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Abstract 
GTNEUT is a two-dimensional code for the calculation of the transport of neutral 
particles in fusion plasmas. It is based on the Transmission and Escape Probabilities 
(TEP) method and can be considered a computationally efficient alternative to traditional 
Monte Carlo methods. The code has been benchmarked extensively against Monte Carlo 
and has been used to model the distribution of neutrals in fusion experiments.  
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1.  Introduction 

Neutral particles (atoms and molecules) are always present in thermonuclear 
laboratory plasmas such as those encountered in magnetic fusion experiments, especially 
in regions near material surfaces. The majority of these neutrals are the direct result of 
particle recycling, i.e. plasma ions striking material walls and reflected back as neutrals, 
but they can also arise from external injection of neutral atoms into the system for fueling 
or heating purposes or be created by recombining plasma ions. 

These neutrals can have an important effect on the local plasma particle and 
power balance. They affect the energy and particle fluxes to the first wall and divertor 
plates (therefore, playing a major role in processes such as wall erosion and intrinsic 
impurity production), as well as on the performance of important reactor engineering 
components such as the fueling and pumping systems. In addition, experimental 
observations and theoretical predictions suggest that neutrals play an important role in the 
overall performance of the core plasma, since they can affect the attainment of various 
improved confinement regimes, induce density limiting thermal instabilities in the plasma 
edge, etc. Therefore, the modeling of transport of neutral particles at the edge of 
magnetically confined plasmas is very important for the interpretation of present day 
fusion experiments and for the design of next generation fusion reactors, and computer 
codes that perform such simulations are indispensable tools for plasma modelers. 

The modeling of neutral transport in fusion plasmas is challenging, since the 
highest neutral concentrations occur in regions characterized by considerable geometrical 
complexity (divertors, baffles, pumps, plenums, etc.), widely varying neutral mean-free-
paths and background plasmas with densities and temperatures characterized by strong 
gradients.  

Most state-of-the art codes for neutral particle transport are based on the Monte 
Carlo method [1-3], although methods based on alternative concepts (diffusion [4-5], 
discrete ordinates, various forms of integral transport [6]) have also been considered. 
Monte Carlo methods are capable of representing the complex geometries encountered at 
the plasma edge exactly, can treat the complex atomic and molecular physical processes 
characterizing the plasma edge region efficiently  and can achieve very good accuracy if 
a sufficient number of particle histories are run. The most serious disadvantage of Monte 
Carlo-based neutral transport codes is their computational speed.  They are 
computationally expensive, requiring a large number of particle histories in order to yield 
acceptable statistics. While this may not be a serious problem for stand-alone simulations 
with fixed background plasma, it becomes much more limiting in coupled plasma-
neutrals simulations where a large number of iterations may be required until the two-
dimensional (2-D) plasma fluid calculation (which is usually computationally demanding 
itself) and the neutrals calculation converge. In addition, the numerical noise inherently 
present in Monte Carlo simulations makes convergence even more difficult. Such 
coupled edge plasma – neutrals simulations are becoming increasingly more common and 
the need for a faster alternative to traditional Monte Carlo codes has been recognized by 
the international fusion community. 

The Georgia Tech Neutral Transport code GTNEUT described in this paper is 
such an alternative. GTNEUT is a computationally efficient and accurate tool for the 

 2



calculation of neutral transport at the edge of thermonuclear plasmas based on the 
transmission and escape probability method [7]. The code has been benchmarked 
extensively against Monte Carlo and experiment [8-10].  

The present version of the code has reached a level of maturity and stability and 
several research groups have expressed an interest in using it for their neutral simulation 
needs. We therefore feel that an extensive description of the code and the methodology is 
warranted in order to facilitate its use by the wider fusion community. 

This paper is organized as follows: The basic assumptions and equations of the 
code are summarized in Section 2; the details of the code implementation, including a 
description of the input preparation, a discussion of the solution methodology and the 
overall structure of the code is presented in Section 3; two test problems, included in the 
code distribution, are presented and discussed in Section 4; conclusions and a brief 
discussion, including plans for future development, follow in Section 5; and, finally, a 
complete list of the input variables is included in Appendix A. 

2. Equations and Methods 

GTNEUT is based on the Transmission and Escape Probabilities (TEP) method.  
While the details of the TEP method and its application to specific problems have been 
published elsewhere [7-10], the basic methodology and governing equations are 
described in this section for completeness.  

In the TEP method [7], the region of interest is subdivided into an arbitrary 
number of straight-sided convex cells1.  The shape of each cell can be as complicated as 
required in order to match the local geometry, and can have an arbitrary number of sides. 
The computational domain of interest is bounded by the first wall and divertor plates 
(including any other relevant first wall structures, such as pumps, baffles, plenums, etc), 
and, optionally, by the core plasma. Core plasma, in this context, is the part of the plasma 
where knowledge of the exact neutral density population is not necessary (usually 
because it is anticipated to be very small) and it is treated with an albedo boundary 
condition. It does not necessarily correspond to the entire plasma inside the separatrix in 
diverted tokamaks, since the boundary can be arbitrarily selected to include as much of 
the core plasma in the neutral computational domain as it is desired.  

The present version of the GTNEUT code is 2-dimensional (2-D), i.e. it is 
assumed that the plasma and neutral distributions, as well as any surface or volume 
neutral sources, are unchanged along the third (ignorable) coordinate. This is a choice 
that we made for simplicity and computational economy and is not an inherent limitation 
of the TEP method, which can be easily extended to three dimensions. 

It is important to emphasize that, while references to diverted tokamak geometry 
will be frequently encountered in this paper, the methodology and the code are not 
restricted to this specific topology. GTNEUT can calculate the neutral density and related 
quantities of any 2-D configuration that can be subdivided into straight convex cells (e.g., 
linear plasma devices, selected regions near plasma facing components, etc.) 
                                                 
1 Earlier versions of the code supported circular segments [7], but this option was rather restrictive and has 
not been carried over to later versions of the code.  
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2.1. Basic TEP Equations 

The equations are formulated in terms of the interface partial currents or “fluxes”2 
through the sides of each cell, Γi,j. The flux Γi,j represents the total partial current, in units 
of # of particles/sec, from cell “i” into adjacent cell “j” (Fig. 1). In terms of the neutral 
angular flux ψ(r,Ω), Γi,j is defined as: 

5 

4 

3 

2 

1 

 ( ) ( ),
ˆ 0

ˆ ,
ij

i j ij
S

dS d ψ
⋅ >

Γ ≡ ⋅∫ ∫
Ω n

Ω Ω n r Ω  (1) 

where Sij is the interface between cells i and j, is the normal unit vector at the Sn̂ ij 
interface and ψ(rij,Ω) is the angular flux of the neutrals at rij. The integration over all 
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Figure 1: Schematic diagram showing region i and its adjacent regions and the partial currents at 
the interfaces. 

 For each interface between two cells we can write particle balance equations that 
relate the various fluxes incident on the sides of the cell. To do this, we note that the total 
particle flux Γi,j from cell i into cell j consists of three distinct contributions: 

• Uncollided neutrals: These are neutrals that entered cell i from one of its adjacent 
cells and were transmitted across cell i into the adjacent cell j without undergoing 
any collisions with background plasma ions and electrons. The uncollided 
contribution can be expressed as: 

                                                 
2 Notice that we refer to the quantity Γ as “flux” or “current” although its units are #/s rather than #/m2-s, 
i.e. it represents the total number of particles crossing the surface under consideration. 
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where, as shown in Fig. 2, Lki is the length of the interface between regions k and 
i, ξki is the coordinate along the Lki interface, li is the length of the distance 
traveled by the neutral in the 2-D plane from a point ξki on the entering surface to 
a point in the exiting surface, φ is the angle between the entering surface and the 
chord li, λi is the total neutral mean free path in cell i  and Ki3 is the third-order 
Bickley-Naylor function [11]: 
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• Collided neutrals: These are the neutrals that entered cell i from all contiguous 
cells, had one or more charge exchange or elastic scattering collision in cell i with 
background plasma ions (neutral-neutral scattering collisions are not considered 
in the present version of GTNEUT) and eventually escaped into cell j through the 
common interface between cells i and j. The flux contribution of these collided 
neutrals can be written in the following form: 

  (5) , , ,1c i
i j k i k l i i ij

k l

T c P Γ = Γ − Λ 
 

∑ ∑

 where ci is the probability that a collision in cell i is a scattering or charge 
exchange event, Pi is the total escape probability that the particle or its progeny 
escapes region i after one or more charge exchange or elastic scattering collisions, 
and Λij is the probability that particles escaping cell i exit through the side of i that 
is adjacent to cell j. The summations extend over all cells contiguous to cell i. 

