Hit ’q’ to Exit.

1/5/2005 22:59 Cbesc documentation maintained by the CodeBuilder

Contents
1 Introduction 2
2 zcb, zhb, zdb technology 3
2.1 Imstallation oL L e e 3
2.2 Working with zcb 3
2.3 Working with executable Cb-code b)
3 Cb-structuring 5
4 zcb-Code Builder 6
4.1 Demo code on using zcbo e e 6
4.2 Working directory for Cb-code 6
4.3 Syntax of Cb-structuring for zcb and of .Cbfile 7
4.3.1 Structuring C-codes 7
4.3.2 Incorporation of the Code Control into C-source 9
4.3.3 Specifying the structure of I/O file system using .Cbfile 9
4.3.4 Reinforcing consistency in switches on Control Panel 10
4.4 Communication Control files and their syntax 0. 10
4.4.1 Scope of communication sections of In/*.CmC files 10
4.4.2 Tbl_section of Interactive regime 11
4.4.3 Hlp_ section for control parameters Lo oL L 11
4.4.4 Plt_ section for graphics of Interactive regime 11
445 AscI_ ASCIII/O sections ittt it 11
4.4.6 BnrR_binary I/O sections 11
4.4.7 Include/Delete mechanism 11
4.5 Syntax of <CodeName>.Src source list file 11
4.5.1 Structure of <CodeName>.Src fileo 11
4.5.2 Make section of <CodeName>.Src 12
4.6 Basic functionalities of zcbo 12
5 zhb-Help Builder 13
5.1 Generating source files for OnLine Help L oL 13
5.2 Editing LaTeX Help source files 13
5.3 Generating *.dvi, *.psfiles L 13
6 zdb-Document Builder 13
6.1 Generating documentation for the code source files 13
6.2 Structuring documentation and organizing code oL oL 13
6.3 Editing LaTeX parts of documentation 13
6.4 Technology of working with documentation 13
7 qgd-Quick GuiDe code 13

The guide to CodeBuilder

Leonid E. Zakharov
CbResearch, Princeton NJ 08540
All rights reserved

November 29, 2004

1 Introduction (o 100)

As a software, the CodeBuilder system contains three parts:

1. zcb - the CodeBuilder itself, which is capable of recognizing a virtual Cb-structure intentionally
inserted into some source files by formalized, comment-like statements. According to this structure
standard control functionality will be provided to a final executable.

Such an approach allows to organize the control of the code operation as well as communications of
the code with the external World. It implements the idea of separation of data processing inside the
code from its interaction with other codes, drivers, users and software.

Based on interpretation of Cb-structure, zcb complements the original source code with a “Code
Control” (<CodeName>.Cb) file and “Communication Control” files (<SectionName>.CmC), which can
be used by a user for specifying the communications of each section of the code. Then, the “extended”
source, which includes *.Cb, *.CmC files, is used by zcb for writing a new source code (on the same
language as the original source). After conventional compilation, (and linking with Cb-library) this
new source generates the executable having a flexible, standardized control of all sections and their
communications.

2. zhb - the HelpBuilder, which generates the .dvi and .ps files for each Cb-section of the code and
maintains their consistency with control parameters of the section and with formats of the I/O files.

3. zdb - the DocumentBuilder for organizing documentation for the code maintenance. While both
zcb and zhb are serving the user in understanding and controlling the code, zdb is a helper for the
code developer. It is based on the same structuring principles, now applied for organizing the global
variables and routines inside the virtual Cb-structure of documentation.

While all sections of communication Cb-structure are situated inside different routines, the documen-
tation structure contains routines themselves and global variables as tokens. This technically separates
the two Cb-structures in the source code.

For each source file zdb can generate a separate document file having the same Cb-structure, where
the routine code is represented by a skeleton, while a special space is provided for description of the
routine functionality using LaTeX documenting capabilities.

