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Considerations for a next-generation nonlinear MHD

code for Magnetic Fusion Applications
l.e.: what have we learned?

o 2-fluid terms (Extended MHD) are essential to model real
fusion experiments...but best form iIs uncertain

« Highly implicit treatment is needed to address long timescales

* There are advantages to using the potential/stream function
form of the vector fields...avoids spec. pol.+ low order subsets

« High-order (4" or more) finite elements are essential for
describing highly anisotropic heat conduction.

 Direct sparse matrix inversions (Vvs iterative solvers) in the
poloidal plane can be very efficient for the MHD system

[t is advantageous to have a fast linear option to scope runs

e Boundary conditions should be applied at infinity, but we need
the capability to model a nearby resistive conducting structure
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Our center is comparing 5+ different Extended-MHD models and

need to be able to change models without major code restructuring

KAW?
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All the MHD models beyond resistive MHD

Resistive MHD contain dlsperswe WaVES

Off-diagonal
stress tensor
terms lead to

mnd—vz—V(pe +p)+IxB -V (I1, +H”i)—V.H?V
dt -

OB 1 gyro-viscous
5—:_VXE’ E=-VxB+nJ +n—e(JxB—Vpe—V-H”e) waves
t v\/
f‘” these new i} Hall term leads to Pressure gradient
Extended MHD Whistler wave terms lead to Kinetic
waves have Alfven wave

similar structure

o°B v2Y Limiting form gives wave-like Need viable Implici
:_( Aj (b-V) V2B g g techniques for these

o’ equation where wave speed 4t grder (in space)
/4 is inversely proportional to equations to provide
wavelength: numerical stability
Note 4t spatial i o w K for large timesteps.
derivatives Tk
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Highly anisotropic heat conduction requires accurate spatial
representation and implicit time differencing

In a highly magnetized fusion plasma, x, >> «

» Low-order finite difference methods are not adequate

* AMR based on rectangles (or cubes) is probably not the
most efficient approach

« Two approaches have been shown to be viable:
 High order finite elements: COvs C!
 Field aligned coordinates

» Similar considerations for anisotropy in mass diffusion
and wave propagation
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Approach

 Use high-order, high-continuity triangular
finite elements in poloidal plane, spectral Iin
the toroidal direction

e The compactness and high-continuity of this
representation makes a full implicit solution
practical: including whistler, gyroviscous,
and kinetic Alfvén waves
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Divide domain into triangular regions:
solution as a quintic polynomial within each region

o(&,n) = Zaké:mkﬁnk

general quintic has 21 terms.

n

Ay

&,m are local
orthogonal
coordinates

PZ(XZ’yZ)

The function and it’s first and
second derivatives at the 3 nodes
are the global unknowns (6 per 21

node) (¢, ¢x’ ¢y’ ¢xx’ ¢XY’ ¢W)

constraints to
match the function and
derivatives at nodes

constraints on quintic
coefficients to enforce
C1 continuity at edges

coefficients of the
quintic polynomial

Error ~ h> (since complete Taylor series through h?)

represent

1=

OCOO~NOUIRWNERX

PORPNWIIORPNWRARORPNWORNORLROZ

C! continuity allows treatment of 4t spatial derivatives (Galerkin Method)
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L Most compact representation for this accuracy “reduced quintic”



3=, ‘ The Trial Functions:

21
21 21 18 _ m
SYEUE ATV VA
=1

i=l j=1

‘

These are the trial
functions. There are
18 for each triangle.

The 6 shown here
correspond to one
node, and vanish at
the other nodes, along
with their derivatives

Each of the six has
value 1 for the
function or one of it's
derivatives at the
node, zero for the
others.