• Source neutrals: These can arise from either external or internal sources (e.g., 
volume recombination). If the volumetric neutral source in cell i is , then its 
contribution to the total particle flux can be written as: 

i
extS

 ,
s i
i j ext i ijS PΓ = Λ  (6) 

 where the total escape probability Pi and geometric escape factor Λij are similar to 
those appearing in Eq. (5). 
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Figure 2: Geometry for the calculation of the first-flight transmission coefficients (Eq. 3) 

Combining the three contributions to the total particle flux (Eqs. 2,5 & 6) the 
partial current balance equation for the interface between cells i and j can be written in 
the following form: 

  (7) , , , , ,1i i
i j k i k j k i k l i i ij ext i ij

k k l
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We now discuss some of the coefficients and terms appearing in the equations 
above in more detail: 

The charge exchange and elastic scattering fraction ci, also known as the number 
of secondary neutrals per collision, is defined as follows: 

 cx el
i

e
e i cx
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c n
n

συ συ
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συ συ συ συ

+
=

+ + +
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where συ stands for the Maxwellian averaged reaction rates, the subscripts cx, el, e, 
and i denote charge-exchange, elastic scattering (included here for those atomic databases 
that support it), electron impact ionization and ion impact ionization respectively, and ne 
and ni are the electron and ion densities of the background plasma. Although the present 
version of GTNEUT assumes a single-species hydrogenic plasma background, Eq. 8 can 
be generalized to handle an arbitrary number of background ion species, including charge 
states of impurities [7].  

The various reaction rates are computed using the polynomial fits by Janev et al. 
[12], and depend on the neutral particle species and energy as well as on the background 
plasma electron or ion temperatures. In addition to the Janev database, two other options 
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are available in GTNEUT for the calculation of the various atomic reaction rates: The 
first includes hydrogenic ionization and charge exchange rates from the DEGAS code 
[1], and the second is based on a recent compilation of data by E.W. Thomas [13]. It 
should be noted that these two alternative options include multi-step ionization effects, 
having been derived using a collisional radiative model (the electron impact ionization 
rates in GTNEUT from the Janev database correspond to the ground state). In addition, 
the Thomas data include ion-neutral elastic scattering rates (the term 〈συ〉el in Eq. 8) based 
on the work by D.R. Schultz, et al. [14], as well as Lyman α suppression effects which 
can enhance ionization at high densities (n > 1019 /m3) [13]. Appendix A explains how 
these options can be selected by the user. Potential users can easily implement their own 
databases, by modifying the routine calcmfp appropriately. 

 The total escape probability Pi for a neutral particle or its neutral progeny can be 
calculated by observing that of the ci secondary neutrals produced per scattering or 
charge exchange event in cell i, a fraction P0i escapes cell i without undergoing further 
collisions while the rest, 1- P0i, remain in cell i to interact with the background plasma 
again. During this new generation of collisions, a fraction ci(1- P0i ) P0i will escape cell i 
without suffering additional collisions, while the rest will constitute the next generation 
collision source which, in turn, will contribute [ci(1- P0i )]2 P0i escaping neutrals, and so 
on. A schematic representation of this sequence of collision events for the first three 
generations is shown in Fig. 3. Summing over all generations, the total escape probability 
Pi can be written as follows: 
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where P0i is the first-flight escape probability. The expression for the collided flux given 
by Eq. 5 follows by summing all elements of the last column in Fig. 3, using Eq. 9 for the 
total escape probability, multiplying by the directional probability factor Λij and noting 

that the first collision source ( )1
iS  is equal to , ,1 i

k i k l
k l

T Γ − 
 

∑ ∑ . 

Just like the first-flight transmission factor (Eq. 3), the first-flight escape 
probability P0i can be calculated exactly under the assumption of an isotropic collision 
rate distribution [8,11]. However, in the interest of computational efficiency, a rational 
approximation for the calculation of P0i is used in GTNEUT: 

 0
1 1 1

n
i

i
i

XP
X n

−  = − +  
   

 (10) 

In Eq. 10, Xi = 4Vi / λiSi, where Vi is the volume (surface in 2-D) of cell i, λi is the 
neutral mean free path in cell i, Si is the surface area (perimeter in 2-D) of cell i, and n is 
an arbitrary exponent. The approximate form of Eq. 10 derives from similar rational 
approximations by Wigner [15] and Sauer [16]. Detailed calculations and comparisons 
with Monte Carlo have resulted in a value of n = 2.09 for our simulations [8,17].  
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Figure 3: Schematic representation of collision events in cell i for the first three generations, 
starting with the first collision source. 

Finally, the factor Λij appearing in Eqs. 5-7 represents the probability that a 
neutral escaping cell i, will escape through the side if i that faces the adjacent cell j. 
While the presence of ion flows and magnetic fields can influence the value of Λij [7], in 
the present version of the code Λij is treated merely as a geometric directionality factor 
and is equal to the fraction of the boundary surface (or perimeter under our 2-D 
assumption) of cell i that is in contact with the adjacent cell j.  

2.2. Neutral energy considerations 
The current implementation of the TEP methodology in GTNEUT, assumes that 

the neutral energy in each cell is equal to the local ion temperature. An exception is made 
for wall originated (reflected) or source neutrals, which maintain their original energies 
(input-specified or determined by the wall reflection model) until they interact with the 
background plasma ions, in which case they, too, assume the local ion temperature. 
Extensive tests against Monte Carlo [8,17] have shown that this “local ion temperature” 
assumption is a good approximation when the neutral mean-free-path λ is comparable to 
or less than the characteristic dimension ∆ of the cell under consideration, and when the 
background plasma properties are not characterized by strong gradients. A two-energy 
group formulation has been recently implemented [10], which has improved the accuracy 
of the code even in cases where the mean free path and background plasma gradient 
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restrictions are not met. The two-energy group formulation is discussed in Section 2.6 
below. 

2.3. First collision source effects 
The first collision source consists of those neutrals that entered cell i from one of 

its adjacent cells and had their first charge exchange or elastic scattering collision in cell 
i. In deriving Eq. 7 above, the first collision source was treated as the precursor of an 
infinite number of generations of collision sources, each described by the same secondary 
neutrals fraction ci, escape probability P0i and geometric factor Λij resulting in Eq. 5 for 
the collided flux.  

However, the first collision source is likely to be influenced by the originating cell 
of the neutrals that comprise it, in contrast to subsequent generations which are assumed 
to lose their ancestral “memory” after a few scattering collisions with the background 
ions of cell i. A neutral entering cell i from one of its contiguous cells still carries an 
energy consistent with the properties of that cell. This should affect the calculation of the 
neutral fraction ci, which depends on the neutral energy through its dependence on the 
various neutral-ion reaction rates. In addition, if the mean free path λi of this neutral in 
cell i is much smaller than the characteristic dimension ∆i of cell i, i.e. λi / ∆i 1, then 
the first collision source will be highly non-uniform since most reactions with 
background plasma ions will occur near the interface of these two cells. As a result, the 
probability of escaping back across that incident surface would be greater than the 
probability of escaping across another surface. Since the calculation of the escape 
probability P0i and the geometric transmission factor Λij described in the previous section 
assume a uniform collision source, it is expected that these coefficients or their product 
P0i Λij may be different for the first collision source. It is therefore desirable to rewrite the 
collided flux contribution, Eq. (5), in a slightly different form in which the first collision 
source is separated out: 

 ( ) ( ), , , , 0 , 0 ,1 1kc i
i j k i k l i k i k ij i k i i ij

k l

T c P P c P   Γ = Γ − Λ + − Λ    
∑ ∑  (11)  

The first term in the brackets represents the first collision source and the second 
term the contribution from all the other generations. The “k” subscript or superscript 
appearing in ci,k, P0i,k and ( )k

ijΛ signifies that these coefficients have been calculated taking 
into account that they entered cell i from adjacent cell k. The rest of the coefficients in 
Eq. 11 are the same as before. It should be noted that Eq. 11 reduces to Eq. 5 when first 
collision effects are ignored, i.e. setting ci,k = ci,  ( )k

ij ijΛ = Λ , P0i,k = P0i and using Eq. (9) 
for the total escape probability Pi. 

 In the present version of the GTNEUT code, ci,k is calculated taking into account 
the ancestry of the first collision neutrals. The rest of the first collision coefficients 
however, P0i,k and ( )k

ijΛ , are assumed to be equal to P0i  and Λij respectively, i.e. they do 
not include a first-collision correction. We should note however that, in the code, the first 
collision terms appear explicitly, so adding first collision effects to these coefficients 
should be straightforward once the appropriate methodology is developed. 
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 Similar arguments can be made for the neutrals due to internal or external sources.  
The volumetric source can be non-uniform and the emitted neutrals can have an 
anisotropic distribution and various initial energies. In this case, the contribution from the 
original source neutrals, before they suffer their first collision with the background 
plasma ions, can be separated out and Eq. (6) can be written as: 

i
extS

 ( )0 ,0 0 0
, 0 01s i s

i j ext i ij i i i ijS P P c P Γ = Λ + − Λ   (12) 

where the superscripts “s” and “0” indicate that the relevant quantities are calculated 
taking into account the properties of the source.  
 

2.4. Boundary Conditions 
As discussed in the beginning of Section 2, the computational domain of interest 

is bounded by material walls and, in some cases, by a plasma region (referred to as “core 
plasma” in this context) in which the explicit knowledge of the neutral distribution is not 
necessary. In this section, we discuss the boundary conditions imposed by these two 
types of boundaries.  