Such an approach of separation of the source and the doc-files with automatic maintenance of their
consistency by zdb allows to keep the source code clean, with short names of variables and not contam-
inated by the comment lines. At the same time the best possible tools can be used for documenting
routines of the code as well as the code as a logical structure.

Separation of the source code and its documentation also allows safe distribution of the source code
(thus, resolving platform consistency problems) without a fear that the author ideas of the algorithm
would be intercepted by others.

The CodeBuilder is a non-intrusive software. All it requires is to insert (using the comment-like state-
ments) the necessary information on structuring, which is absent in the conventional codes. Everything else
is complimentary to the conventional source.

In practice, implementation of the contemporary control of the code and its communications does require
some modifications of the original source code. The CodeBuilder reinforces thinking about the user and om
transparent code control. In the case that these changes are not desirable, the software provides Insert/Delete
capabilities. Additional (conventional) code can be written inside the *.CmC files (together with the label of
the place in the source file) and then be actually inserted into intermediate source files when zcb generates
a new source.

2 zcb, zhb, zdb technology (to ToC)

2.1 Installation (to ToC)
1. From zcb.tgz file, the CodeBuilder is expanded into ZcbL/ directory by

tar xzvf zcb.tgz

2. There is also a ggd.tgz with a code containing a Quick GuiDe into zcb which is expended into Qgd/
directory by

tar xzvf qgd.tgz

3. Then, the command
../ZcbL/mkcb

called from Qgd/ (or any other working directory at the same level) will generate executables . . /ZcbL/cbL,
../ZcbL/hdL, ../ZcbL/dbL and make them symbolically linked to zcb, zhb, zdb in the current di-
rectory. It also creates a few special files in the current directory.

4. The demo code is generated by the command
Mkqgd

It is useful only for introductory tutorial demonstration and is not a generic part of the system.

It is a convention that any working directory with codes, which use zcb, zhb, zdb, are situated at the
same level as ZcbL/. This simplifies the access to Help, style files, libraries and other files of the Cb-system.

The call . ./ZcbL/mkcb should be made at least once for each working directory of the codes, which use
zcb.

2.2 Working with zcb (to ToC)

When using zcb, instead of make the command

Mk<CodeName>

where <CodeName> is a given name to the code (3-4 letters), (re-)generates the make file and then, the
executable Cb<CodeName>. As soon as Mk<CodeName> script was created, the work with the source files is
the same as in conventional practice.

There are five stages of creation of Mk<CodeName> script, which should be passed through only once.

1. Structuring the source of the code. Starting from the file containing int main() routine, Cb-
structure should be specified using special comment-like statements. This crucial step is explained in
detail in Sect. 3.

2. Creation of the Code Control file In/<CodeName>.Cb. The simple command
zcb <MainFile>.c -i <CodeName>

generates a standard set of directories Wrk In Out Doc Hlp Obj Csrc Fsrc (if they were absent) and
a file Out/<CodeName>.Cb, which contains the structural information about the code and its mapping
to the structure of the I/O file system.

After optional editing, the file should be moved into its final place In/<CodeName>.Cb.

Option -i after zcb allows to specify the name of the code (use 3-4 letters for compactness). Without
it the <CodeName> will be generated from the name of <MainFile>.c file.

3. Creation of Online Help and Communication Control files. The command
zcb <CodeName>.Cb

displays the future Control Panel of the Cb-code with its sections distributed in accordance with Cb-
structuring. Three buttons, which will control the operation of the section, its Output and Input, are
attached to each of Section on the CPanel.

If the Control Panel seems to be erroneous, exit by Cntr-c and either restructure the source files or
re-edit the In/<CodeName>.Cb file.

If the Control Panel is correct, then Esc on keyboard, or clicking <mouse-L> on Esc button, creates
(for every section) template files: Hlp/<SectionName>.txt (ASCII) and Hlp/<SectionName>.Hlp
(LaTeX) for online help and Out/<SectionName>.CmC for communication control.

