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Abstract

We propose a new algorithm to find the generalized singular value decom-
positions of two matrices with the same number of columns. We discuss in
detail the sensitivity of our algorithm to errors in the entries of the matrices
and suggest a way to suppress this sensitivity.
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1 Introduction

The Singular Value Decomposition (SVD) used in mathematics [6] and in numerical
computations [5] is a very useful and versatile tool. It is used in statistics in Principal
Component Analysis (PCA) [7] and recently became very useful in analysis of DNA
microarrays [1].
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Let Rm,Mmn(R), Omd(R),Mn(R), Sn(R), GLn(R), On(R) be the linear space of
real column vectors with m coordinates, the linear space of real m×n matrices, the
subset of m × d matrices whose d (≤ m) columms is an orthonormal system, the
algebra of n × n real matrices, the subspace of n × n real symmetric matrices, the
group of n×n real invertible matrices and the subgroup of n×n orthogonal matrices.
As usual, for S ∈ Sn(R) we let S ≥ 0 if S is nonnegative definite and S > 0 if S is
positive definite. As in [5], denote by diag(d1, ..., dmin(m,n)) ∈ Mmn(R) the diagonal
matrix with the diagonal entry di on the (i, i) position for i = 1, ...,min(m,n) and
all other entries are equal to zero.

For A ∈ Mmn(R) the SVD of A given by A = UΣV T, where the following vari-
ations are popular: For the standard SVD U ∈ Om(R), V ∈ On(R), Σ = (sij)

m,n
i,j=1 ∈

Mmn(R), where Σ is a diagonal matrix with s11 = σ1 ≥ ... ≥ sdd = σd > 0 = sii =
σi = 0, i = d + 1, ...,min(m,n). For the reduced SVD

A = UΣV T, U ∈ Omd(R), V ∈ Ond(R), 0 < Σ = diag(σ1, ..., σd) ∈ Sd(R). (1.1)

Note that d is the rank of A, denoted by rank A. The columns of U and the rows of
V T form an orthonormal basis of the column and the row space of A respectively.
In this paper we will use mostly the reduced SVD, which has all the information
available in A. In many applications as DNA analysis, image processing or data
analysis, one can compress the data by observing that there is a small number of
significant singular values σ1 ≥ ... ≥ σt > 0, while other singular values σt+1, ..., are
much smaller than σt or equal to zero numerically. (We call t the numerical rank of
A.) Then the compressed SVD of A will be given by

A1 = U1Σ1V
T
1 , U1 ∈ Omt(R), V ∈ Ont(R), Σ1 = diag(σ1, ..., σt) > 0. (1.2)

A1 can be viewed also the noise reduction of A. This approach is used in [4] for
finding the missing entries of the matrix A.

Let A ∈ Mmn(R) and B ∈ Mln(R). Then the Generalized Singular Value De-
composition (GSVD) of A and B [5] is given by

A = FΓR, B = G∆R, F ∈ Om(R), G ∈ Ol(R), R ∈ GL(n,R), (1.3)

and Γ ∈ Mmn(R), ∆ ∈ Mln(R) are diagonal matrices with the diagonal elements,
called the generalized singular values, γ1, ..., γmin(m,n) ≥ 0 and δ1, ..., δmin(l,n) ≥ 0
respectively. (In general it is impossible to arrange the both sets of the singular
values in a decreasing order.) GSVD became important recently in DNA microarrays
analysis as a tool to compare two sets of DNA microarrays of different organisms
[2] and [3]. (See §2 for more details.)
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The numerical difficulties obtaining a stable GSVD decomposition can be par-
tially attributed to the fact that the nonzero pair (γi, δi) 6= (0, 0) is determined
up to a multiple by a positive scalar [5], [8] and [9]. The main feature to the ex-
isting algorithms for GSVD is the observation that the eigenvalues of the pencil
δ2ATA− γ2BTB are the generalized singular values of the pair A,B.

The aim of this paper is to give a new robust algorithm to compute the reduced
GSVD of A and B. The main feature of our approach is to consider the eigenvalues
of the pencil ATA − φ2(ATA + BTB). Furthermore, to reduce the ”noise” in the
data represented by A,B we have to replace P = ATA + BTB by a lower rank
matrix P̃ , using the significant singular values of P . Once P̃ is chosen the low
rank approximations of Ã, B̃ of A,B, such that ÃTÃ + B̃TB̃ = P̃ , are determined.
Thus our algorithm computes GSVD of the pencil ÃTÃ− φ̃2P̃ . In applications, as
microarrays analysis, the choice of P̃ is left to the judgement of the user.