2.4.1. Reflection from a plasma region 
If one or more sides of cell i interface with a core plasma region kpl, an albedo 

boundary condition is used to express the flux from the plasma region kpl into cell i: 

 ,kpl i kpl i kpl,αΓ = Γ  (13) 

The albedo coefficient αkpl is calculated from a numerical fit to detailed Monte 
Carlo albedo simulations for different values of the charge exchange fraction parameter 
ckpl. The fit is valid for the entire region of interest (0 ≤ ckpl ≤ 1) and is in excellent 
agreement with semi-analytic results from transport theory [18].  

This fit replaces our earlier diffusion theory based approximation (Eq. (30) in Ref. 
[7]) which was inaccurate for smaller values of ckpl, becoming negative for ckpl < 0.57. 
 

2.4.2. Reflection from material walls 
Laboratory plasmas are usually surrounded by the material surfaces of the 

confining vessel. In a tokamak device, these surfaces would include the first wall, the 
divertor plates or limiters and any other structures in close proximity to the plasma.  

When ions or neutrals interact with a material surface, one of the three following 
possible outcomes can occur [19]. They can (a) be directly back-scattered or reflected 
while retaining a significant fraction of their original (impact) energy, (b) reach thermal 
equilibrium with the lattice atoms and be re-emitted as molecules at low energies, of the 
order of the wall temperature, and (c) become permanently trapped inside the material 
wall. The thermal molecules of the second group, after dissociation, become Franck-
Condon atoms with energies of a few electron volts [19]. The present version of the 
GTNEUT code does not treat molecules explicitly, assuming instead that they dissociate 
at the point at which they are introduced into the plasma, and subsequently treated as 
Franck-Condon atoms with an input-assigned energy. 
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Accordingly, the particle flux from the wall segment kw to an adjacent plasma cell 
i, Γkw,i, can be written in terms of the flux Γi,kw from cell i onto the wall segment kw as 
follows:  

 ( )( ), , 1 1kw kw kw kw
kw i ext n i kw n abs i kwR R fΓ = Γ + Γ + − − Γ ,  (14) 

 The first term in Eq. (14), kw
extΓ , represents an external flux contribution (e.g., a gas 

puffing fueling source), the second term represents the fraction of particles directly 
reflected or back-scattered and the last term represents the neutrals that are re-emitted as 
molecules from the material surface and treated here as Franck-Condon atoms.  kw

nR is the 
particle reflection coefficient, which depends on the impact energy of the ions and the 
material properties of the surface, and kw

absf  is a wall absorption coefficient taking into 
account any particles that remain trapped in the wall.  

Since most coefficients in Eqs. 7 and 11 depend on the neutral energy through 
their dependence on the neutral mean free path λ or on the various ion-neutral reaction 
rates, it is important that they are evaluated at the appropriate energy of each of these 
three groups of wall-originated neutrals. The externally launched particles are assumed to 
have energy E0 which is treated as an input variable, the back-scattered “fast” particles 
have an energy equal to ,kw kw

i E nRT R  where Ti is the ion temperature of the plasma region 
adjacent to the wall segment kw and kw

ER is the energy reflection coefficient, and the 
“slow” neutrals are assumed to emerge at an input-specified low energy corresponding to 
the Franck-Condon energy for atoms. The particle and energy reflection coefficients 

kw
nR and kw

ER of each wall segment are calculated using standard fits that are valid for a 
wide range of wall materials, particle species and impact energies [20-21]. 

In addition to the realistic wall reflection model described above, a simpler 
reflection model is also available in which the reflection coefficient is an input variable 
and neutrals are returned to the plasma at their original energies. In this case, Eq. (14) for 
the flux from the wall segment kw into cell i becomes: 

 , ,
kw kw

kw i i kw extRΓ = Γ + Γ  (15) 

where Rkw is the input-specified reflection coefficient. This simple model is useful for 
setting up vacuum interfaces (Rkw = 0, kw

extΓ =0) or symmetric boundaries (Rkw = 1, Γ =0) 
as well as for compatibility with the original TEP implementation, which did not include 
a realistic wall reflection model [7]. 

kw
ext

 Finally, when GTNEUT is coupled to a plasma fluid code, the reflection of the 
plasma ions from the material walls should also be taken into account. Since there are no 
significant differences between the reflection of incident atoms or ions [19], the same 
approach followed for the reflection of neutral atoms is used to evaluate the neutral flux 
from wall segment kw into the adjacent plasma cell i due to an ion flux Γ . In this case, 
Equation 15 for the neutral particle flux entering cell i from the wall segment kw 
becomes: 

kw
ion
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 ( ) ( )( )( ), , ,1 1kw kw kw kw kw kw
kw i ext n i kw ion n abs i kw ionR R fΓ = Γ + Γ + Γ + − − Γ + Γ  (16) 

where the incident ion flux Γ  should be provided by the plasma fluid code.  kw
ion

 
2.5. Final form of equations 

Using Eqs. 13, 14 and 16 to eliminate the fluxes from plasma regions and wall 
segments into adjacent cells in favor of the fluxes from the cells into these regions, and 
separating out the first collision contributions as shown in Eqs. 11 and 12, the partial 
current balance equation for the interface between cells i and j (Eq. 7), can be written in 
the following form: 
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(17) 

In Eq. 17, cell i is assumed to be bounded by an arbitrary number of wall 
segments kw, plasma regions kpl and other cells k.  The various superscripts appearing in 
the wall-originated components (“0” for external fluxes, “ion” for background plasma ion 
fluxes, “f” for the fast, back-scattered component and “s” for the slow, low energy 
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Franck-Condon neutrals) indicate that the various coefficients have been calculated at the 
neutral energies characteristic of each group.  

The total ionization rate Ii in cell i can be obtained by summing the ionization 
contributions from each generation of reactions, as shown in Fig. 3. Evaluating the 
infinite sum of the elements in the leftmost column (labeled ionized) of Fig. 3, we can 

show that ( ) ( ), ,1 1 1 1i
i k i k l i i

k l

I T c c = Γ − − − − 0iP     
∑ ∑ .  This result can be generalized 

by considering contributions from wall segments, core plasma and external sources and 
taking explicitly into account first collision effects by assigning region-dependent 
secondary neutral fractions ci,k  and escape probabilities P0i,k as discussed in section 2.3. 
In this case, the total ionization rate is equal to: 
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  (18) 

where, as in Eq. 17, the first summation is over all non-wall adjacent cells, the next three 
summations represent walls with external fluxes, fast and slow reflected neutrals, and the 
last term is from any volumetric sources. 

Once the ionization rate is known, the neutral density n0i in each cell i can be 
calculated from: 

 0
i

i tot
i iion

In
n v Vσ

=  (19) 

where ni is the background ion density in cell i, Vi is the volume of cell i and tot

ion
vσ is the 

total ionization rate (electron impact and ion impact ionization). Equation (19) is actually 
an approximation, since the different ionization terms in Eq. (18) may correspond to 
different neutral energies. However, since the dominant ionization rate is, by far, the 
electron impact ionization rate which is independent of the neutral energy, and the ion 
impact ionization rate depends only weakly on the neutral energy, Eq. (19) is a very good 
approximation. 
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2.6. Extension to two energy groups 
As discussed in Section 2.2, the “local ion temperature” approximation is a 

reasonable assumption when the neutral mean-free-path λ is comparable to or less than 
the characteristic dimension ∆ of the region under consideration, and when there are no 
strong gradients in the background plasma properties. When either of these conditions is 
not met, however, the possibility of introducing errors in the calculation due to assigning 
the wrong energy to parts of the neutral population must be considered. 

 To remedy this situation, the TEP methodology was modified by introducing two 
distinct energy groups: a “slow” energy group, consisting of the neutral atoms at the 
Franck-Condon energy formed by the dissociation of molecules re-emitted from the wall 
or injected as a gas fueling source, and a “fast” energy group including the neutrals that 
are in thermal equilibrium with the background ion population. Directly reflected neutrals 
are assumed to be part of the fast group, since they retain a significant fraction of their 
original energy. Making the plausible simplifying assumption that every charge exchange 
or elastic scattering reaction moves slow neutrals to the fast neutrals group and that no 
fast neutrals are “scattered” from the fast to the slow group, the particle balance equations 
for the two groups and for internal regions (i.e., regions not bounded by material 
surfaces) are: 

 Γ  (20) , , ,
, , , , , , , ,1 1f f i f f i f s i s s

i j k i k j k i k l i k i ij k i k l i i ij
k k l k l

T T c P T   = Γ + Γ − Λ + Γ − Λ   
   

∑ ∑ ∑ ∑ ∑ c P

, ,
, ,

s s i
i j k i k j

k
TΓ = Γ s∑  (21) 

where, as before, the superscripts “s” and “f” correspond to the slow and fast energy 
groups. The third term in Eq. (20) represents the slow neutrals that entered the fast group, 
after charge-exchanging with the background plasma ions. From Eq. (21), we can see that 
the slow neutrals group propagates only through uncollided fluxes, and does not have any 
contribution from charge exchange reactions.  

