + Φ̄′η′ζ)(Ī

′ − ν′θ) (5.9)

9



determines Ī ′(a) inside ESI from the averaged Eq.(5.9)

PJ00 = −Φ̄′ T

F̄
+ Ī ′, J00 ≡ 1

4π2

∮ ∮
Jdθdζ, J ≡ J00 + J

˜̃
. (5.10)

The oscillatory part of this equation, having the form of the so-called magnetic differential equation (MDE)

(Φ̄′ + Φ̄′η′θ)ν
′
ζ − (Ψ̄′ + Φ̄′η′ζ)ν

′
θ = p̄′J

˜̃
+ Φ̄′(F̄ ′η′θ − Ī ′η′ζ) (5.11)

allows one to determine the function ν. In the case of axisymmetry this is simply given by an integral

Ī ′ − ν′θ = TL+ PJ, ν′θ = −TL
˜̃
− PJ

˜̃
, ν = −

∫ θ

0

(TL
˜̃

+ PJ
˜̃

)dθ. (5.12)

In the case of 3-D equilibrium configurations, it necessary to solve MDE (5.11). In configurations with
simple nested surfaces (with no islands), the Jacobian does not contain resonance harmonics, and MDE for
ν has a nonsingular periodic solution. This is described in the next section. A special service routine of ESI
generates ν.

Thus, all physical quantities in the equilibrium configurations can be calculated from ESI basis functions
without using their second derivatives.

Note, that the output information from ESI can appear to be inconsistent. For example, in 2-D, the
third equation in (5.6) gives the relationship

Φ̄′ = L0F̄ , L0 ≡ 1

2π

∮
D

r
dθ, (5.13)

which gives an alternative to the Eq.(5.8) way of calculating F̄ . The level of discrepancy between the two
calculations may be used for testing the accuracy of ESI data.

In fact, the user has no information from ESI on how to perform integration without interpolation of
the integrand, which makes such comparison “illegal” within ESI rules. Instead, the main reconstruction
routine of ESI provides the values of F̄ , F̄ ′, Φ̄, Φ̄′ explicitly, thus, giving L0, L

′
0. Alternatively, a specially

written service routine of ESI can provide L0, L
′
0, consistent with relation (5.13).

5.3 Magnetic differential equation (MDE) (to ToC)

Assume straight field line coordinates a, θ, ζ with η = 0. Then, the magnetic differential equation (5.11) has
a solution

q ≡ − Φ̄′

Ψ̄′
, ν′θ + qν′ζ = P (a)J̃(a, θ, ζ) ≡ S(a, θ, ζ),

ν(a, θ, ζ) = A(a, ζ − qθ) −
∫ θ

0

S(a, α, ζ + qα− qθ)dα,

A(a, ζ) −A(a, ζ − 2πq) =

∫ 2π

0

S(a, α, ζ + qα− 2πq)dα,

(5.14)

where a 2-D function A(a, ζ) is added in order to provide the periodicity of ν as function of θ. The equation
for A can be solved directly numerically in Fourier space

S(a, θ, ζ) ≡
∑

n

Sn(a, θ)einζ , A(a, ζ) ≡
∑

n

An(a)einζ , An(a) =
e−inπq

2 sinnπq

∫ 2π

0

Sn(a, α)einqαdα. (5.15)

In the general case when η 6= 0, the equation for ν (5.11) can be written as

q(1 + η′θ)ν
′
ζ + (1 − qη′ζ)ν

′
θ = J̃P − q(F̄ ′η′θ − Ī ′η′ζ) ≡ (1 + η′θ)S(a, θ, ζ). (5.16)
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A transition to a new variable θ̄ = θ + η in ν(a, θ + η, ζ) leads to

qν′ζ + ν′
θ̄

= S(a, θ̄ − η, ζ), (5.17)

whose solution is given by Eqs.(5.14,5.15).
Because of resonant denominators nq = m (m,n are integers), the function ν may have a rather compli-

cated behavior even when the MDE can be resolved. It cannot be well represented by smooth polynomials
on a finite grid, and its calculations cannot be delegated to the user. Specially designed ESI routines should
reconstruct ν upon the user’s request.

5.4 Curvature of the magnetic field lines (to ToC)

The curvature of the magnetic field lines, essential for some instabilities,

k ≡
(

B

|B| · ∇
)

B

|B| = −
(

B

|B| ×
(
∇× B

|B|

))
=

p̄′

|B|2∇a−
((B · ∇)|B|)

|B|3 B +
|B|′a
|B| ∇a+

|B|′θ
|B| ∇θ (5.18)

can be calculated at the user’s side using the data from ESI reconstruction routines.