Communication Control files Out/<SectionName>.CmC contain a number of sections (all disactivated
by commenting them) for different kinds of communications. Their Tbl_<SectionName> section, which
is responsible for interactive control of the section, contains all typical examples of syntax of description
of communication objects.

Edit Out/*.CmC-template files (see Sect. ??) and move them into In/ directory. These files can be
prepared step by step. It is recommended to prepare, initially, only one In/<SectionName>.Tbl file.
Other In/*.CnC files could be prepared gradually while working with the Cb-code.

Only In/*.CmC files, all of them, are used in generating the Cb-code.

4. Creation of <CodeName>.Src file with listing of source files.

Edit Out/<CodeName>. Src template file and substitute the names of source files and directories of the
code. The structure of Out/<CodeName>. Src is self-explanatory. Move the edited file into a convenient
place, e.g., into Src/ directory.

The <CodeName>.Src file is used by zcb for automatic generation of make files for Cb-code. This
approach disengages the CodeBuilder from evolving syntax of make facilities, while allowing using
capacities of make at full extent.

5. Creation Mk<CodeName> code building command. The call
zcb <CodeName>.Cb -m <CodeName>.Src

generates the make file CbCodeName>.mk and a simple script Mk<CodeName>. Mk<CodeName> is a final
product of five stages.

Call

Mk<CodeName>

to generate the executable Cb-code Cb<CodeName> every time when changes were made in either original
source files or in In/*.CmC files.

Only when the Cb-structure of the code was changed, repeat all the steps described above. Hiding existing
Cb-blocks by commenting them in the In/<CodeName>.Cb file does not require repetition of these stages.

2.3 Working with executable Cb-code (to ToC)

Calling the resulting Cb-code

Cb<CodeName>
opens several X-windows (depending on the content of In/*.CmC files). The window “Cb<CodeName> 0”
contains the Control Panel, while others are designated for controlling separate sections during the run of
the code.

Clicking <mouse-R> on <Help> button in the CPanel window opens a simple ASCII help on how OnLine
Help in its three forms (.txt, .dvi with hyperlinks, and .ps) can be accessed in Ch-code.

In a separate document, such as this one, is impossible to explain all details of controlling Cb-code and its
communications. Because the system is evolving, it is a great burden to maintain documentation consistent
with the state of software. Instead, the CodeBuilder provides the detail information on controlling the codes
through the OnLine Helps system, where updates can be easily inserted.

Follow instructions available in the Help files.

3 Cb-structuring (o 10C)

Cb-structuring is an extension of conventional nested structuring based on Directory/File types of elements
with a restriction that the order of elements does matter. Structuring should be understood before using the
CodeBuilder. Other details of using CodeBuilder are typically prompted in the template or OnLine Help
files.

Cb-structuring has three types of elements followed by a given name of the section

1. blb_ is like a directory in the operational system and may include other structural elements.
2. stg- is like a file in the operational system and is the final element of the structure.

3. mzl_is a distributed entity, allowing to express possible virtual parallel processing in the code. Unlike
blb_ and stg- blocks, which are localized by their begin and end labels, each mz1_ may be distributed
along the entire code. It is fragmented by each blb_ and may be intentionally fragmented inside blb_
as well.

Topologically, blb_<nameB> may include only mzl <nameM>’s, one or several (with possible repetition of
names). Each mzl <nameM> may include either blb_<nameB>’s or stg <nameS>’s. Repetition of names of
blb_ and stg_ is not allowed (although exceptions are possible). Also, stg_<nameS> cannot include elements
of the same Cb-structure.
The skeleton of Cb-structure can be illustrated as
b1b_BO{
mz1 _MO{
stg_S00;
stg_S01;
stg_S02;
}
mzl M1{
stg_S10;
}
mzl,M2{
stg_S520;
blb_B20{
mz1 _MO{
stg_S221;
}

}

stg_S21;
}
mzl M1{
stg_S30;
}

mz1 _MO{
stg_S40;
stg_S41;
}
}

In some sense, Cb-structuring compensates a deficiency of conventional “Dir/File” structuring and makes
it better fitting to the people style of thinking. It is also more consistent with the needs of parallel program-
ming (if mz1_’s are associated with virtual processors) and understanding interactions inside the complicated
numerical codes.