For neutrals originating from wall segments due to reflection, re-emission or 
external sources, the fast and slow fluxes into the adjacent plasma region are: 

  (22) 
( )( ) ( )( )

, ,

, ,1 1 1 1

f kw f
kw i n i kw

s kw kw kw f kw kw kw s
kw i ext n abs i kw n n abs i kw

R

R f R R f

Γ = Γ

 Γ = Γ + − − Γ + + − − Γ  ,

 It can be seen from Eq. (22) that only the directly reflected neutrals of the fast 
energy group are credited to the fast group. The Franck-Condon neutrals resulting from 
the dissociation of re-emitted or gas fueling molecules go into the slow group. 

 Simulations with the two-energy group option have shown very good agreement 
with Monte Carlo and experiment [10]. 
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3. Code Implementation 

 The TEP methodology outlined in the previous section has been implemented into 
the 2-D neutral transport code GTNEUT. In this section, details of this implementation 
are discussed with emphasis on the input preparation, the solution methodology including 
code performance considerations, the output file format and the overall structure of the 
code.  

3.1. Input 
  The main GTNEUT input variables are contained in the namelist inp which is 
included in the input file toneut. A complete list of these input variables, along with a 
short explanation, is included in Appendix A. An optional namelist, inp1, also included in 
the toneut input file, contains variables that are used in the automatic input generation for 
rectangular configurations. This option is discussed in more detail below in this section. 
If the user decides to use the DEGAS atomic rates database instead of the (default) Janev 
rates [12], two additional data files are required. This is discussed in more detail in 
section 3.4 and in Appendix A. 

 The first step in creating a GTNEUT input file is to describe the geometry of the 
configuration. One of the strengths of the TEP methodology and its implementation into 
the GTNEUT code is the ability to model the complicated and irregular geometries that 
are often encountered in realistic neutral transport simulation problems. To accomplish 
this task, GTNEUT employs a coordinate-free unstructured grid.   

 As discussed in Section 2, the computational domain of interest consists of a 
number of internal cells bounded by the core plasma and the material walls (including 
any pumping interfaces which are treated as wall segments with prescribed reflection 
coefficients).  These three elements, internal cells, plasma regions and wall segments, 
constitute the building blocks of the GTNEUT input geometry, and their properties and 
interrelationships must be specified. A list of the most important geometry-related input 
parameters is shown in Table 1 (see Appendix A for a complete list). 

  
nCells number of internal cells 
nPlasmReg number of plasma regions 
nWallSegm number of wall segments 
iType(i) type of geometric element i (0 for internal cell, 1 for plasma 

region and 2 for wall segment) 
nSides(i) number of sides for internal cell i 
lside(k,i) length of kth side of internal cell i. 
angle(k,i) angle between sides k and k+1 of cell i 
adjCell(k,i) index of element  (internal cell, wall segment of plasma region) 

that is adjacent to the kth side of cell i 

Table 1: Important geometric input variables 

 Each geometric element is assigned a numerical index starting with the internal 
plasma cells (1 to nCells), followed by the plasma regions and the wall segments. 
Although a valid boundary is obviously required, it is not necessary that it consist of both 
plasma regions and wall segments. In fact, the simplest problem that GTNEUT can solve 
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is a group of internal plasma cells bounded by vacuum, i.e. wall segments with zero 
reflection coefficients. 

Wall segments are always one-sided, while internal cells and plasma regions can 
have an arbitrary number of sides specified by the value of the input variable nSides. The 
sides of each multi-sided element are numbered consecutively, with the convention that 
side 1 is the side whose right endpoint (i.e., the point with the largest value of the 
horizontal coordinate) is the bottom vertex of the cell (i.e., the point with the smallest 
value of the vertical coordinate) and then moving clockwise. For example, referring to 
Fig. 1, lside(1,i) is the length of side 1 of cell i, angle(1,i) is the angle between sides 1 
and 2 while angle(5,i)is the angle between sides 5 and 1. Lengths and angles must be 
specified only for internal cells and not for plasma regions.  

The location of each geometric element is specified in terms of its neighbors via 
the 2-dimensional array adjCell(k,i) which returns the index of the cell adjacent to the kth 
side of cell i. Referring again to Fig. 1, adjCell(1,i) = k and adjCell(4,i) = j. This array 
should be specified for all geometric elements (cells, plasma regions and wall segments). 
A consistency check is performed by the subroutine checkinp after reading the input file, 
to ensure that the entries of the adjCell array are internally consistent.   

After the geometry of the problem has been fully specified, the properties of the 
first wall must be described. Depending on the choice of wall reflection model, which is 
controlled by the input variable irefl, the user must specify either an array of wall 
reflection coefficients Rwall(1: nWallSegm) (irefl = 0) or the material properties of each 
wall segment (irefl = 1), in which case a realistic wall reflection model is employed as 
discussed in section 2.4.2. The material of each wall segment is fully described by the 
elements of the atomic mass array awall and the atomic number array zwall. It is still 
possible to assign input-specified wall reflection coefficients to selected wall segments, 
even when the wall reflection model option has been selected (irefl = 1). This is useful 
for wall segments that represent pumping surfaces or vacuum interfaces, and can be 
accomplished by setting the value of zwall for the desired wall segments to a negative 
number (e.g., -1). For these wall segments, reflection is controlled by the input-specified 
array Rwall and not by the internal wall reflection model.  

Following the specification of the geometry and the properties of the first wall, 
the properties of the background plasma (electron and ion temperatures and densities, as 
well as ion species information) must be specified for each internal cell as well as for the 
core plasma cells. The relevant input variables and their units are described in Appendix 
A.  

Finally, recycling and other neutral gas sources must be specified. The most 
common option is to specify the external flux kw

extΓ  (#particles/sec), which corresponds to 
the GTNEUT input array g_ex, for all wall segments that are expected to have finite 
recycling or gas puffing sources. A non-zero value of g_ex for wall segment kw causes 
GTNEUT to launch neutrals with energy equal to eneut from that wall segment into the 
adjacent cell. Alternatively, an ion flux striking a wall segment can be specified (g_ion). 
GTNEUT then assumes that all ions are recycled as neutrals with energies determined by 
the wall reflection model and the wall temperature array twall. As discussed in section 
2.4.2, the energy twall should be characteristic of Franck-Condon atoms, i.e. a few 
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electron volts. This option is most useful when GTNEUT is coupled with an edge fluid 
code, in which case the fluid code should provide the g_ion array, or when experimental 
data for ion fluxes are available. Volumetric sources (such as plasma recombination) can 
also be prescribed in each internal cell, using the array S_ext. The energy of these 
volumetric neutrals is specified by the input variable eneut_v. 

3.1.1. Automatic Input Generation 
 The flexibility of the coordinate-free geometry specification model of GTNEUT 
has one drawback: manual input preparation, where the lengths, angles and relative 
positions of the sides of each cell with respect to its neighbors must be individually 
specified, can be laborious and error prone, especially for new geometries and 
configurations. For this reason, programs that can generate part of or the entire toneut 
input file using information generated by another application have been developed. Such 
automatic input generation interface routines have been developed for the plasma edge 
fluid code UEDGE [22], the MHD Equilibrium and Fitting code EFIT [23] and the 
DEGAS Monte Carlo neutral transport code [1]. Although these routines are considered 
research tools and are not part of the standard GTNEUT distribution, the GTNEUT 
developers will assist potential users to develop interfaces for their applications. 

In addition, and in order to facilitate testing and benchmarking of the code, an 
internal optional automatic input capability has been implemented in GTNEUT. This 
option, which is activated if the input variable i_inp is set equal to 1, generates a 
rectangular NX×NY grid where NX and NY are the number of cells in the horizontal and 
vertical directions respectively. The background plasma parameters (ne, Te, etc.) can be 
either fixed or have top-to-bottom or left-to-right linear variation. The input variables 
specifying this automatic grid generation are contained in the namelist inp1, which is also 
included in the main input file toneut. A detailed description of these input variables is 
included in Appendix A, and a sample problem is discussed in Section 4.1. 

3.2. Solution Methodology and Performance 
The linear system of equations for the interface fluxes of the internal cells 

described by Eq. 17, has the form: 
 ⋅ =A Γ S  (23) 

where A is a coefficient matrix with elements consisting of the various transmission 
coefficients and escape probabilities, Γ is the vector of the unknown interface fluxes and 
S is the source vector consisting of the various recycling ion and neutral fluxes and any 
volumetric source terms. Knowledge of the interface fluxes following the solution of the 
linear system of equations (Eq. 23), allows us to construct all other quantities of interest 
such as the fluxes from wall segments and core plasma regions, the neutral densities in 
each cell, ionization rates, etc. 

 Since each side of each internal cell contributes one equation for the interface flux 
from this cell into the cell adjacent to this side, the total number of equations and 
unknowns (nEqs in the code) is equal to the total number of sides of all the internal cells. 
Therefore, the coefficient matrix A has dimensions nEqs×nEqs.  