5.5 Evolution equation for magnetic fluxes (to ToC)

In evolving magnetic configurations, the electric field E can be written as

E =−∂A
∂t

−∇ΦE . (5.19)

Elimination of the scalar potential ∇ΦE from the classical parallel Ohm’s law

σ‖(B · E) = (B · j) (5.20)

using averaging gives the evolution equation for magnetic fluxes

Φ̄′
aΨ′

t − Ψ̄′
aΦ

′
t =

1

σ‖
(F̄ Ī ′ − ĪF̄ ′). (5.21)

It can be rewritten as a magnetic diffusion equation

Ψ′
t −

Ψ̄′
a

Φ̄′
a

Φ′
t =

1

σ‖

[
Φ̄′F̄ − Ψ̄′Ī

Φ̄′2

(
gθθ√
g
(Ψ′ + η′ζ) −

gθζ√
g
(Φ′ + η′θ)

)′

00

− Ī p̄′

Φ̄′2
(
√
g)00

]
,

Ī = −
(
gθθ√
g
(Ψ′ + η′ζ) −

gθζ√
g
(Φ′ + η′θ)

)

00

.

(5.22)

The averaging can be performed on the user’s side, while ESI reconstruction provides data for all coefficients
in this equation.

When the radial coordinate a represents the toroidal magnetic flux (e.g., in the ASTRA code a =
√

2Φ̄
B0

,

B0 = const), the convective term in the left hand side vanishes, Φ̄′
t = 0.

5.6 Transport equations (to ToC)

The structure of the transport equations is given by

∂

∂t
(Jn)00 +

∂

∂a

(
J~Γ · ∇a

)

00
= (JS)00, J ≡ √

g, (5.23)

where n is a physics variable, Γ is its flux through the magnetic surface (both diffusive and convective), and
S are the sources and sinks.

ESI reconstruction routines provide the necessary information for calculating coefficients of the transport
equations on the user’s side. In contrast, the approach based on “cooking” out all the inforamtion inside
the equilibrium codes is always deficient due to the unpredictable nature of plasma transport models.
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5.7 Transition to the straight field line (SFL) coordinates (to ToC)

Straight field line coordinates are important for stability theory and for stellarator equilibrium calculations.
ESI reconstruction routines provide the necessary information for making transition to the SFL coordinates
a, θ, ζ̄

θ = θ − α(a, θ, ζ̄), ζ = ζ̄ − β(a, θ, ζ̄),

dθ = (1 − α′
θ)dθ − α′

ada− α′
ζdζ̄, dζ = (1 − β′

θ̄
)dθ̄ − β′

ada− β′
θdθ,

(5.24)

where either α or β is an arbitrary function, related by Eq. (5.24)

Φ̄′α+ Ψ̄′β = Φ̄′η. (5.25)

Substitution of dθ, dζ (5.24) info element of the length (4.1) allows calculation of the metric tensor in new
coordinates. Thus, with the function η in the set of basis function the ESI main routine provides information
for transition into any SFL coordinates.

6 Field lines and particle motion (to ToC)

6.1 Equation for magnetic field lines (to ToC)

In curvilinear coordinates, the magnetic field lines are determined by three ordinary differential equations

dθ

dl
=
Bθ

|B| ,
dζ

dl
=
Bζ

|B| ,
da

dl
=
Ba

|B| , (6.1)

where Ba, Bθ, Bζ are given by Eq.(2.11). In the case of of magnetic configurations with the nested surfaces,
a =const, and only the two first equations are essential. ESI provides a special step advancing routine
ESI2mfl() for calculating derivatives for further use in ODE solvers.

6.2 Guiding center Lagrangian equations (to ToC)

The guiding center Lagrangian obtained by Littlejohn has the following normalized form

L =
(
A + ρ‖B

)
· v −H, v ≡ dr

dτ
, τ ≡ Ωct, Ωc ≡ eB0

mc
,

H ≡ ρ2
‖

B2

2
+ µB + φE , µ ≡ ρ2

⊥

2B
, φE ≡ mc2ΦE

e
≡ ρER0B

2
0 , ρE ≡ cΦE

R0B0Ωc

.

(6.2)

Here, v is considered as the normalized time derivative of the particle position, Ωc is the ion cyclotron
frequency in the reference magnetic field B0 whatever is used for normalization (e.g., for ESI Units, B0 = 1
T and Ωc = 95.79 · 10+6 sec−1 for protons), ρ‖, ρ⊥ are the ion Larmor radii calculated based on particle
velocities parallel and perpendicular to the field. In the Hamiltonian H the last term φE is associated with
the electric field potential ΦE and can be expressed in terms of the Larmor radius ρE calculated based on
drift velocity in the effective electric field ΦE/R0 where R0 is some characteristic unit length (e.g., 1 m).