A simple illustration could be an abstract criminal/detective story. While the table of contents (based
on Dir/File-like sections) of the book conveys the structure of the story as the time development, there is
no possibility to trace the development associated with either criminal or detective themselves and their
interaction. Ch-structuring would allow this by specifying mz1 Criminal and mzl Detective in the relevant
blb_ sections.

Depending on the context, different interpretations and properties can be given to Cb-elements. E.g.,
zcb maps some of blb_ into the structure of the I/O file system and makes them repeatable during the code
run, while zdb analyzes consistency of the use of global variables by different routines with their position in
the Ch-structure and reflects the results of analysis in the document files.

Essentially, Cb-structuring is a first principle approach based on irreducible set of structural elements.
Upon implementation of its structure recognition routines and different drivers for its structural elements
it is applicable for many purposes in organizing control of numerical codes, generating documentation and
information processing, all made in a mutually consistent manner. Three codes zcb, zhb, zdb are just
some particular implementations of interpretation of Ch-structuring.

4 zcb-Code Builder (o 100)

This section explains the basic syntax associated with use of zcb and its illustration with a demonstration
code Cbggd. As soon as the basic idea of the syntax is understood, the use of zcb becomes simple because
all the characteristic examples are present in the template files automatically generated by zcb.

4.1 Demo code on using zcb (to ToC)

The directory Qgd/ contains a demo code Cbqgd which demonstrates the code building process using a simple
set of examples. (Its source is Src/qgd.c and the source list file is Src/qgd.Src.) Run it by calling

Cbggd

Then, hit Esc and follow the instructions in its window qgd 1.

4.2 Working directory for Cb-code (to ToC)

Any directory at the level of . ./ZcbL/ can be a working directory for Cb-code generated by zcb from original
conventional source. This directory will be the reference point for different service directories generated and
used by zcb.

4.3 Syntax of Cb-structuring for zcb and of .Cb file (to ToC)
4.3.1 Structuring C-codes (to ToC)

Cb-structure accepted by zcb starts inside the int main(...) routine and can be extended to other routines
and files. It is implemented with pairs of C-preprocessor directives #ifndef, #endif specifying extent of

each Ch-section, like in the example taken from ESC (Equilibrium and Stability Code)
int main(int argc, char *xargv)

#ifndef mzl ESC

#ifndef blb Machine
#ifndef mzl_ESC
#ifndef stg PlLim

#endif
#ifndef stg MFProbe
#endif
#ifndef stg PFBlocks
#endif

#ifndef blb_Year
#ifndef mzl ESC

#ifndéf’stggMSE,Geom
#endif

#ifndef blb_Shot
#ifndef mzl ESC

#ifndef stg WFormB
#endif
#ifndef stg WFormI
#endif

#ifndef blb Equil
#ifndef mzl _ESC

#ifndef stg PlVac
#endif
#ifndef stg PFCIeq
#endif
#ifndef stg PlPr
#endif

#ifndef stg P1Cr
#endif

do{

#ifndef stg InsFSol
#endif

twhile(...);
#ifndef stg _EqOut
#endif
#ifndef stg BalSt
#endif
#ifndef stg Orbits
#tendif
#endif B
#endif/*blb_Equilx*/
#endif
#endif/*blb_Shot*/

L]

#endif
#endif/*blb_Yearx*/

#endif/*mzl ESC*/
#endif/*blb_Machine*/

#efl&if/*mzl,ESC*/
return(0) ;

}

This struture has 4 nested blb_ blocks (Machine, Year, Shot, Equil) which contains a number of
stg_’s. Comments after #endif does not matter for zcb.