While in our discussion of the TEP theory in section 2 the interface fluxes were 
introduced as Γi,j, with the indices i and j denoting the origin and destination of the 
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neutrals represented by each flux (from cell i into the adjacent cell j), the fluxes in the 
code implementation are defined with respect to the side of cell i that they traverse to 
enter the adjacent cell j. The correspondence between the theoretical and internal code 
fluxes is therefore given by: 

 , , ( , )i k i adjCell k i i j,Γ ⇒ Γ = Γ  (24) 

 where the tilde in the first flux denotes a GTNEUT flux, and the assumption that cell j is 
adjacent to the kth side of cell i has been made. This choice significantly reduces the 
storage requirements for the fluxes which otherwise would have to be dimensioned as 
nCells × nCells, with most elements being zero.  The vector of the unknown fluxes Γ in 
Eq. (23) is arranged as: 
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The coefficient matrix A is very sparse since each equation, corresponding to a 

single row of matrix A, involves only fluxes from contiguous cells. For example, a 
typical problem with 100 four-sided cells results in 400 equations and unknown fluxes. 
However, only 1960 of the 160,000 elements of the coefficient matrix A (1.2%), are non-
zero. Therefore, the use of efficient sparse linear solvers in GTNEUT is essential for 
increased performance and reduced storage requirements. 

GTNEUT employs the Unsymmetric-pattern Multifrontal Package UMFPACK to 
solve the system of linear equations of Eq. 23. UMFPACK is a set of routines for the 
direct solution of sparse linear systems using the unsymmetric multifrontal method [24]. 
The UMFPACK Fortran version 2.2.1 used by GTNEUT is functionally equivalent to the 
routine MA38 from the Harwell Subroutine Library (HSL). The UMFPACK routines can 
be obtained from http://www.cise.ufl.edu/research/sparse/umfpack. 

An alternative, non-sparse, linear solver based on the widely available LAPACK 
library [25] is also included in GTNEUT. This was implemented so that potential users 
can still run the code without having to install the UMFPACK library. The user can select 
which solver to use by setting the input variable i_solver to the appropriate value (see 
Appendix A). For small problems with fewer than 100 cells, the performance of the non-
sparse solver is comparable to that of the UMFPACK, although it drops rapidly as the 
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size of the problem increases. However, the storage requirements of the non-sparse solver 
increase quadratically with the size of the problem, limiting its practical use to problems 
with fewer than 600 cells, depending on the hardware platform.  

Users can substitute their favorite sparse matrix solver in place of UMFPACK, by 
replacing the solvers routine by their own and by modifying the sparse matrix storage 
scheme in the setup routine, to be consistent with the storage scheme of their sparse 
matrix solver.  

3.2.1. Extension to Multi-Species 
The present version of GTNEUT can handle only one neutral species. However, 

adding more species to the code (other hydrogenic atomic or molecular species, helium, 
impurities and even excited states of the same species) is straightforward and can be 
accomplished by following these steps: a) extend the flux vector Γ (Eq. 25) to include the 
fluxes of the new species. The new fluxes satisfy balance equations similar to Eq. 17, 
with possibly additional terms describing interactions between the various species (e.g., 
charge exchange between neutral carbon and background hydrogenic ions). Interaction 
terms will affect the balance of the previously installed species as well and appropriate 
terms should be added to their balance equations; b) modify the routine calcmfp to 
calculate the mean-free-paths and related parameters (charge exchange fractions, etc.) of 
the new species. Routines providing the various atomic and molecular rates for the new 
species should also be provided; c) calculate the first-flight transmission coefficients and 
escape probabilities of the new species. Since the transmission coefficients depend only 
on the neutral mean free path and the geometry, this computationally expensive step can 
be avoided by interpolating (or using a table lookup) the already computed transmission 
coefficients; d) modify the routine setup to define the new elements of the sparse 
coefficient matrix and modify existing elements by adding inter-species interaction terms; 
and e) include any new contributions to the ionization rate (Eq. 18). 

3.2.2. Performance Considerations 
One of the advantages of the TEP method is its computational speed. Our 

benchmarking simulations have indicated that GTNEUT is faster than Monte Carlo by 
one to two orders of magnitude [17].  To maintain and improve this computational speed 
advantage as the code is upgraded and new features and capabilities are added, it is 
important to identify the most computationally intensive parts of the code. While 
reasonable effort has been made to select computationally efficient algorithms during the 
development of the code, most of our emphasis has been on improving the TEP 
methodology and implementing new capabilities rather than on numerical optimization 
per se. Therefore, significant room exists for improvements to further increase the 
computational speed of GTNEUT. 

The code has been profiled under various computing platforms and compilers. 
This profiling revealed that more than 85% of the computation is spent calculating the 
first-flight transmission coefficients (Eq. 3) and the associated Bickley-Naylor function 
(Eq. 4). Standard methods are employed for the numerical evaluation of the multi-
dimensional integral of Eq. 3, which is treated as a product of one-dimensional integrals. 
Gauss-Legendre quadratures are used for the spatial integration along the ξ coordinate 
[26], while the angular part is evaluated using the Simpson rule. The Bickley-Naylor 
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function, Ki3, is evaluated from an approximate fit [27] and not by direct integration of 
Eq. (4). The performance of the integral evaluation can be improved by employing 
multidimensional quadrature algorithms or quasi-Monte Carlo methods [28-29], or by 
evaluating the integrals using mean-chord-length approximation techniques [30]. 

In cases where GTNEUT is coupled to a plasma fluid code, performance can be 
improved by pre-computing the various transmission coefficients for a range of mean free 
paths during the first call to GTNEUT, and then employing table lookup interpolation to 
obtain the desired coefficients for subsequent calls. This approach assumes that the 
geometry remains unchanged during the coupled plasma-neutrals simulation while the 
properties of the background plasma change, in which case the transmission coefficient 
integrals depend only on the neutral mean free path. Finally, since the evaluation of each 
transmission coefficient integral depends only on the geometry and on the background 
plasma parameters (which determine the neutral mean free path), parallelization of this 
part of the code for appropriate platforms is relative straightforward with significant 
potential savings in computation time. 

 

3.3. Output 
The main GTNEUT output file is the text file neut.out. It contains the neutral 

density, total ionization rate and ionization rate density in each cell as well as the total, 
uncollided and collided fluxes at each interface. The order in which these quantities are 
printed out is controlled by the input integer array prntOrdr. If the first element of this 
array is negative, then the various quantities are printed in their natural order, i.e. 
following the internal cell index numbering scheme. Since the numbering of the cells is 
more or less arbitrary, especially for automatic input generation cases, the default printing 
order can be overridden by specifying the elements of the prntOrdr array. This allows the 
user to group together regions of interest, as well as to facilitate the plotting of the data. 

At the end of the neut.out file, the results of a global particle balance are included. 
This particle balance, performed by calling the subroutine pbalance, evaluates and lists 
the total number of particles entering the solution region and the total number of particles 
lost via ionization, escape from the system or wall capture. It then evaluates the relative 
error, which is a measure of the roundoff error of the simulation. 

An optional output file, neut.dbg, is also generated if the debug input flag, idbug, 
is equal to 1. This file contains the values of several important parameters for each cell 
(geometric details, neighbors, reaction rates, mean free paths, transmission coefficients 
and escape probabilities) as well as the non-zero elements of the coefficient matrix and 
source vector. The neut.dbg file is very useful for troubleshooting GTNEUT simulations, 
but it can become quite large for problems with a large number of cells. 

Finally, the file umferr.dat includes any error messages or warnings from the 
UMFPACK library. This file exists only if the sparse matrix option has been selected 
(i_solver = 1). 
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3.4. Code Structure 
GTNEUT has a simple structure, consisting of a main routine and a number of 

subroutines and functions. The subroutine calling sequence with a brief description of 
each routine is shown in Table 2. 
 
Table 2: Subroutine calling tree for the GTNEUT code 

Routine Brief description and subroutines called 
main The main routine. It opens the various input and output files, reads 

the namelists inp and inp1 and calls the various subroutines to 
perform the TEP calculation. The following subroutines are called: 

degasread 
rectinp 
checkInput 
calcrefln 
calcmfp 
escape 
calctransm 
setup 
solverf, solvers 
postsolver 
pbalance 
output 
zstop 

degasread This routine is called only when iatdat = 1. It reads the files 
ehr1.dat and cxionh.dat containing atomic rate data from the 
DEGAS code. This option has been retained to facilitate benchmarks 
with the original DEGAS Monte Carlo code. For regular simulations, 
the Janev rates [12] should be used (iatdat=0).  

rectinp This routine is called when i_inp = 1, and generates the automatic 
part of the GTNEUT input for model problems with a rectangular 
grid (see section 3.1 and Table A-3 in Appendix A). 

checkInput This routine checks the input variables for inconsistencies and 
performs a number of auxiliary tasks. It makes sure that the size of 
the problem does not exceed the dimensioning of various arrays, it 
checks for incompatible input choices, it ensures that the geometry is 
correct  (the sum of the angles of each cell should be equal to (n-2)π 
where n is the number of sides), it checks to make sure that the 
assignment of neighbors is consistent (if adjCell(k,i) = j then 
adjCell(l,j) = i where l is one of the sides of j). In addition, it converts 
units and normalizes various parameters. If it detects an error, an 
appropriate message is printed on the terminal. 

calcrefln This routine calculates various wall reflection parameters. If the wall 
reflection model is on (irefl=1) it calls the subroutine reflect. 