Written for generalized coordinates of a particle a, θ, ζ, the Lagrangian has the form

L = Paȧ+ Pθ θ̇ + Pζ ζ̇ −H,

Pa ≡ ρ‖Ba, Pθ ≡ Φ̄ +

∫ a

0

Φ̄′η′θda+ ρ‖Bθ, Pζ ≡ Ψ̄ +

∫ a

0

Φ̄′η′ζda+ ρ‖Bζ .
(6.3)

The straightforward variation of L with respect to ρ‖, a, θ, ζ leads to the following system of coupled equations
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of motion ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Ba Bθ Bζ

−Ba 0 J(Bζ + ρ‖ ̄
ζ) −J(Bθ + ρ‖̄

θ)

Bθ J(Bζ + ρ‖ ̄
ζ) 0 −J(Ba + ρ‖̄

a)

Bζ −J(Bθ + ρ‖̄
θ) J(Ba + ρ‖ ̄

a) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ̇‖

ȧ

θ̇

ζ̇

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H

∂ρ‖

∂H

∂a

−∂H
∂θ

−∂H
∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.4)

or to wrong ones

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Ba Bθ Bζ

−Ba 0
√
g(Bζ + ρ‖j

ζ) −√
g(Bθ + ρ‖j

θ)

Bθ

√
g(Bζ + ρ‖j

ζ) 0 0

Bζ −√
g(Bθ + ρ‖j

θ) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ̇‖

ȧ

θ̇

ζ̇

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H

∂ρ‖
∂H

∂a

−∂H
∂θ

−∂H
∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.5)

Using the matrix

A ≡
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ , |A| ≡ a11a22 − a12a21 =
√
g[|B|2 + ρ‖(B · (∇× B))], (6.6)

where
a11 ≡ Bθ, a12 ≡ √

g(Bζ + ρ‖j
ζ), a21 ≡ Bζ , a22 ≡ −√

g(Bθ + ρ‖j
θ), (6.7)

the equation of drift motion can be written in the explicit form

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ̇‖

ȧ

ω̇

ζ̇

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
a22

|A| −a12

|A|

0 0 −a21

|A|
a11

|A|

a22

|A| −a21

|A| 0 −Ba

|A|

−a12

|A|
a11

|A|
Ba

|A| 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H

∂ρ‖

∂H

∂a

−∂H
∂θ

−∂H
∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.8)

ESI allows calculation of the right hand side of the guiding center equations at any point inside the plasma
without interpolations. In fact, ESI contains a guiding center motion routine which calculates the derivatives
ρ̇‖, ȧ, ω̇, ζ̇ given ρ‖, a, θ, ζ.

6.3 Hamiltonian equations for guiding center motion (to ToC)

By transformation of angle coordinates it is possible to eliminate the Ba = ν + σa term in the covariant
representation of B (5.4) together with the Pa term in Lagrangian. For this purpose, new, canonical

coordinates θ̂, ζ̂ are determined by

θ̂ = θ + α, ζ̂ = ζ + β, (6.9)
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where α, β satisfy equations

ν∇a+ ∇σ + ∇(Īα) + ∇(F̄ β) − Ī ′α∇a− F̄ ′β∇a = 0,

Ī ′α+ F̄ ′β = ν, Īα+ F̄ β = −σ, α = − F̄ ν + F̄ ′σ

F̄ Ī ′ − ĪF̄ ′
, β =

Īν + Ī ′σ

F̄ Ī ′ − ĪF̄ ′
.

(6.10)

In canonical coordinates a, θ̂, ζ̂ the covariant representation of the magnetic field is very simple

B = Ī∇θ̂ + F̄∇ζ̂. (6.11)

The vector potential becomes

A = −Φ̄′η̂∇a+ Φ̄∇θ̂ + Ψ̄∇ζ̂, Φ̄′η̂ ≡ Φ̄′η − Φ̄′α− Ψ̄′β (6.12)

Accordingly, the Lagrangian is reduced to the Hamiltonian form

L = Pθ̄
˙̂
θ + P

ζ̂

˙̂
ζ −H, P

θ̂
≡ Φ̄ +

∫ a

0

Φ̄′η̂′θda+ ρ‖Ī , P
ζ̂
≡ Ψ̄ +

∫ a

0

Φ̄′η̂′ζda+ ρ‖F̄ . (6.13)

with no explicit time derivative ȧ. The equation of motion for a, θ, ζ can be now written as
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
∂P

θ̂

∂ρ‖

∂P
ζ̂

∂ρ‖

0 0
∂P

θ̂

∂a

∂P
ζ̂

∂a

∂P
θ̂

∂ρ‖

∂P
θ̂

∂a
0 0

∂P
ζ̂

∂ρ‖

∂P
ζ̂

∂a
0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ̇‖

ȧ

˙̂
θ

˙̂
ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H

∂ρ‖

∂H

∂a

−∂H
∂θ̂

−∂H
∂ζ̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.14)

These equations are equivalent to Hamiltonian equations, if momenta P
θ̂
, P

ζ̂
are used instead of ρ‖, a

θ̇ =
∂H

∂P
θ̂

, ζ̇ =
∂H

∂P
ζ̂

, Ṗ
θ̂

= −∂H
∂θ̂

, Ṗ
ζ̂

= −∂H
∂ζ̂

. (6.15)

The Hamiltonian form of the equations of motion guarantees that the guiding center motion not only
preserves the value of Hamiltonian H (and, in the case of symmetry, the momentum P

ζ̂
), but also preserves

the phase volume of an ensemble of particles in the phase space θ̂, ζ̂, Pω̂, Pζ̂
.