We now survey briefly the content of our paper. In §2 we discuss our main
algorithm for GSVD. It is given in terms of matrices and it is self contained. In §3
we discuss two numerical algorithms to obtain stable GSVD decompositions of A,B.
In §4 we discuss a random example of A0 ∈ M8,7(R), B0 ∈ M9,7(R) both of rank 2,
such that the intersection of the row space of A0 and B0 is a subspace of dimension
1. Then the rank of P0 = AT

0 A0 +BT
0 B0 is 3, and A0, B0 have three nonzero pairs of

singular values: (1.0, 0.0), (0.681, 0.732), (0.0, 1.0), up to 3 significant digits. In the
terminology of microarrays we deduce that the two different organisms have three
distinct functions, with exactly one common function.

Next we consider the random perturbation of A0, B0 given by matrices A,B. We
replace this perturbation by A1, B1 of ranks 2 using the SVD of A1, B1. The matrix
P := AT

1 A1 + BT
1 B1 has three large singular values of magnitude 108, the fourth

singular value is of order 104 and the rest three singular values are less than 10−2.
(We used floating point precision rounded off to 10 digits.) We first assumed that P
has r = 3 significant singular values. Then GSVD decomposition of the appropriate
approximations Ã, B̃ of rank 2 of A0, B0 is reasonably close to the original GSVD
decomposition of A0, B0. Next we assume that P has r = 4 significant singular
values. (The maximal possible number of nonzero singular values.) Then the four
pairs of generalized singular values of A1, B1 are (1, 0), (1, 0), (0, 1), (0, 1). That is
the pair (0.681, 0.732) of generalized singular values of A0, B0 split to the two pairs
(1, 0), (0, 1) of generalized singular values of A1, B1. In this case the mircoarrays
interpretation yields that the two organisms have each two distinct functions, and
no function in common! We explain the reason for this phenomenon in §3.

In the Appendix (§5) we give a short summary of SVD for a linear operator that
maps one finite dimensional inner product space to another finite dimensional inner
product space, over the complex numbers C. This approach can be considered as a
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base free approach to the SVD. For one matrix A ∈ Mmn(C) it yields an extended
singular value decomposition, called ESVD, obtained by introducing any two inner
products on the linear space Cm and Cn. Then the GSVD of A ∈ Mmn(C), B ∈
Mln(C) described in §2 is the ESVD of A and B obtained by choosing a special
inner product on Cn and the standard inner products on Cm and Cl. We hope that
the ESVD introduced here will have more applications in the near future.

2 An exact algorithm for GSVD

We now describe briefly the main steps in our algorithm for the reduced GSVD for
a given pair A ∈ Mmn(R), B ∈ Mln(R). (In this section we assume that A,B have
no ”noise”.) First we compute the three symmetric nonnegative definite matrices

PA := ATA, PB := BTB, P := PA + PB ∈ Sn(R). (2.1)

Assume that the reduced singular value decomposition of P , having rank r, is

P = OΩ2OT, O ∈ Onr(R), Ω = diag(ω1, ..., ωr), ω1 ≥ ... ≥ ωr > 0. (2.2)

(The k − th column of O is an eigenvector of P corresponding to the eigenvalue ω2
k

for k = 1, ..., r.) Then

QA := Ω−1OTPAOΩ−1, QB := Ω−1OTPBOΩ−1 ∈ Sr(R) (2.3)

are nonnegative definite and QA + QB is r × r identity matrix Ir. The spectral
decompositions of QA and QB are given by

QA = TΦ2TT, Φ = diag(φ1, ..., φr), φi ≥ 0, i = 1, ..., r, T ∈ Or(R), (2.4)
QB = TΨ2TT, Ψ = diag(ψ1, ..., ψr), ψi ≥ 0, i = 1, ..., r, (2.5)
φ2

i + ψ2
i = 1, φi ≥ 0, ψi ≥ 0, i = 1, ..., r. (2.6)

Let
V = OΩT ∈ Mnr(R). (2.7)