reflect Calculates particle and energy reflection coefficients using fits that 
depend on the projectile and target properties (material, energy, etc.) 
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calcmfp This routine calculates the neutral mean free path λi and charge 
exchange fraction ci (Eq. 8) in each internal cell. Depending on the 
value of the input parameter iatdat, it calls the functions svione, 
svioni, svcxi and svefj which are grouped together in the file 
svjanev.f, or the routines svdegas and calcxswms. It also 
calculates the albedo coefficient αpl using the numerical fit to Monte 
Carlo simulation data in the function albdfit. 

svione, 
svioni, 
svcxi 

Functions that evaluate the electron impact ionization reactivity, the 
ion impact ionization reactivity and the charge exchange reactivity 
using the database assembled by R.K. Janev [12].  

svefj Evaluates the electron impact ionization rate using the older Freeman 
and Jones fit. Implemented for compatibility with older codes and 
used only when ifjsv = 1 and iatdat=0. 

svdegas Evaluates various atomic rates using data from the original DEGAS 
code (i.e. not the more recent DEGAS-2 code [2]). Used when iatdat 
= 1. 

calcxswms Calculates various atomic rates using data compiled by E.W. Thomas 
and W.M. Stacey [13]. Used when iatdat = 2. 

escape Evaluates the first-flight and total escape probabilities P0i and Pi 
(Eqs. 9-10) using a rational approximation. Evaluates the directional 
escape probability factor Λij. 

calctransm Setup routine for the evaluation of the various first-flight 
transmission coefficients. Calls the subroutine TransmCoeff. 

TransmCoeff Evaluates the first flight transmission coefficients T , T , T , 

 (see section 2). Calls subroutine calRectParms and 
calcRect. 
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calRectParms Calculates various geometric parameters that are needed in the 
evaluation of the first-flight transmission coefficients. 

calcRect Evaluates the multidimensional integral for the calculation of the 
first-flight transmission coefficient (Eq. 3). Calls one of the Gaussian 
quadrature routines qgauss20, qgauss40, qgauss60, 
qgauss80 or qgauss100 depending on the value of the input 
variable iquad. Uses the real function t_ij. 

qgaussxxx, 
where xxx = 
20, 40, 60, 
80 or 100. 

Gaussian quadrature routines based on Legendre polynomials for the 
evaluation of the spatial part of the integral of Eq. 3. The index xxx 
denotes the number of integration points (20-100). 

t_ij Function to evaluate the integrand for the calculation of the integral 
of Eq. 3. Performs the angular part of the integration using a Simpson 
rule and evaluates the Bickley-Naylor function (Eq. 4) using either a 
fit (for Ki3) or direct integration (Ki4). Calls the subroutine simpson 
and the function bickley. 

simpson Evaluates the integral of a function using Simpson’s rule. 
bickley Evaluates the Bickley-Naylor functions Ki3 and Ki4. 
setup Evaluates the non-zero elements of the coefficient matrix A and the 
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source vector S (Eq. 23) and stores them in the sparse vector 
a_sparse and index vector i_sparse using the UMFPACK 
storage scheme.  

solvers Calls the UMFPACK routines to solve the linear system of equations 
defined by Eq. 23 if the input variable i_solver = 1. 

solverf Calls the LAPACK routine DGESV to solve the linear system of 
equations defined by Eq. 23 if the input variable i_solver = 0. This 
option is limited to small problems. 

postsolver Evaluates the various fluxes, neutral densities, ionization rates, etc. 
pbalance Performs a global particle balance and estimates the round off error 

of the simulation. 
output Writes information and data to the various output files. 
zstop This routine is called when we need to terminate the run and write a 

short message to the terminal. 
  

 

4. Test Problems 
The GTNEUT code has been used in several neutral transport simulations, 

ranging from artificial model problems devised to test aspects of the TEP methodology 
and to perform benchmarks with Monte Carlo, to realistic modeling of fusion-relevant 
configurations and analysis of experiments [7-10]. Two such problems have been 
included in the GTNEUT distribution to help potential users become familiar with the 
code, and are described in this section. 

4.1. 5×4 rectangular geometry model problem 

The first problem consists of a 20 cell rectangular configuration (5×4) created by 
using the automatic input generation capability of GTNEUT. Figure 4 shows the problem 
geometry, including the cell and wall segment indices. A uniform background plasma is 
assumed with ne = ni = 1019 m-3 and Te = Ti = 10 eV. The 1.0 m × 0.8 m rectangular 
region is bounded by carbon walls on three sides, while a vacuum interface is imposed on 
the right vertical boundary (wall segments 10-13). A unit strength (1 #/s) surface source 
of 2 eV deuterium neutral atoms is imposed on wall segments 2 & 3. The mean free path 
for neutrals in the fast energy group is λ = 0.11 m, resulting in a mean free path to cell 
dimension ratio λ/∆ =0.55. 

The results of this simulation are included in the neut5x4.out and neut5x4.dbg 
output files. In Fig. 5, the neutral density is plotted versus the cell index. For comparison, 
the predictions of the DEGAS Monte Carlo code for this problem are also shown. It 
should be emphasized that the horizontal axis in Fig. 5 is categorical, representing the cell 
index. Therefore, the oscillatory appearance of the curve is an artifact caused by our 
arbitrary choice of the cell numbering scheme. A more physical representation of the 
results is shown in Fig. 6, where contours of constant neutral density are shown. 
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Figure 4: Geometry configuration for the first test case 
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Figure 5: Neutral density vs. cell index for the 5×4 test problem shown in Fig. 4. 
DEGAS results are also shown for comparison. 
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Figure 6: Contours of constant neutral density for the test problem of Fig. 4.  

 
 

4.2. DIII-D test problem 
The second test case included in the GTNEUT distribution, is a realistic geometry 

neutral transport simulation based on a recent discharge of the DIII-D tokamak 
experiment [31].  The geometric part of the GTNEUT input has been generated directly 
from the EFIT MHD equilibrium information [23], using an interface routine that was 
developed to facilitate input preparation. The resulting geometric configuration of the 
Upper Single Null (USN) plasma consisted of 670 cells, 90 core plasma regions and 98 
wall segments and is shown in Fig. 7.  

Wall segments 85 and 94 represent the two DIII-D upper pumps (dome and baffle 
pumps respectively) and are assigned zero reflection coefficients. The rest of the wall 
segments are assumed to be made of carbon. Neutrals and ions are assumed to recycle at 
the divertor plates, represented by wall segments 84, 86, 93 and 95. External neutral 
particle sources, g_ex, equal to 2.5×1022 #/s are imposed on each of these four wall 
segments, so that the total number of neutral atoms injected into the system is equal to 
1023 #/s.  The properties of the background plasma are based on preliminary experimental 
measurements. 

It should be emphasized that the DIII-D test problem is included to demonstrate 
the capability of our code to handle realistic geometries relevant to fusion experiments, 
and is not supposed to represent a comparison between theory and experiment since no 
neutral density measurements were available for this discharge. 
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Figure 7: Geometry of DIII-D test problem. Wall segments 84, 86, 93 and 95 represent 
the divertor plates where recycling is taking place, while segments 85 and 94 represent 
the two pump openings. 

 

The results of this simulation are included in the output file neutDIIID.out. The 
neutral density distribution is shown in Fig. 8. It can be seen that the neutral density 
peaks at the top of the cross section, near the divertor plates. It can also be seen that the 
neutral density attenuates rapidly as we move inside the separatrix, since the densities of 
the confined plasma are higher. 
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Figure 8: Neutral density distribution for the DIII-D test case. 

It is worth pointing out that our solution region extends to the actual first wall of 
the device. This can be very important in realistic simulations, since the almost vacuum 
regions near the wall (plenums) can allow direct streaming of neutrals from the divertor 
region to the midplane. This also highlights the advantages of the TEP methodology and 
the GTNEUT code, being perhaps the only non Monte Carlo method that can handle the 
complex geometries encountered near the material walls as well as be valid in both long 
and short mean free path regimes. 

5. Conclusions and Discussion 
The TEP methodology and its implementation in the 2-D neutral transport code 

GTNEUT have been discussed. The main advantages of the GTNEUT code are its 
computational speed and its ability to accurately treat the transport of neutral particles in 
regions with complex geometries and strongly varying mean free paths. In addition, since 
the TEP methodology is deterministic, GTNEUT simulations are free of the numerical 
noise that is inherently present in Monte Carlo neutral transport simulations. This last 
advantage makes GTNEUT an ideal tool for coupling with edge plasma fluid codes, 
where computational speed and absence of numerical noise are essential for a rapid 
convergence between the two parts (neutral and plasma) of the simulation. 
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As desirable as computational efficiency is, it should never be attained at the 
expense of accuracy. For this reason, extensive tests of the TEP methodology have been 
carried out by benchmarking the GTNEUT code against Monte Carlo for a variety of 
problems. These range from artificial model problems to realistic simulations of neutral 
transport in fusion-relevant configurations, including the analysis of neutral density 
experiments [8-10, 17]. These benchmark simulations have confirmed the correctness and 
accuracy of the TEP methodology and of the GTNEUT code in virtually all cases of 
practical interest. Sizeable discrepancies from Monte Carlo have only been observed in 
artificial model problems, especially constructed to test the limits of the applicability of 
the TEP methodology.    