For calculations of guiding center motion in unperturbed equilibrium configurations the Hamiltonian
form does not suggest any advantage with respect to the Lagrangian form. Canonical variables are essential
only for studies of perturbed particle motion, where adiabatic invariants play the key role.

Note, that there are other choices of canonic variables than Eq.(6.10). Indeed, in order to eliminate Ba

it is sufficient to satisfy only the ∇a component of the first equation in Eq.(6.10)

ν + σ′
a + Īα′

a + F̄ β′
a = 0, β = −

∫ a

0

ν + σ′
a + Īα′

a

F̄
da. (6.16)

The case with α = 0 was pointed out earlier. The attempt to use the freedom for elimination of the η term
in the vector potential (making SFL canonical coordinates) leads to substantial, unjustified complications

in calculations. The canonic variables a, θ̂, ζ̂, suggested by Eq.(6.10) represent the best choice.

ESI interface is capable of providing a transition to canonical coordinates a, θ̂, ζ̂ and to a Hamiltonian
representation of guiding center motion.
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7 The MHD energy principle (to ToC)

The well-known functional of potential energy in ideal magneto-hydrodynamics

W =
1

8π

∫ {
B̃2 + (~ξ · ∇p̄)(∇ · ~ξ) − ~ξ × (∇× B) · B̃ + γ0p̄(∇ · ~ξ)2

}
dV, B̃ ≡ (B× (∇× ~ξ)), (7.1)

where ~ξ is the test function, does not contain anything that cannot be calculated using basis functions of
ESI. Also, the kinetic energy term

K = γ2

∫
ρ~ξ2dV (7.2)

needs only the metric tensor for its calculation.
At a deeper level, instead of three contravariant components of ~ξ

ξa,θ,ζ ≡
{
ξ, ξθ, ξζ

}
, ξ ≡ ξa (7.3)

another set of test functions is used, i.e, ξ,Λ, X , where

X ≡ (∇ · ~ξ), Λ ≡ Φ̄′ξθ + Ψ̄′ξζ . (7.4)

In terms of ξ and Λ the perturbation of the magnetic field can be written as

JB̃ = Λ(∇θ ×∇ζ) − Φ̄′ξ(∇ζ ×∇a) − Ψ̄′ξ(∇a×∇θ). (7.5)

In new variables the potential energy has the form

W =
1

8π

∫ {
γ0p̄√
g
X2 +

√
g

(
B̃aB̃

a + B̃θB̃
θ + B̃ζB̃

ζ
)
− P ′Ψ̄′√gξ2 + [P Ψ̄′√gξ2]′a

+2(Ī ′ − ν′θ)Λ
′
ζξ − 2(F̄ ′ − ν′ζ)Λ

′
θξ + q′(F̄ ′ − ν′ζ)Ψ̄

′ξ2
}
dadθdζ.

(7.6)

ESI reconstruction routines provide sufficient data for calculating the coefficients in this functional on the
user side.

8 Storage and ESI format of the equilibrium output file (to ToC)

Full description on the data structure and ESI routines can be found in the esiZ.c.d documentation file.
This section specifies what information should be provided by the equilibrium codes and in what format in
order to be interfaced by ESI.

Both binary and ASCII files are suitable for storing the ESI data. The suggested names of the data files
are constructed as

esiE.00 for ASCII data-file, or a pair of
esiE.00b binary data-file and esiE.00m (ASCII map-file),

The extension .00 specifies the sequence number. The pair of binary data- and map files has b and m at the
end of the extension. The capital letters in the name stand for different coordinate systems. The suggested
choices are listed in Table 2.