Then the GSVD of A and B is given by

A = UΦV T, U ∈ Omr(R), B = WΨV T, W ∈ Olr(R). (2.8)

The matrices U and W are easily obtained from the equalities

UΦ = AOΩ−1T, WΨ = BOΩ−1T. (2.9)
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Theorem 2.1 Let A ∈ Mmn(R), B = B ∈ Mln(R) and assume that r =
rank (ATA+BTB). Then there exists a GSVD given by (2.8), where Φ, Ψ ∈ Mr(R)
are nonnegative diagonal matrices satisfying Φ2 + Ψ2 = Ir and V ∈ Mnr(R),
rank V = r. Every such GSVD can be found as follows: Let P be defined by (2.1);
let O and Ω be given by the reduced SVD of P (2.2); let QA and QB be defined in
(2.3); let the spectral decomposition of QA and QB be given by (2.4)-(2.6); and let
V is given by (2.7). The columns of U and W in (2.8) corresponding to the nonzero
φi and φj are uniquely determined by (2.9). Other columns of U and W are any
orthonormal systems in the orthogonal complement of the subspaces spanned by the
determined columns of U and W respectively.

Proof. Clearly the matrices PA, PB and P are nonnegative definite. The re-
duced SVD of P is the spectral decomposition of P corresponding to the positive
eigenvalues of P . Observe

Ω2 = OTPO = OT(PA + PB)O = OTPAO + OTPBO.

Hence
Ir = QA + QB, QA ≥ 0, QB ≥ 0. (2.10)

Let (2.4) be the spectral decomposition of QA. Then (2.10) implies (2.5) and (2.6).
Let Û := AOΩ−1T . Then ÛTŨ = TTQAT = Φ2. Assume for simplicity of the
exposition that

φ1 ≥ ... ≥ φrA > 0 = φrA+1 = ... = φr = 0, (2.11)

where rA = rank A. Then the last r − rA columns of Û are zero, while first rA

columns of Û is an orthogonal system, where the norm of column i is φi for i =
1, ..., rA. We define U ∈ Mnr(R) as follows. The i − th column of U is the i − th
column of Û divided by φi for i = 1, ..., rA. The last r − rA columns of U is any
orthonormal system in the orthogonal complement of the column space of Û . Hence
U ∈ Onr(R), Û = UΦ and A = UΦV T. The second equality in (2.8) is established
similarly.

We now show that any GSVD given (2.8), with the conditions Φ, Ψ ∈ Mr(R) are
nonnegative diagonal matrices satisfying Φ2+Ψ2 = Ir and V ∈ Mnr(R), rank V = r,
can be obtained by using the algorithm given in the theorem. Clearly P = V V T. So
the column space of V is equal to the columns space of O. Since rank V = rank O =
r it follows that V = OΩT for some invertible T ∈ Mr(R). Use (2.2) and the equal-
ity P = V V T to deduce that TTT = Ir. Hence QA = TΦ2TT, QB = TΨ2TT and
the rest of the theorem follows. 2
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We conclude this section with the following remarks. First, we consider the inter-
pretation of GSVD in comparing two sets of DNA microarrays of different organisms
as discussed in [2]. As mentioned in §1 aij , bpj entries of A = (aij)

m,n
i,j=1, B = (bpj)

l,n
p,j=1

represent the measurements for the i and p genome of the two different organisms,
represented by the matrices A and B, in the measurement j = 1, ..., n. (We assume
for the simplicity of the exposition that A,B do not have errors (noise). We address
the problem of noise filtering of A,B in the next section.) The number r appearing
in the GSVD (2.8) is the number of total functions of the DNA of the two organ-
isms observed in the n experiments is k. If φi

ψi
≈ 1 then the function i is similarly

expressed in both organisms. If φi
ψi

>> 1 (ψi
φi

>> 1) then the function i expressed
only in the first organism (the second organism).

Second, from the proof of Theorem 2.1 it follows that the information given in
(2.8) is equivalent to the following

A = U1Φ1V
T
1 , U1 ∈ OmrA(R), V1 ∈ OnrA(R), 0 < Φ1 = diag(φi1 , ..., φirA

) ∈ SrA(R),
(2.12)

B = W1Ψ1V
T
2 , W1 ∈ OmrB (R), V2 ∈ OnrB (R), 0 < Ψ1 = diag(ψj1 , ..., φjrB

) ∈ SrB (R).