Ugly looking, preprocessor directives are easy to trace by the editors and they cannot be removed if
preprocessing is involved in generating the C-source files from the higher level storages (like Khuth /Krommes
WEB/FWEB).

There are following rules in structuring for zcb:

1. Structure starts with mzl_, which topologically encloses all other section. In Ch-code all of it will be
inserted into blb_<CodeName> lock, which makes the structure closed.

2. Temporarily, only one mzl_ name can be present in the structure.

3. Boundaries of Ch-sections should not violate the topology of C-language blocks in the code. In Ch-
code, it eventually will be converted into actual C-language blocks. At present, zcb does not check
the consistency of Cb-structure with original C-blocks.

4. Tt should be no jumps into or from Ch-sections without interseting their boundaries. Intersection of
boundaries of Ch-structure are used by zcb library to trace the run for controlling Ch-code.

5. Otherwise, Cb-structure directives can be inserted at any place in the code, where run interseption,
intervention, control, I/O or communication are necessary. Even a section with no code lines inside
may have a sense for controlling the code and communicating with external devices.

E.g., zcb library provides the possibility of automatic activation of interactive regime in the first Cb-
section having it, when some condition was met. This would stop the code and allow some interactive
steering in the abnormal situation without crushing the run.

6. Names of Cb-sections are used for generating paths, directory names and file names and, thus, char-
acters which impede name interpretation by operational system should be avoided. For zcb only * (7,
e, e, 2}, /7, ;7 are rigorously prohibited in names.

7. Structuring can continue in another source file by referencing it, e.g., as in example from inside the
main file

L)

int main(int argc, char **argv)

{

#ifndef blb_BO(F=Src/fnamel.c)
#ifndef stg S5

#endif

#endif/*blb_BOx/

Inside the Src/fnamel.c file it should continue, e.g., as

L)

int RoutineO(int K)

{

#ifndef blb_BO
#ifndef stg FO
#endif
#ifndef stg F1
#endif

#endif/*blb_BO*/

return(0) ;

}

When zcb encounter the reference directive (F=Src/fnamel.c), it goes to the file Src/fnamel.c and
searches for #ifndef blb_BO and parces the file till the corresponding #endif and then returns to the
point of reference. Nestedness of references is arbitrary.

At this moment only blb_ may carry a reference.

4.3.2 Incorporation of the Code Control into C-source (to ToC)

At Cb-code building stage (by invoking Mk<CodeName>) when zcb generates a new source file Csrc/Cb<FileName>.c,
it makes insertions right after #ifndef blb_ and #ifndef stg_ lines and before corresponding #endif’s,
e.g.,
#ifndef blb BO
while(CbBlbModeOff(3) == 0){

#ifndef stg F1
while (CbStgMode0ff (3,0,5) == 0){

" if (CbIfExitStg()) break;

#tendif
" if(CbIfExitBlb()) break;

#endif/*blb_BOx/
Fetirn(0);
zcb library routines CbB1bModeOff (...), CbStgModeOff(...), CbIfExitStg(), CbIfExitBlb() are
controlled by Mode-switches on the Control Panel of Cb-code.

4.3.3 Specifying the structure of I/O file system using .Cb file (to ToC)

Based on interpretation of Ch-structure specified with #ifndef, #endif pairs, zcb creates the Code Control
file <CodeName>.Cb, which contain the structure in a compact form:

1. Each blb_ inside <CodeName>.Cb has a member 0D (standing for output directory). If it is not empty
(name does not matter), e.g.,
OD=Year;

then a name of directory will be attached to this blb_ in the Control Panel of Cb-code. The actual
name of directory can be introduced before launching the run of Cb-code, and all sections inside this

blb_ will write into this directory. Empty member, i.e., (0D=;) means that it will be no directory
corresponding to blb_.

Editing 0D inside <CodeName>.Cb creates correspondence between the structure of Cb-code and its 1/0
file system.