IDθ of angle θ Table 2
IDθ Symbol Name Specific property

0 E ESC a, θ, ϕ, r = r(a, θ), z = z0(a) + b(a) sin θ
1 K KINX, polar r = r0 + ρ(a, θ, ζ) cos θ, z = z0 + ρ(a, θ, ζ) sin θ
2 H Hamada J = J(a)
3 P PEST a, θ, ϕ, J = f(a)r2

4 B Boozer SFL a, θ̄, ζ̄ with η = 0 and J = f(a)
|B|2

5 L Laboratory rz Ψ̄(r, z), Ψ̄′
r(r, z), Ψ̄

′
z(r, z)

6 C Canonical a, θ̂, ζ̂, Eqs.(6.9,6.10)
9 U General unspecified general coordinates, Eq.(2.1)

10+* 1* VMEC-like coordinates with separation of odd and even parts, Eq.(2.1)
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Table 2 introduces also a numerical identification number IDθ depending on the choice of the polidal
angle. It should be ennhanced by 10, if there is a separation of the odd and even parts in presentation of
r, z coordinates. Correspondingly the digit ’1’ is recommended in the names of files before the symbol of
coordiantes.

16



Z

R
   .5     1   1.5

   -1

  -.5

    0

   .5

    1 Z

R
   .5     1   1.5

   -1

  -.5

    0

   .5

    1 Z

R
   .5     1   1.5

   -1

  -.5

    0

   .5

    1

a) b) c)
Z

R
   .5     1   1.5

   -1

  -.5

    0

   .5

    1 Z

R
   .5     1   1.5

   -1

  -.5

    0

   .5

    1 Z

R
   .5     1   1.5

   -1

  -.5

    0

   .5

    1

d) e) f)
Fig.2. Typical coordinate systems for equilibrium configurations: a) ECS coordinates, b) canonical
“hat”-coordinates, c) Hamada coordinates, d) PEST coordinates, e) Boozer coordinates, f) KINX
(polar) coordinates.
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Before specifying the format of ESI data files, the distribution of storage in the case of theuse of shared
memory is presented in the next section.

8.1 Storage in the shared memory (to ToC)

Table 3 specifies all variables of ESI routines. Parameters Lθ, and Lζ represent periodicity of the system,

f(a, θ, ζ) = f(a, θ, Lθθ + Lζζ), . (8.1)

Na, Nθ are the number of mesh intervals along a, θ. In the toroidal direction only one period is represented
by the number Nζ . In the case of axisymmetry N ζ = 0 or Lζ = 0, while a special value of Lθ = −1 is for
up-down symmetry.
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ESI data structure Table 3
C name Type Math # Group name
Np1 int Nθ + 1 0 <ESI dimensions>

Na1 int Na + 1
ID int Type of a
Nt1 int Nζ + 1
Lp int Lθ

Lt int Lζ

rBtor double F̄ref ≡ F̄ (aref )
Rext double Rext

aref double aref

bsp1 double p̄boundary

ToC[0x40][2] int 1 Holds group addresses and sizes
gq[Na1] double θj 2 <ESI [gq]>

sa[Na1] double ai 3 <ESI [sa]>

aF [Na1] double F̄ (ai) 4 <ESI [baF bsp gF gY]>

bsp[Na1] double p̄(ai) The group is informational only.
gF [Na1] double Φ(ai) It is generated during
gY [Na1] double Ψ(ai) initialization of ESI

gFa [Na1] double
(

Φ̄′

a

)
(ai) 5 <ESI bgFa bgFaa bgYa bgYaa>

gFaa[Na1] double
(

Φ̄′

a

)′

i

gYa [Na1] double
(

Ψ̄′

a

)
(ai)

gYaa[Na1] double
(

Ψ̄′

a

)′

i

T [Na1] double T (ai) 6 <ESI aT aTa aP aPa>

Ta[Na1] double T ′(ai)
P [Na1] double P (ai)
Pa[Na1] double P ′(ai)

ESC geometry data 7 Group name
C name Type Math 8 <ESI r ra rq raq>

r [Nt1][Na1][Np1] double r(ai, θj, ζk) 9
ra [Nt1][Na1][Np1] double r′a(ai, θj , ζk)
rq [Nt1][Na1][Np1] double r′θ(ai, θj , ζk)
raq[Nt1][Na1][Np1] double r′′aθ(ai, θj , ζk)

same for z, z′a, z
′
θ, z

′′
aθ 10 <ESI z za zq zaq>

same for |B|, |B|′a, |B|′θ, |B|′′aθ 11 <ESI B Ba Bq Baq>

ghq [Nt1][Na1][Np1] double η′θ(ai, θj, ζk) 12 <ESI ghq ghaq ghqq gaqq>

ghaq [Nt1][Na1][Np1] double η′′aθ(ai, θj, ζk)
ghqq [Nt1][Na1][Np1] double η′′θθ(ai, θj , ζk)
ghaqq[Nt1][Na1][Np1] double η′′′aθθ(ai, θj , ζk)
gh [Nt1][Na1][Np1] double η(ai, θj , ζk) generated during initialization
gha [Nt1][Na1][Np1] double η′a(ai, θj , ζk) generated during initialization