Here φi1 , ..., φirA
and ψj1 , ..., ψrB are all positive entries of Φ and Ψ appearing (2.8).

(Note that rA = rank A, rB = rank B.) V1 and V2 are the submatrices of V
corresponding to the columns i1, ..., irA and j1, ..., jrB respectively. U1 and W1 are
the submatrices of U and W corresponding to the columns i1, ..., irA and j1, ..., jrB .
Equivalently (2.12) can be viewed as the reduced ESVD of A and B with respect to
the standard inner products in Rm and Rl and the inner product in V, the subspace
spanned by the rows of A and B, induced by P . See §5.

3 Two numerical algorithms

In this section point out two numerical algorithms to compute GSVD for A ∈
Mmn(R), B ∈ Mln(R). In the first algorithm we replace A,B by A1, B1 using the
significant singular values of A,B of their corresponding SVD as explained in §1.
(A1, B1 are the compressed SVD of A,B.) Then we form the matrices

PA := AT
1 A1, P := AT

1 A1 + BT
1 B1. (3.1)

Next we consider the SVD of P , i.e. its spectral decomposition, and assume that P
has r̃ significant singular values r̃ ≤ rank P . Let P̃ be the compressed SVD of P :

P̃ = ÕΩ̃2ÕT, Õ ∈ Onr̃(R), Ω̃ = diag(ω̃1, ..., ω̃r̃), ω̃1 ≥ ... ≥ ω̃r̃ > 0. (3.2)
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(The k−th column of Õ is an eigenvector of P corresponding to the eigenvalue ω̃2
k for

k = 1, ..., r̃.) Form Q̃A and compute its spectral decomposition, which determines
Φ̃ and Ψ̃:

Q̃A := Ω̃−1ÕTPAÕΩ̃−1 ∈ Sr̃(R) (3.3)
Q̃A = T̃ Φ̃2T̃T, T̃ ∈ Or̃(R), Φ̃ = diag(φ̃1, ..., φ̃r̃), φ̃1 ≥ ... ≥ φ̃r̃ ≥ 0, (3.4)
Ψ̃ = diag(ψ̃1, ..., ψ̃r̃), 0 ≤ ψ̃1 ≤ . . . ≤ ψ̃r̃, Φ̃2 + Ψ̃2 = Ir̃. (3.5)

Then the first rank Φ̃ columns of Ũ and the last rank Ψ̃ columns of W̃ are effectively
determined by the equalities

Ũ Φ̃ := A1ÕΩ̃−1T̃ , Ũ ∈ Omr̃(R), W̃ Ψ̃ = B1ÕΩ̃−1T̃ , W̃ ∈ Olr̃(R). (3.6)

We now explain why we need the additional noise reduction in P , after we
already performed the noise reduction in A,B. Assume that the ideal data was
given by A0 ∈ Mmn(R), B0 ∈ Mln(R). Suppose that dimAT

0 Rm ∩ BT
0 Rl = c > 0.

Let P0 := AT
0 A0 + BT

0 B0. Then rank P0 = rank A0 + rank B0 − c. Assume that
interesting case rank P0 < n.

The given matrices A,B are perturbations of A0, B0. Suppose that rank A1 =
rank A0, rank B1 = rank B0. However, as we shall see in the next section, with
high probability rank P = min(rank A0 + rank B0, n) > rank P0. Still P will have
rank P0 significant singular values. Thus P̃ is the correct approximation of P0, and
Ã, B̃ are the approximation of A0, B0 with the property dim ÃTRm ∩ B̃TRl = c.

In the second algorithm we simply let A1 = A and B1 = B, i.e. we do not
perform the noise reduction in A,B. We just perform the noise reduction in P .
Then Ã, B̃ are the noise reductions of A,B with the properties as above.