 While the present version of the code is a mature computational tool for carrying 
out neutral transport simulations, several improvements are planned for the future. These 
include both extensions of the GTNEUT capability requiring little or no theoretical 
development and refinements in the TEP methodology.  

Among the planned extensions of the capabilities of the code is the addition of 
multi-species capabilities including molecular species (already discussed in section 
3.2.1), the extension of our two-group energy treatment to full multi-group and the 
development and implementation of additional tools to facilitate input preparation.  

Regarding our plans to refine the TEP methodology, our goal is to address certain 
issues that were identified in our tests against Monte Carlo for model problems designed 
to test limiting cases of the methodology. Two of the basic assumptions of the TEP 
methodology are the assumption of an isotropic neutral distribution function in both the 
inward and outward half-spaces at the interfaces between the computational regions, and 
the assumption of a uniform charge exchange collision source within the volume of each 
cell. The first assumption, also known as the DP0 approximation, has been shown to be a 
good approximation since charge exchange and elastic scattering collisions tend to 
isotropize the neutral distribution function. However, departures from anisotropy are 
possible, especially in long mean free path regions where anisotropies driven by wall 
reflection, presence of vacuum regions, pumps, etc. would persist across regions. 
Extending the original DP0 approximation to include linearly (DP1) and quadratically 
(DP2) anisotropic distributions appears to resolve this issue, as evidenced by comparisons 
with Monte Carlo for model problems designed to accentuate the anisotropy effects [32].  

The second assumption, i.e. the uniformity of the charge exchange collision 
source, is embodied in the rational approximation that we employ for the first flight 
collision probability P0i (Eq. 10) and in the treatment of the geometry factors Λij which 
lack any specific directionality, being instead proportional to the fractional perimeter of 
each interface. This assumption may become questionable in regions where the neutral 
mean free path λ is much smaller than the characteristic dimension of the cell ∆. In these 
regions, the first collision source is predominantly located near the incident interface, 
resulting in a preferential backscattering of these neutrals across that incident surface.  
From our benchmark simulation experience, the assumption of a uniform collision rate 
distribution is reasonable, as long as the ratio of the neutral mean-free-path to the 
characteristic dimension of the cell λ/∆ is not too small (λ/∆ ≥ 0.25 or so). For smaller 
values of this ratio, GTNEUT appears to underestimate the neutral attenuation away from 
the source. The discrepancy becomes significant only after several neutral mean free 
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paths away from the source, in which case the neutral density has already attenuated by a 
few orders of magnitude. We do not anticipate this to be very restrictive in practice 
however. Our experience with using grids from edge fluid codes is that the ratio λ/∆ is 
usually ≥ 1, since fluid codes tend to use fine grids near material surfaces in order to 
resolve the gradients of the background plasma parameters. Future versions of GTNEUT 
may employ adaptive grid technology to ensure that λ/∆ ≥ 0.25 or implement corrections 
on the calculation of Pi and Λij to get around this limitation. Such corrections are already 
being developed and tested [32] and, after becoming satisfactorily validated, will be 
implemented in the production version of the code. Regarding the geometric factor Λij, a 
better approximation for it which takes into account the field line geometry and the 
background ion flow field was suggested in our original paper on the TEP methodology 
(Ref. 7, Eq. 29). This formulation has not been implemented in our stand-alone version of 
the code since the details of the field geometry and background ion flow are not usually 
available. However, when GTNEUT is coupled with an edge fluid code this information 
should be available and more accurate expressions for Λij can easily be implemented.  

 Coupling GTNEUT to edge fluid codes may also require the calculation of 
plasma-neutral energy and momentum source or loss terms, to be used in the energy and 
momentum balance equations of the fluid code. While these quantities are not explicitly 
evaluated in the present stand-alone version of the code, it is easy to do so using already 
calculated quantities. The plasma-neutral energy exchange is the easiest to evaluate, since 
energy is a scalar quantity and the ionization and charge exchange rates are already 
computed by the code.  Momentum losses are more difficult to compute and would 
require knowledge of the background ion flow field. However, if we assume most of the 
fluid-neutral momentum exchange occurs during the first collision, then momentum 
losses can be easily implemented. The details of ion-neutral momentum exchange in 
subsequent collisions (according to our multi-generational model shown in Fig. 3) would 
be more difficult to take into account, since these collisions are treated in an average 
sense. 

Another issue that merits discussion is the significance of our two-dimensional 
symmetry assumption and any limitations it might impose when modeling configurations 
that are not characterized by cylindrical symmetry. Since GTNEUT will most likely be 
used to model neutral transport in toroidal configurations, the present discussion is 
focused on toroidal geometries. As long as the neutral mean free path is much smaller 
than the characteristic dimension of the system in the toroidal direction, toroidal effects 
are not expected to be significant. This is supported by the results of our benchmarks with 
the DEGAS Monte Carlo code which showed negligible differences between the DEGAS 
simulations in toroidal and cylindrical geometry modes and GTNEUT [9]. However, 
since neutrals travel in straight-line trajectories between collisions, toroidal effects may 
become significant in very low aspect ratio configurations and long neutral mean free 
paths. In this case, a neutral traveling along the ignorable coordinate without interacting 
with the background plasma may eventually cross a cell boundary while, under our 
cylindrical symmetry assumption, it would have remained within its cell. This is not 
expected to be a significant limitation however unless the neutral mean free path becomes 
comparable or larger than the major radius, which is unlikely for most cases of practical 
interest. 
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In addition, even if toroidicity effects are not important in the above sense, our 
assumption of symmetry along the axial or toroidal coordinate makes it difficult to 
simulate certain configurations with neutral sources characterized by strong toroidal 
asymmetries (e.g., localized gas injection valves or recycling from local structures). If the 
toroidal extent of the sources is large or if the sources are evenly distributed at a discrete 
number of toroidal locations, then GTNEUT could still predict the average neutral 
densities using an equivalent toroidally-symmetric source and conserving the total 
number of injected particles.  

It should be noted here that the TEP methodology can be readily extended to three-
dimensional geometries, albeit at a computational cost. Such extensions have been 
developed for the needs of neutron transport simulations in three dimensional fuel lattices 
using the interface method [33]. While a 3-D version of GTNEUT has not been very high 
in our code-development priority list, this may change if future benchmarks and 
comparisons with experiments suggest that such an extension would enhance the 
usability of our code.  

Finally, and as discussed in section 3.2.2, the implementation of more efficient 
algorithms and approximations for the evaluation of the multidimensional integrals that 
are necessary for the calculation of the first-flight transmission coefficients will allow 
GTNEUT to maintain its computational speed advantage, even as new capabilities and 
features are being implemented.   
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Appendix A. Input Variables 
 

In this Appendix, the GTNEUT input variables are listed including their storage 
dimensions, units (if any) and a short description. Additional comments can be found in 
the MAIN routine.  

The GTNEUT input variables are included in two namelists, inp (which includes 
most of the main input variables) and inp1 which includes the input variables needed 
for the automatic rectangular grid input generation.  

The dimensioning of the various arrays in the code is controlled by a number of 
constants defined in a PARAMETER statement in the include file neutGlob.inc. 
These constants are listed in Table A-1 below. The dimensioning of arrays related to the 
two linear solvers (UMFPACK and LAPACK) is controlled by parameter statements in 
the routines solvers and solverf respectively. 

 
Table A-1: Parameter constants in GTNEUT 

Constant Description 
maxCell maximum number of internal cells 
maxWall maximum number of wall segments 
maxPlas maximum number of plasma regions 
maxSides maximum number of sides for cells and plasma regions 
maxTot maxCell + maxPlas + maxWall 
maxCPl maxCell + maxPlas 
maxEqs maximum number of equations = maxCell * maxSides 

 
The main input variables of GTNEUT are included in the namelist inp and are 

described in the Table A-2 below: 

Table A-2: Main GTNEUT input variables 

Variable & dimension Units Description 
i_inp  Flag determining the input geometry 

0 : original coordinate-free format 
1:  automatic input generation for 
rectangular regions (see variables in  
inp1 namelist) 

nCells  Number of internal cells 
nPlasmReg  Number of core plasma regions 
nWallSegm  Number of wall segments 
iType(maxTot)  Type of geometric element. Must be defined 

for cells, core plasma regions and wall 
segments. Valid options are: 

0 : internal cell 
1 : core plasma region 
2 : wall segment 
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nSides(maxTot)  Number of sides of each geometric element 
(wall segments must have only one side) 

lside(maxSides, 
maxCell) 

m lside(k,i) is the length of kth side of cell i. 

angle(maxSides, 
maxCell) 

degrees angle(k,i) is the angle between sides k and k+1 
of cell i 

adjCell(maxSides, 
maxCell) 

 adjCell(k,i) is the index of the cell that is 
adjacent to the kth side of cell i 

scalFact  Scale factor multiplier for lengths. If scalFact 
> 0, then lside(k,i) = scalFact× lside(k,i) 

aion amu Atomic mass of background ions. 
zion  Atomic number of background ions (only 

needed by the wall reflection model). 
aneut amu Atomic mass of neutrals (present version of 