Functions Φ,Ψ, F̄ , p̄, η, η′a are calculated during the initialization of ESI. Indexes i, j, k are used for the mesh
points along a, θ, ζ correspondingly

0 ≤ i ≤ Na, 0 ≤ j ≤ Nθ, 0 ≤ k ≤ Nζ . (8.2)

The multidimensional arrays here are equivalent to a 1-D array referenced as [(k*Na1+i)*Np1+j]. In the
3-D case the following storage is added for derivatives with respect to ζ.
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ESI profile data Table 3 (cont)
C name Type Math # Group name
gz [Nt1] double ζk 13 <ESI [gz]>

rz[Nt1][Na1][Np1] double liner′ζ(ai, θj , ζk) 14 <ESI rz raz rqz>

raz[Nt1][Na1][Np1] double r′′aζ(ai, θj , ζk)

rqz[Nt1][Na1][Np1] double r′′θζ(ai, θj , ζk)

raqz[Nt1][Na1][Np1] double r′′′aθζ(ai, θj , ζk)

same for z′ζ , z
′′
aζ, z

′′
θζ 15 <ESI rz raz rqz>

same for |B|′ζ , |B|′′aζ , |B|′′θζ 16 <ESI Bz Baz Bqz>

ghz [Nt1][Na1][Np1] double η′′aθ(ai, θj, ζk) 17 <ESI ghqz ghaqz ghqqz>

ghaz [Nt1][Na1][Np1] double η′′θθ(ai, θj , ζk)
ghqz[Nt1][Na1][Np1] double η′′θζ(ai, θj, ζk)

ghaqz[Nt1][Na1][Np1] double η′′′aθζ(ai, θj, ζk)

The resulting total size of ESI data (without counting generated by ESC) is
(6+128)*sizeof(int)+3+Np1+9*Na1+Nt1+16*Na1*Np1*Nt1*sizeof(double)

and, e.g., for Na1=21,Np1=65,Nt1=33 this is equal to 5,768,352 bytes only.
The parameter ID specifies the type of the coordinate system a, θ, ζ. It is composed from IDa (Table 4)

IDθ (Table 2), and IDϕ (Table 4) in the following manner

ID = IDζ∗1000+IDθ∗100+IDa (8.3)

The IDa is a two digit decimal number ’Dd’, where ’d’ determine the physics meaning of a (e.g., vertical size,
volume, magnetic fluxes, etc), while tens ’D’ is a modifier. D=0 and D=2 stands for normalized 0 ≤ a ≤ 1,
D=0 and D=1 specify “ρ”-like a (like “minor” radius) when, e.g., Φ̄′(0) = 0, while D=2 and D=3 are for “V”-like
a (similar to volume of magnetic surfaces). Table 4 shows the possible values of IDa and IDζ .

IDa of radial coordinate a in ESI Table 4
IDa a ID a Comment

0 a = b
bboundary

20 a = b2

b2
boundary

b is a vertical semiaxis of the cross-section of the
magnetic surfaces

10 a = b 30 a = b2

1 a =
√

V
Vboundary

21 a = V
Vboundary

V is a volume of magnetic surface, aref [m], Vref

[m3] are some dimensional reference numbers.

11 a = aref

√
V

Vref
31 a = V

2 a =
√

Φ
Φboundary

22 a = Φ
Φboundary

Φ is a volume of magnetic surface, Bref [T] is some
dimensional reference numbers (ASTRA code).

12 a =
√

Φ
πBref

32 a = Φ

3 a =
√

Ψ
Ψboundary

23 a = Ψ
Ψboundary

Ψ is a volume of magnetic surface, Bref [T] is some
dimensional reference numbers (ASTRA code).

13 a =
√

Ψ
πBref

33 a = Ψ

9 a, Φ̄′(0) = 0 29 a, Φ̄′(0) 6= 0 unspecified normalized a
19 a, Φ̄′(0) = 0 39 a, Φ̄′(0) 6= 0 unspecified dimensional a

IDϕ of angle ζ
IDζ ζ IDζ ζ Comment

0 ζ = ϕ 1 ζ = ζ̄ ζ is a cylindrical azimuth or the straight field line
angle

2 ζ = ζ̂ 9 ζ ζ is a canonical or unspecified
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Use of “V”-like radial coordinates is discouraged because of possible singularities in first derivatives of
space functions at the magnetic axis.

In specific cases some groups of ESI data could be dropped. Thus, transport codes do not need the group
η. For PEST or SFL coordinates this group is automatically absent because η = 0. The array ToC, which
keeps addresses and sizes of the groups, marks the absent groups by zero size.

8.2 Format of ASCII ESI data file (to ToC)

Every equilibrium code is capable of creating the ESI data file. This section specifies the format of the
ASCII file, which should be created by individual equilibrium codes.