4 Numerical examples

One way to obtain a random matrix E ∈ Mpq(R) of rank t ≤ min(p, q), in general,
is to use the following procedure:

E :=
t∑

i=1

xiyT
i , x1, ...,xt ∈ Rp, y1, ...,yt ∈ Rq, (4.1)

where x1, ...,xt,y1, ...,yt are chosen at random. Suppose we use the procedure (4.1)
to generate random matrix A0 ∈ Mmn(R) with t := a0 ≤ min(m,n) and random
matrix B0 ∈ Mln(R) with t := b0 ≤ min(l, n). Then generically rA0 = a0 and
rB0 = b0 respectively. Assume that a0 + b0 ≤ n. Then almost surely PA0 and PB0
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do not have a common nullspace, and the rank of the matrix P = AT
0 A0 + BT

0 B0

is r = rA0 + rB0 . In order to generate random matrices A0 ∈ Mmn(R), B0 ∈
Mln(R) of ranks rA0 , rB0 , such that the matrix P will have in general rank r ∈
[max(rA0 , rB0), rA0 + rB0 ] we modify the procedure (4.1) as follows. Given rc ≥ 1
we generate two random matrices F ∈ Mn(R), G ∈ Mln(R) both of rank rc such
that FTRm ∩GTRl have in general dimension rc:

F :=
rc∑

i=1

xiyT
i , G :=

rc∑

i=1

ziyT
i , x1, ...,xrc ∈ Rm, y1, ...,yrc ∈ Rn, z1, ..., zrc ∈ Rl,

(4.2)
where x1, ...,xrc,y1, ...,yrc, z1, ..., zrc are chosen at random. After that we generate
the random matrices E1 ∈ Mmn(R), E2 ∈ Mln(R) of ranks rA0 − rc, rB0 − rc using
the procedure (4.1). Then A0 = F + E1, B0 = G + E2 are of the ranks rA0 , rB0 and
rank P = rA0 + rB0 − rc. (If rc = 0 then F = 0, G = 0.)

We first generated A0 ∈ M8,7(R), B0 ∈ M9,7(R) with rc = 1, rA0 = rB0 = 2 as
explained above:

A0 =




1826 846 1516 1831 3060 −577 1368
−3452 −1752 −2182 −2827 −5970 1199 −2236

5765 3573 745 2032 10755 −2461 2250
−202 −1818 7558 6964 −2430 1286 3804
3873 1353 5193 5718 5955 −911 3914

−5206 −2862 −2306 −3350 −9270 1964 −2868
−2060 1224 −11470 −11119 −810 −893 −6540
−2630 −726 −4390 −4684 −3810 482 −3100




,

B0 =




−3652 −3486 640 2833 −321 1424 −1731
−8657 −7471 −2665 3283 1354 2669 −6371

2420 2122 568 −1063 −289 −776 1685
−3927 −4161 2865 4833 −1446 1899 −681

253 −873 5837 4631 −2952 895 3309
−4620 −2044 −11676 −6664 5908 −308 −8960

2596 2388 20 −1624 −12 −932 1488
−8624 −7722 −1180 4481 603 2908 −5547
−7964 −5438 −10024 −3195 5075 1176 −9967




.

(Since we used Maple routine to generate random vectors and matrices with integer
entries in the range [−99, 99], the matrices A0 and B0 have integer entries.) The
first three singular values of A0 are and B0 are

27455.5092631633888, 17374.6830503566089, 3.14050409246786192× 10−12,
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29977.5429571960522, 19134.3838220483449, 3.52429226420727071× 10−12,

i.e. the ranks of A0 and B0 are 2. The four first singular values of P are

1.32179857269680762× 109, 6.04366385186753988× 108,

3.94297368116438210× 108, 1.34609524647135614× 10−7.

The 3 generalized singular values of A0 and B0 given by Theorem 2.1 are:

φ1 = 1, φ2 = 0.6814262563, φ3 = 3.777588180× 10−9,

ψ1 = 0, ψ2 = 0.7318867789, ψ3 = 1.

The matrix V ∈ M7,3(R) given by Theorem 2.1 is:

V =




9975.15570726070292 2218.77772608917530 −16518.7090029761894
4258.08009519515508 5446.09078420315382 −13181.0851653484933]
9910.16789114064704 −17951.9288836113556 −10755.8389196556800
11513.1007966750912 −16136.5652888949844 1610.05490646888757
16275.4438487944208 9076.81797277147780 5451.31112120093894

−2894.44180376545456 −3832.43425556036664 4134.75009336168569
8306.91358787289937 −8471.69677689182754 −15231.5628696020595




.