As soon as <CodeName>.Cb is edited and moved into In/ directory parsing of all the source files is not
necessary. After restructuring the source files and running zcb on them, the information from existing
In/<CodeName>.Cb will be transfered into the new Out/<CodeName>.Cb.

4.3.4 Reinforcing consistency in switches on Control Panel (to ToC)

By default, the combinations of switches on Control Panel responsible for mode of operation and I/O of
each section, are arbitrary. For example, some section cannot be turn Off, if some others remain active.

A syntax of a mechanism in <CodeName>.Cb file, which would restrict combinations of switches, is under
design.

4.4 Communication Control files and their syntax (to ToC)

The Out/<SectionName>.CmC templates are generated by zcb automatically as describes in Sect. 2.2. They
contain a full set of sections which can be used for arranging communications and interactive control using
zcb capabilities.
The syntax of each section is the following
<Type><SectionName>(...){
description of communication objects

Anything between sections (except C-like commenting /* ... */) is ignored by zcb.
Parentheses (...) contain parameters of the section, separated by ’,°

Parameter ID Section Opt Comment
W=2 Tbl_ Obligatory ~ Window used by section for interactive regime
SF="Src/aaa.c" All Obligatory Name of the source file where comunication is localized
L=4 Tbl_ Optional Number of lines in the GUI Table
Beg="1abelB" All Obligatory Image for begin of the scope of communication
End="1labelE" All Obligatory Image for End of the scope of communication

Templates intend to contain a comprehensive set examples of the syntax and its explanation (in Hlp
section of the files). The basic syntax of communication objects is the same for all sections of *.CmC files.

The templates for blb_ and stg_ blocks are different, although the syntax is the same (but will be a
little bit different in future to express a special role of blb_). Use stg_ templates as a guide for blb_ blocks
as well.

While generating new source, zcb takes into account all In/*.CmC files in the In/ directory.

4.4.1 Scope of communication sections of In/*.CmC files (to ToC)

By default, zcb should include C-instructions into the code, which would probide the scope of each section
extending to the entire section.

II' It is not implemented yet in this way !!' Instead, it includes these instructions right after the image
specified by Beg= and before the image specified by End= in parameter list.

The presence of these instructions does not affect the original code, if the communiction is desactivated
by a CPanel switch (or if at the moment the code is in another Cb-section, than the section communication
belong to. Otherwise, by entering the communication block the corresponding file (or channel) will be open.
It will be closed at the end of the block.

The block for interactive regime (Tbl_) can be repeated by hitting <Enter> (or using mouse click on
button <Enter>) and exited by hitting <Esc> (See, the OnLine Help in this regard while running Cb-code).

10

Templates contains self-consitent images for labeling the scope of communication sections. It is recom-
mended to use them because they are easily recognizable by the document builder zdb.

The pointwise communication needs only Beg= specification.

Follow examples in templates to describe objects specific for each section of a code. After moving step
by step Out/*.CmC files into In/ dierectory and creation of executable Cb-code use OnLine <Help> for
practicing.

The following sections describe the syntax of typical sections of *.CmC files in a formalized way.

4.4.2 Tbl_ section of Interactive regime (to ToC)

4.4.3 Hlp_ section for control parameters (to ToC)

4.4.4 Plt_ section for graphics of Interactive regime (to ToC)
4.4.5 AscI_ ASCII I/0 sections (to ToC)

4.4.6 BnrR_ binary I/0 sections (to ToC)

4.4.7 Include/Delete mechanism (to ToC)

4.5 Syntax of <CodeName>.Src source list file (to ToC)

The file contains a structured list of source files of the original code, as well as instructions for possible
drivers. At this moment only a section, specifying generation of make-file is present.

zcb does not generate a template for this file. This will be corrected soomn.
4.5.1 Structure of <CodeName>.Src file (to ToC)