The ASCII ESI file consists of a number of groups of records. Each group starts with an identification
line which contain the predefined name of the group, number of records and a string with format of the
records. The beginning of an ESI ASCII file can serve as a representative example

<ESI dimensions>[1](%d x %d %d %e %s) ESC Date: 12/17/06 at 23:05
!Np1 x Na1 ID RBtor Name
65 x 21 102 1.50 PEST

<ESI [gq]>[1](65%e)

Here ’<ESI dimensions>’ is the predefined name of the very first group of ESI file, ’[1]’ means 1 record
in the group, and the string ’(%d x %d %e)’ specifies the format for reading (3 integers with ’x’ between
the first two, one double, and one string). What is after the record head information (the name of the code
and the date) is a comment, ignored by the reading routine.

The following line, starting with ’!’ is also a comment. The next line contains the data itself. (The
string "PEST" is, in fact, only informational, rather than a part of ESI).

After this there is the head line of the next group. All names of the groups are given in the Table 3.
Groups with names of variables inside ’[]’, like ’<ESI [baF bsp gF gY]>’ are optional. These data are
initiated by ESI. Also ’<ESI [gq]>’, ’<ESI [sa]>’, ’<ESI [gq]>’ are optional. Their data are replaced by
equidistant 0 ≤ ai ≤ 1, 0 ≤ θj ≤ 2π, 0 ≤ ζk ≤ 2π/Lζ.

The comments can be freely distributed outside the group of data. The short comments can be placed
into the data lines: (a) after the format string in the ID line, and (b) after the end of each group of data.
With leading ’!’ comment lines can be placed between groups of data.

Note, that only 3 parameters, out of 8 from Table 3, are present in the example. Parameters Nt1,Lp,Lt,bspb
are dropped from the record. Their default values are 1,0,0,0. Because the order of parameters is predefined
by Table 3 the presence of a format string makes reading unambiguous.

The groups of arrays are recorded in the file by columns with one column for each variable, listed in the
name of the group, i.e.,

<ESI r ra rgq raq>[1365](%e %e %e %e)

! r r’ a r’ q r” aq

1.1189417832363331e+00 6.1752680497674650e-01 -0.0000 000000000000e+00 -9.1619079100425833e-03

1.1189417832363331e+00 6.1365522061023337e-01 -0.0000 000000000000e+00 -6.9646002319922323e-02

The use of named groups and format lines makes ESI format very flexible. Thus, reduced versions of ESI
data set are possible. For example, in communication with the transport simulation codes, the function η is
not necessary and its group of data may not be present. The format string identifies which data are present
in the records inside the group. If specified in the format string, enumeration can be in front of the records
for human readability. The reading routine would ignore the enumeration.

8.3 ESI binary data- and map- files (to ToC)

In this case, the short ASCII file represents the data for reading the binary file.
It starts with the group <ESI dimensions>, described in the previous section. It may contain groups

with plasma profiles.
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After this it lists groups, present in the binary file (the group ’<ESI [baF bsp gF gY]>’ is useless to
keep in the binary files). Instead of real data, the data in the map file represent the address (in bytes) of
the beginning of the group and its size (in bytes as well), e.g.

<ESI r ra rq raq}>[2](%d %d)
672 43680

9 Basic set of ESI routines (to ToC)

The prototypes of ESI C-routines for the user’s side (some not yet available) are listed in Table 5. The
non-descriptive names of variables are constructed using the following conventions: ’g’ prefixes the name of
Greek math variables, ’b’ prefixes “barred” variables, ’d’ prefixes time derivatives, names with ’a’,’q’’z’
after the symbol of are used for derivatives. FORTRAN-callable analogs of C-routines have the same names
with capital latters replaced by low case ones.
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Minimum set of ESI routines. Marked by * are not yet available Table 5
example of C call * Comment
i=File2ESC(FNm); ’FNm’ is the name of the ESI data-file.

i=FreeESI(); frees the memory allocated for ESI by File2ESC().
i=FShM2ESC(key); ’key’ is the ID of the shared memory segment with ESI data
i=Link2ESC(F,Fa

,gFa,gFaa

,gYa,gYaa

,T,Ta ,P,Pa

,r,ra,rq,z,za,zq

,B,Ba,Bq

,gh,gha,ghq,isw);

Called once, it sends to ESI the addresses of arrays, which will
contain values of the basic functions.
isw is the integer array which could be necessary for marking the
particles.

i=Link2ESI3d(rz,zz

,Bz,ghz);

* Specifies additional links for 3-D case.

i=ESI2all(a,gq,n); The main reconstruction routine, which calculates the basic func-
tions for n particles in positions given by a[i],q[i].

i=ESI2all3d(a,gq

,gz,n);

* 3-D analog of ESI2all().

i=ESI2PlP(F,Fa

,gFa,gFaa

,gYa,gYaa ,T,Ta

,P,Pa,a,n);