U1: the first two columns of U ∈ M8,3(R), and W1: the last two columns of
W ∈ M9,3(R) in the decomposition (2.8) are given by:

U1 =




.179765121701646796 0.0217039456257290890
−.332293103754918662 −0.0908271155631820566

.522953081333910608 .362755122878894332
0.0653691351259460541 −.564884208286237532

403109666836316383 −0.0979419423157340264
−.490268513741756395 −.208670062565787018
−.310503391981747257 .686088211972394224
−.283266252367416982 .129387295795073296




.

W1 =




−.212587926393571491 .200183908075783706
−.209341218852211240 .503492859705758855
0.0709866110946431456 −.139522117749788622
−.381933946402143232 .200183908075783734
−.399563630497640044 −0.0545956112933954560

.610572448157044589 .339706025825572078

.117661178466181738 −.145588296782388132
−.312433467319077507 .491360501640559999

.340824522437284283 .515625217770957822




.
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To show the robustness of our GSVD decomposition we perturb the matrices A0

and B0 by random matrices of the maximal rank by generating matrices X ∈
M8,7(R), Y ∈ R9,7(R) with random entries and relatively small `2 norm (the first
singular value) with respect to the `2 norms of A and B respectively. The random
matrices X,Y , with integer entries in [−99, 99], are:

X =




−14 −73 65 3 −14 16 9
−10 8 90 −94 −22 −24 0

78 32 −48 −6 80 −18 −63
66 −13 88 −45 −92 −69 −43
32 9 41 −95 −28 −90 −63

−23 −72 −84 −84 −58 −37 −40
35 14 −29 76 −62 −82 −5
18 −40 −51 11 87 66 −46




,

Y =




−14 −83 65 −22 −80 43 −56
−55 −50 68 66 9 −26 −58
−63 −32 −25 96 90 −5 28
−49 31 −17 −27 46 −5 37

81 −99 −98 22 58 −68 −37
59 57 65 −64 65 84 41

−68 36 −63 7 −58 53 90
95 −27 54 −16 −46 −18 46
23 10 −64 58 58 −73 97




The singular values of X, Y rounded off to three significant digits are:

(266, 183, 165, 151, 99.1, 36.0, 14.1), (259, 229, 198, 153, 116, 86.8, 46.2).

Note that ||X|| ∼ 0.01||A0||, ||Y || ∼ 0.01||B0||. Form the matrices A := A0 +
X, B := B0 + Y . These matrices have the full ranks with corresponding singular
values rounded off to three significant digits at least:

(27490, 17450, 233, 130, 119, 70.0, 18.2), (29884, 19183, 250, 187, 137, 102, 19.7).

We now replace A,B by A1, B1 of rank two using the first two singular values and
the corresponding singular vectors in the SVD decompositions of A,B. (We do the
noise reduction described in the Introduction.) Then two nonzero singular values
of A1, B1 are (27490, 17450), (29883, 19183), rounded to five significant digits. The
singular values of the corresponding P = AT

1 A1+BT
1 B1 are up to 3 significant digits:

(1.32× 109, 6.07× 108, 3.96× 108, 1.31× 104, 0.068, 9.88× 10−3, 6.76× 10−3). (4.3)
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Assume that r̃ = 3, i.e. P has three significant singular values. We now apply
our first numerical algorithm for GSVD, as described in §3. The three generalized
singular values of A1, B1 are

(1.000000000, .6814704276, 0.7582758358× 10−8), (0., .7318456506, 1.0).

These result match the generalized singular values of A0, B0 at least up to four
significant digits. Let V̂ , Û1, Ŵ1 be the matrix V , the first two columns of U , the
last two columns of W , which are computed for A1, B1. Then

||V − V̂ ||
||V || ∼ 0.0061, ||U1 − Û1|| ∼ 0.0093, ||W1 − Ŵ1|| ∼ 0.0098.

We now implement the second numerical algorithm to the matrices A ∈ M8,7, B ∈
M9,7(R), as described in §3. The singular values of P = ATA + BTB, up to three
significant digits, are

(1.31× 109, 6.07× 108, 3.96× 108, 6.91× 104, 6.61× 104, 2.84× 104, 1.19× 104).

As expected, P has r̃ = 3 significant singular values. Then the 3 generalized singular
eigenvalues of Ã, B̃ are:

(.9999667639, .6814699415, 0.005726580138), (0.008152974917, .7318461033, .9999836030).