GTNEUT can handle only a single, hydrogenic 
neutral species) 

eneut keV Energy of externally launched neutrals 
eneut_v keV Energy of volumetric neutrals (S_ext) 
i_e0  Flag determining the neutral energy 

assumptions. If i_e0 = 1, then a constant 
neutral energy equal to eneut is used 
throughout the code. If i_e0 = 2, then the local 
ion temperature approximation is used. 
GTNEUT should be normally run with i_e0 = 
2. The constant energy option has been 
retained for tests and benchmark simulations. 
Notice that i_e0 = 1 and irefl = 1 are 
incompatible options and a warning is printed 
out. 

v0fact  The neutral velocity is equal to 

0 00 fact E mν ×  
elecTemp(maxCPl) keV Background plasma electron temperature. Must 

be specified for all internal cells and core 
plasma regions 

ionTemp(maxCPl) keV Background plasma ion temperature. Must be 
specified for all internal cells and core plasma 
regions 

elecDensity(maxCPl) m-3 Background plasma electron density. Must be 
specified for all internal cells and core plasma 
regions 

ionDensity(maxCPl) m-3 Background plasma ion density. Must be 
specified for all internal cells and core plasma 
regions 

S_ext(maxCell) #/s External volumetric neutral source in each cell 
(  in Eq. 17) i

extS

 32



g_ex(maxWall) #/s g_ex(kw) is the external neutral particle flux 
entering the plasma from wall segment kw 
( kw

extΓ  in Eq. 14) 
g_ion(maxWall) #/s g_ion(kw) is the ion flux striking wall segment 

kw from the adjacent edge plasma cell i ( ,
ion
i kwΓ  

in Eq. 16). This variable is normally used when 
GTNEUT is coupled with an edge fluid code. 

irefl  Flag specifying the wall reflection model. If 
iref l= 0, then wall reflection is controlled by 
the input array Rwall (kw).  If irefl = 1, then the 
reflection coefficient is calculated using a 
material-based wall reflection model.  Rwall 
can still be used when irefl = 1 to model 
vacuum regions, etc. for wall segments having 
negative zwall. See the routine calcrefln for 
more details. 

Rwall(maxWall)  Input-specified reflection coefficient of wall 
segments (Rkw in Eq. 15). Used when irefl = 0 
(no material-based refection model) or to 
specify vacuum or pumping wall segments 
when irefl = 1.  

fwabsorb(maxWall)  fwabsorb(kw) is the absorption coefficient of 
wall segment kw ( kw

absf  in Eq. 14). Used only 
when irefl = 1. 

awall(maxWall) amu awall(kw) is the atomic mass of the material of 
wall segment kw. Used only when irefl = 1. 

zwall(maxWall)  zwall(kw) is the atomic number of the material 
of wall segment kw. Used only when irefl = 1. 
If irefl = 1 and zwall(kw) < 0, then the 
reflection coefficient of wall segment kw is 
determined by the input variable Rwall(kw). 
Useful for setting up vacuum regions, etc. 

twall(maxWall) keV twall(kw) is the temperature of wall segment 
kw, and is needed to determine the energy of 
the “slow” neutrals emitted from the surface 
during the reflection process. Since the current 
version of GTNEUT treats these slow neutrals 
as Franck-Condon atoms, twall should be in 
the range of a few electron volts. 

iatdat  Flag determining which atomic rate library to 
use. Current options are: 

0 : Janev’s database 
1: DEGAS rates 
2: Thomas / Stacey rates. 

The recommended option is 0. 
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ifjsv  If  ifjsv> 0, use the older Freeman-Jones fits for 
the electron impact ionization rates. This 
option is available only for the default (Janev) 
rates (iatdat = 0) and has been implemented for 
benchmarks with other neutral codes which use 
the Freeman-Jones rates. It is recommended to 
use ifjsv = 0 and iatdat = 0.  

leh0  This flag is only relevant if iatdat = 1 (DEGAS 
rates). If equal to 1, electron impact ionization 
rates are density dependent. If equal to 2, they 
are not. 

lchex  This flag is only relevant if iatdat = 1 (DEGAS 
rates). If ≤ 2, the charge exchange rates depend 
on neutral energy. If = 3, the charge exchange 
rates do not depend on neutral energy. 

iescp  Flag determining how to calculate the escape 
probability P0. If equal to 0, use the original 
Wigner formulation. If equal to 1, use the 
modified Sauer approximation (Eq. 10). The 
recommended value is 1. 

iquad  Flag determining the number of grid points for 
the ξ integration for the first-flight transmission 
coefficient (Eq. 3).  
iquad = 1, 20 grid points 
iquad = 2, 40 grid points 
iquad = 3, 60 grid points 
iquad = 4, 80 grid points 
iquad = 5, 100 grid points 

nph  Number of grid points for the angular (φ) 
integration for the first-flight transmission 
coefficient (Eq. 3).  

ifrstcol  If equal to 1, take into account first collision 
effects (Eq. 11) 

prntOrdr  Array affecting the printing order of various 
output arrays. If prntOrdr < 0, then natural 
order is used. See subroutine output for more 
details. 

i_solver  Flag determining which linear solver is used to 
solve the TEP system of equations. If equal to 
0, use the LAPACK routine DGESV. If equal 
to 1, use the UMFPACK sparse system library. 

isparsitr  Number of steps for iterative improvement of 
sparse system solution (relevant only if 
i_solver = 1). 
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The input variables controlling the automatic input generation capability of 
GTNEUT (i_inp = 1) are included in namelist inp1 and are described in Table A-3 
below. Only the Lx, Ly, NX and NY variables are mandatory when i_inp = 1. The rest 
of the input variables, which assign background plasma parameters, sources and wall 
reflection coefficients assuming simple symmetries (e.g., uniform background plasma, 
linear horizontal or vertical variations, etc.), are optional and can be overridden by or 
combined with their equivalent individual cell input variables of namelist inp. See 
subroutine rectinp for more information. 

Table A-3: Optional input variables in namelist inp1. Since the same options apply to similar 
variables (electron and ion densities, electron and ion temperatures) these variables are grouped 
together separated by a comma, although the description refers only to the first entry.   

 
Variable & dimension Units Description 
Lx m Length of horizontal side of rectangular region 
Ly m Length of vertical side of rectangular region 
NX  Number of cells in horizontal direction 
NY  Number of cells in vertical direction 
ne_fixed, ni_fixed m-3 Uniform background electron density. If 

ne_fixed is negative and if igradneh and 
igradnev are equal to zero, then the electron 
density in each cell is specified by the values 
of the array elecDens (inp namelist). 

igradneh, igradnih  If equal to1, the electron density varies linearly 
in the horizontal (x) direction from ne_lft at 
the left vertical boundary to ne_rgt at the 
right vertical boundary. 

ne_lft, ni_lft m-3 Electron density at the left vertical boundary, 
to be used when igradneh = 1. 

ne_rgt, ni_rgt m-3 Electron density at the right vertical boundary, 
to be used when igradneh = 1. 

igradnev, igradniv  If equal to 1, the electron density varies 
linearly in the vertical (y) direction from 
ne_btm at the bottom horizontal boundary to 
ne_top at the top horizontal boundary. 

ne_btm, ni_btm m-3 Electron density at the bottom horizontal 
boundary, to be used when igradnev = 1. 

ne_top, ni_top m-3 Electron density at the top horizontal 
boundary, to be used when igradnev = 1. 

te_fixed, ti_fixed keV Uniform background electron temperature. If 
te_fixed is negative and if igradteh and 
igradtev are equal to zero, then the electron 
temperature in each cell is specified by the 
values of the array elecTemp (inp 
namelist). 
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igradteh, igradtih  If equal to 1, the electron temperature varies 
linearly in the horizontal (x) direction from 
te_lft at the left vertical boundary to 
te_rgt at the right vertical boundary. 

te_lft, ti_lft m-3 Electron temperature at the left vertical 
boundary, to be used when igradteh = 1. 

te_rgt, ti_rgt m-3 Electron temperature at the right vertical 
boundary, to be used when igradteh = 1. 

igradtev, igradtiv  If equal to 1, the electron temperature varies 
linearly in the vertical  (y) direction from 
te_btm at the bottom horizontal boundary to 
te_top at the top horizontal boundary. 

te_btm, ti_btm m-3 Electron temperature at the bottom horizontal 
boundary, to be used when igradtev = 1. 

te_top, ti_top m-3 Electron temperature at the top horizontal 
boundary, to be used when igradtev = 1. 

S_0 #/s Volumetric neutral source (same for all cells) 
r_lft, r_rgt, 
r_btm, r_top 

 Wall reflection coefficient for left, right, 
bottom and top boundaries. The wall reflection 
model (irefl=1) overrides these input 
coefficients.  

g_lft, g_rgt, 
g_btm, g_top 

#/s External neutral fluxes at the left, right, bottom 
and top boundaries. These values are added to 
any finite entries of the g_ex array. 

flx_lft, flx_rgt, 
flx_btm, flx_top 

#/s Ion fluxes at the left, right, bottom and top 
boundaries. These values are added to any 
finite entries of the g_ion array. 
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