Puts the values of plasma profiles F̄ , F̄ ′, Φ̄′, Φ̄′′, Ψ̄′, Ψ̄′′, T, T ′, P, P ′

into arrays F[], Fa[], gFa[], gFaa[], gYa[], gYaa[], T[],

Ta[], P[], Pa[] for n points specified in a[].

i=ESI2bsp(bsp,bspa

,a,n);

Puts the values of p̄, p̄′ into arrays bsp[], bspa[] for n points
specified in a[].

i=ESI2gFgY(gF,gY

,a,n);

Puts the values of magnetic fluxes Φ,Ψ (un-barred) into arrays
gF[], gY[] for n points specified in a[].

i=ESIrz2agq(a,gq

,r,z,n);

Converts n cylindrical coordinates r, z into a, θ.

i=ESIrzf2agq3d(a,gq

,gz ,r,z,gf,n);

* 3D version of ESIrz2agq().

i=rzESI2agq(ID

,na,nq);

* Converts original ESI data on r−z grid into ESI data in nested flux
coordinates specified by the identification number ID with na,nq

radial and poloidal intervals.
i=ESI2gcm(dgr,da

,dgq,dgf

,gr,a,gq,gm,n);

2D Time advancing routine for guiding center motion. Calculates the
time derivatives ρ̇‖, ȧ, θ̇, ϕ̇ in Eq.(6.8) for n particles. gm[] contains
magnetic moments of the particles. Integer marker isw[] is used
behind the scene. Only 2-D version is available.

i=ESI2mfl(dgqL,dgfL

,a,gq,n);

2D Calculates derivatives of θ′l, ϕ
′
l in Eq.(6.1) with respect to length l

along n magnetic field lines. Only 2-D version is available.

More complete information is given in the escZ.c.d document file (which contains as a part also this
text). At present ESI is functional with Equilibrium and Stability Code (ESC) for axisymmetric tokamak
equilibrium configurations. ESC is interfaced with the transport simulation ASTRA code using ESI through
the shared memory, and using the data files with a number of author’s codes.

9.1 Service routines of ESI. (to ToC)

Some available and possible “convenience” routines are listed in Table 6.
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ESI service routines. Marked by * are not yet available Table 6
example of C call * Comment
i=ESI2geom(r,ra,rq,

z,za,zq, a,gq,n);

Calculates r, r′a, r
′
θ, z, z

′
a, z

′
θ for n points.

i=ESI2rzB(r,z,B

,a,gq,n);

Calculates r, z, |B| for n points.

i=rzESI2gcm(dgr,dr

,dz,dgf

,r,z,gm,n);

Analog of ESI2gcm() with use of r − z ESI data. Calculates the
time derivatives ρ̇‖, ṙ, ż, ϕ̇ for guiding center motion for n particle
specified by their r, z and magnetic moment µ.

The set of service routines can be expanded with more practice.

9.2 ESI as a structure. (to ToC)

In fact, the Table 3 shows the necessary elements of a single C data-structure which is typedefined as
ESIstruct. The user can work simultaneously with several of them (from 0 to 7), e.g., for comparison of
different codes. But only one structure is functional at the ESI side. By default the ESI[0] is activated.
Using the call

i=ESI2up(1);

one can switch between active structures.

9.3 ESI as a virtual machine. (to ToC)

In a primitive manner, ESI can mimic the “virtual machine” approach of OpenGL. A particular service, like
calculation of function |B|, gh, or graphics output can be activated any time by using

i=esiEnable(esiGL,NULL);

i=esiEnable(esiBASIS,ESIB);

i=esiEnable(esiBASIS,ESIgh);

and disabled by

i=esiDisable(esiGL ,NULL);

i=esi2Disable(esiBASIS,ESIB);

when it is not needed anymore. By default all calculations corresponding to a predefined parameter
esiBASIS are activated.

The full set of possibilities is specified ESI documentation file esiZ.c.d.
For use of possibilities of a virtual machine the definition file esiZ.h (or esiZ.inc for FORTRAN)

should be included into the user source code. Their content can be found in the esiZ.c file.

10 Summary (to ToC)

The described ESI interface has unique properties in being organized, comprehensive, compact and inde-
pendent of the computer architecture. For many plasma physics codes it can provide a uniform access to
the background information related to magnetic configurations, independent of how this information was
created and by what equilibrium code.

Without change in the format of communications, ESI allows one to drop some groups of data if they are
not necessary for a particular communication. On the other hand, within the same approach it is extendible
to more general cases, e.g., anisotropic equilibria or equilibria with perturbed magnetic surfaces. At this
moment, one of the crucial extension should be introduction of the separatrix boundary layer, where the
flux coordinates have a special behavior near the X-points.
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