Let Ṽ , Ũ1, W̃1 be the corresponding matrices for GSVD of Ã, B̃. Then

||V − Ṽ ||
||V || ∼ 0.0061, ||U1 − Ũ1|| ∼ 0.0091, ||W1 − Ŵ1|| ∼ 0.011.

This shows that the two ”noise reduction” algorithms are comparable in these ex-
amples.

Finally we discuss the critical issue of choosing correctly the number of significant
singular values of noised matrices A,B and the corresponding matrix P . First we
revisit our example with A1, B1. Recall the values of the singular values of P =
AT

1 A1 + BT
1 B1 given by (4.3). Assume now that r̃ = 4. Then the four generalized

singular values of Ã, B̃ up to six significant digits are (1, 1, 0, 0), (0, 0, 1, 1)!
We now replace A,B by A2, B2 of rank three using the first three singular values

and the corresponding singular vectors in the SVD decompositions of A,B. The
singular values of the matrix P up to three significant digits are:

(1.32× 109, 6.07× 108, 3.96× 108, 4.74× 104, 3.83× 104, 5.39× 103, 9.70× 10−3).
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Assume first that r̃ = 6. It then turns out that the generalized singular values of
A2, B2 are (1, 1, 1, 0, 0, 0) and (0, 0, 0, 1, 1, 1) up to six significant digits!. Assume
finally in this example that r̃ = 3. It then turns out that the generalized singular
values of Ã, B̃ are

(.9999796224, .6814701987, 0.005232470265), (0.006383948621, .7318458638, .9999863106).

Thus, the most important step in finding the GSVD decomposition of noised data
given by Ã, B̃ is the choice of r̃, the significant number of singular values of P .

5 Appendix: SVD on inner product spaces

In this appendix we discuss briefly the standard notion of the SVD decomposition
of a linear operator that maps one finite dimensional inner product space to another
finite dimensional inner product space. For the utmost generality we consider here
the inner products over the complex numbers C. The proofs of the facts stated here
are either standard or straightforward, and are left to the reader.

Let Ui be an mi-dimensional inner product space over C, given by 〈·, ·〉i for
i = 1, 2. Let T : U1 → U2 be a linear operator. Let T ∗ : U2 → U1 be the adjoint
operator of T , i.e. 〈Tx,y〉 = 〈x, T ∗y〉 for all x ∈ U1,y ∈ U2. Equivalently, let
[a1, ...,am1 ] and [b1, ...,bm2 ] are orthonormal bases of U1 and U2 respectively. Let
A ∈ Mm2m1(C) be the representation matrix of T in these bases: [Ta1, ..., Tam1 ] =
[b1, ...,bm2 ]A. Then the matrix A∗ := A

T represents T ∗ in these bases. The SVD
decomposition of A = UΣV ∗, where U, V are unitary matrices of dimensions m2,m1

respectively and Σ ∈ Mm2m1(R) is a diagonal matrix with the diagonal entries
σ1 ≥ ...σmin(m2,m1) ≥ 0, corresponds to the following base free concepts of T .

Consider the operators S1 := T ∗T : U1 → U1 and S2 := TT ∗ : U2 → U2. Then
S1, S2 are self-adjoint, i.e. S∗1 = S1, S

∗
2 = S2 and nonnegative definite: 〈Sixi,xi〉 ≥ 0

for all xi ∈ Ui for i = 1, 2. The positive eigenvalues of S1 and S2, counted with
their multiplicities and arranged in a decreasing order are σ2

1 ≥ ... ≥ σ2
r > 0, where

r = rank T = rank T ∗. Let

S1vi = σ2
i vi, i = 1, ..., r, 〈vi,vj〉1 = δij , i, 1, ..., r.

Then ui := σ−1
i Tvi for i = 1, ..., r is an orthonormal set of the eigenvectors of S2

corresponding corresponding to the eigenvalue σ2
i for i = 1, ..., r. Complete the

orthonormal systems {v1, ...,vr} and {u1, ...,ur} to orthonormal bases [v1, ...,vm1 ]
and [u1, ...,um2 ] in U1 and U2 respectively. Then the unitary matrices U, V are the
transition matrices from basis [b1, ...,bm2 ] to [u1, ...,um2 ] and basis [a1, ...am1 ] to
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[v1, ...,vm1 ]:

[u1, ...,um2 ] = [b1, ...,bm2 ]U, [v1, ...,vm1 ] = [a1, ...,am1 ]V.