A simple example (for bst code) is

bst{
.mk [
CC =cc -c;
LINK =cc;
include FLIB.inc;
*.0(.c) : $(CC);
bst(*¥.0) :$(LINK) -o bst *.0 \
| $(FLIB) -1GLU -1GL -1Xmu -1m;
Src/{
bst.c[.o];
bstD.c(bst.h) [.0];
bstA.c(bst.h) [.0];
bstN.c(bst.h) [.o+=-DDEBUG] ;
bstB.c(bst.h) [.0];
bstG.c(bst.h) [.0];
bstGL.c(bst.h) [.o];

./Esc/Src/{
esiZ.c[.o];
splines.c[.o0];

./ZcbL/Src/{
cbGL.c[.0];

./Lib/Src/{
NumRec.c[.o];

}
/u/wrk/3D/Src/(3dH.h) [.ol{
3dT.c;
3dP.c;
3d0.c;

11

}
}

The file simply reflects the structure of the source code file system inserted into <CodeName>{ ... }
block. Sections .<DriverExtension>[...] are situated before the source file structure.

Il Do not forget to put a proper <CodeName> when generating this file by copying it from another code !!.

The name of files are followed by (...) specifying dependence on other files. Their paths are calculated
relative to the source file directory.

The content of next [...] brackets specifies possible extensions (separated by ’;’) which different
drivers can generate from the file. Each option can include +=... or -=... as additional (or excluded
options) options to those specified separately in driver section.

If content of (...), [...] is common for all files of directory, it could be put after its name and droped
from file lines (like in the last block of the example).

4.5.2 Make section of <CodeName>.Src (to ToC)

The section .mk[...] contains instructions for generating the make file of the (original) code. It mimics
the most primitive conventions of conventional make syntax, i.e.,

1. ’=’ is used to make definitions, while $(...) to substitute definition.

2. x.0(.c) : $(CC); tells that all *x.0(.c) files depends on corresponding .c files. ’:’ separator is
followed by instruction applied (implicitly) to .c file. If description of file contains specific instruction,
then they be included for this file at the end of the common instruction line.

3. bst(x.0) : $(LINK) -o bst *.0 ...; tells that bst object (executable) should be created accord-
ing the instruction, where *.o will be substituted by all output of instructions for *.o.

All other “bird language” of conventional make files is droped as unnecessary.

4.6 Basic functionalities of zcb (to ToC)
At the stage of code building zcb functions are:

1. To recognize the communication control structure of the code and to generate the template files for
the code control (In/<CodeName>.Cb), its communications (In/<SectionName>.CmC) and online help
(Hlp/<SectionName>.txt for ASCII and Hlp/<SectionName>.Hlp for LaTeX).

2. To generate new source files (Csrc/Cb<SourceFile>.c) based on original (<SourceFile>.c) source
files and In/<CodeName>.Cb, In/*.CmC files.

3. To generate a make command Mk<CodeName> which regenerates Csrc/Cb*.c files and makes an exe-
cutable Cb<CodeName>.

In addition to already existing properties of the original code, the executable Cb<CodeName> has the following
functionality

1. Uniform and distributed control of the code itself and of each of its sections.
2. Interactive control of the code sections.

3. Access to the OnLine Help (*.txt, *.dvi, *.ps for each section and for each control parameter of
the section.

4. Organized Input/Output of the code into the automatically generted file system. Its structure is
consistent with Cb-structure of the code and its I/O files are named by Cb-sections generating these
files.

5. Organized internal structure of both ASCII and binary I/O files.

12

5 zhb-Help Builder o 10c)

5.1 Generating source files for OnLine Help (to ToC)
5.2 Editing LaTeX Help source files (to ToC)

5.3 Generating *.dvi, *.ps files (to ToC)

6 zdb-Document Builder (t 100)

6.1 Generating documentation for the code source files (to ToC)
6.2 Structuring documentation and organizing code (to ToC)
6.3 Editing LaTeX parts of documentation (to ToC)

6.4 Technology of working with documentation (to ToC)

7 qgd-Quick GuiDe code (to 10C)

13