Let A ∈ Mm2m1(C). Then A can be viewed as a linear operator A : Cm1 → Cm2 ,
where x → Ax for any x ∈ Cm1 . Let Pi be mi × mi hermitian positive definite
matrix for i = 1, 2. We define the following inner product on Cm1 and Cm2 :

〈x,y〉i := y∗Pix, x,y ∈ Cmi , i = 1, 2. (5.1)

It is straightforward to show that the SVD decomposition of A, viewed as the above
operator, with respect to the inner products given by (5.1) is

A = UΣV ∗, U∗P2U = Im2 , V ∗P−1
1 V = Im1 , (5.2)

where Σ is an m2 × m1 diagonal matrix with nonnegative diagonal entries in a
decreasing order. A simple way to deduce this decomposition is to observe that

〈x,y〉i = (P
1
2

i y)∗(P
1
2

i x), where P
1
2

i is the unique hermitian positive definite square
root of Pi. The decomposition (5.2) is called the extended singular value decom-
position of A, ESVD for short. The diagonal entries of Σ are called the extended
singular values of A. ESVD of A corresponds to the standard SVD decomposition

of P
1
2
2 AP

− 1
2

1 .
We conclude this section by considering the GSVD of A ∈ Mm2m1(C) and B ∈

Mm3m1(C) given by

A = UΦV ∗, U ∈ Um2r(C), B = WΨV ∗, W ∈ Um3r(C), V ∈ Um1r(C). (5.3)

Here Umr(C) := {Z ∈ Mmr(C) : Z∗Z = Ir}, and the matrices U, V,W,Φ, Ψ are
given by the formulas as in §2, except that the transposed matrices appearing there
are replaced by the conjugate transposed matrices. We claim that (5.3) are ESVD
of A and B with respect to the following corresponding hermitian positive definite
matrices Pi ∈ Mmi(C), i = 1, 2, 3. First let P2 = Im2 and P3 = Im3 . Let P =
A∗A + B∗B be an m1 × m1 hermitian nonnegative definite matrix. Assume first
that P > 0. Then choose P1 = P . Let E := AP− 1

2 , F := BP− 1
2 . Observe that

E∗E + F ∗F = Im1 . Then the spectral decomposition of E∗E and F ∗F is given by

E∗E = V0Φ2V ∗
0 , F ∗F = V0Ψ2V ∗

0 , V ∗
0 V0 = Im1 , Φ2 + Ψ2 = Im1 ,

where Φ,Ψ are diagonal nonnegative definite matrices. This establishes the decom-
position (5.3) with V ∗ = V ∗

0 P
1
2 .
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Assume now that P is not positive definite, i.e. rank P < m1. Let V ⊂ Cm1 be
the range of P of dimension r. Note that ACm1 = AV, BCm1 = BV. Hence we can
view the matrices A,B as the following operators A : V → Cm2 . Let 〈x,y〉 := y∗Px
be an inner product on V. Then the ESVD of the operators A,B gives the GSVD
(5.3). Alternatively, let P1 be any m1 × m1 hermitian matrix such that V is an
invariant subspace of P1 and the restriction of P1 to V is equal to the restriction of
P to V. Let E,F be defines as above. Then E∗E +F ∗F is the identity operator on
V and is equal to zero operator on the orthogonal complement of V in Cm1 . Hence
E∗E and F ∗F commute . Thus E∗E and F ∗F have a common orthonormal basis of
eigenvectors. Then the reduced ESVD of A and B yields the decomposition (5.3).

6 Conclusions

In this paper we discuss a new algorithm to find the generalized singular value
decomposition (GSVD) of two real matrices A,B with the same number of rows.
The main novelty of our approach is to consider the spectral decomposition of the
nonnegative symmetric matrix P := ATA + BTB and use it to derive the GSVD
of the pair A,B. Roughly speaking the GSVD is closely related to the spectral
decomposition of the pencils ATA− φ2P,BTB − ψ2P .

To obtain stable numerical computations of GSVD of A,B one needs to reduce
the ”noise” in P by approximating P with a low rank matrix P̃ , which is called the
numerical rank of P . The numerical examples clearly showed that the stability of
GSVD is very influenced by the choice of the numerical rank of P . This may have a
significant impact on the interpretation of the comparative analysis of genome-scale
expression data sets of two different organisms.
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