Note that the function and it's derivatives (through 2™) play the role of the amplitudes
= Il PL
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Comparison with a popular C° Element

split
P >
L
L L L @
Lagrange Cubic: C9, h4 9 new unknowns: 2 new triangles
9/2 = 412 unknowns/ triangle
6 6
split
6 6 6 6
Reduced Quintic: C1, h® 6 new unknowns: 2 new triangles

~PPPL 6/2 = 3 unknowns/ triangle
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Comparison of reduced quintic to other

popular triangular elements

Vertex | Line Interior | accuracy | Unknowns | continuity
nodes | nodes |nodes |orderhP | pertriangle
linear element 3 0 0 2 Yo CoO
Lagrange quadratic | 3 3 0 3 2 Co
Lagrange cubic 3 6 1 4 4% Co
Lagrange quartic 3 9 3 5 8 Co
reduced quintic 18 0 0 5 3 Cl

The “reduced quintic” is the most compact representation of an
element of this order of accuracy (fewest unknowns/triangle)

-and -

It's C1 continuity property allows it to represent spatial
derivatives up to 4t order without introducing auxiliary variables

PPPL

PRINCETON PLASMA
PHYSIIS IQBRORAOTORY

=> Smaller matrices to invert




Anisotropic Diffusion

le-1
Shows greater than N- convergence
. le-2 A
0 BB
9 _y. K — oV [+VerVp+S %
ot B 17
>
-% le-3 A
Solve to steady state %
c
° 1e4 -
s )
n
V :
/Ffi// ®
> le-6 T T T i

10 20 30 40 60
ry

S=y = cos”—xcos
%PFFI L L
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N..number of points per side



2D Incompressible MHD

SV Vipp]-[Vipw ] - vy

oy \ w is poloidal flux

—+ y — vz note:
ot [l// ¢] (Ahd t [a,b] = Vax Vbe?

0-centering....Taylor expand in time (centered about n+1/2 for 6=0.5)
Vig+| V29" + 05tV ¢ + 05tg | = | V" + 05tVyr,p + 05ty | = | Vg + 051V |

i+ | "+ 05ty g+ 054 | = | V" + 05tV 7y |

“reduced MHD”

¢ IS stream function

Multiply out non-linear terms, neglecting terms ~ (t)2. Finite difference in time:

. ¢n+1 . ¢n . wn+1 . l//n
¢ = , (/j =
ot ot
Move all terms at time level (n+1) to left of equal sign. Expand in trial functions.
Multiply equations by each trial function and integrate over space. Integrate by

parts as needed. (Galerkin Method)

18 18
¢"=> v.0" "= v
j=1 j=1
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Leads to the Matrix Implicit System

Solve each time

11 12 n+1 11 12 n
S- S (ON D D D step using
J J J — J J J SuperLU direct
S _21 S j22 \Iﬂ?+1 D?l D?Z \Pf? solver
For linear
unknown unknown problem, only
at time n+1 at time n need to form LU
decomposition
1 12 . once and do a
S;” ] Aj +6’cB[G(;kk$p&r B8, | ] —051G, Py back-substitution
g 522 9g@¢f|cqunt matncem +t95t[K . CD 77A1 1 each time step.
j j i, ik, j

function and
vorticity are

M ij ést[:k(jlk,j (é% (I)E — (;tI)E ) solved together
_(1_6)77'6‘1,1']

A, —§t[Gi,j,kCDE —0G, (D, SHG W' -0G V) Note that stream
+(1—9)ﬂBi,j] e e

5tKi,j,k(_%lPE+HLPE) {

Each spatial operator becomes a submatrix

SPPPL
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Tilting of a Plasma Column

Initial Condition:
| [27KJ, (K)]J, (kr)cosd, <1
~|(r=1/r)cosé, r>1
J,(k)=0

Give small perturbation and
evolve in time

(b)

Stream function and Flux (top) and current (bottom)
% vorticity at final time at initial and final times
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Tilting of a Plasma Column-cont

1.26

1.25

Growth Rate -- v

1.24 4

Maximum Perturbed Current Density

1.23

129 Time

000 002 004 006 008 010

A Calculation stopped each time
Converged (in time) growth when energy error reached 1%.

rate the same for N=30,40 out
to 6 decimal places

=PPPL
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Higher order formulation

By further manipulation, it is possible to get a 4" order
(in space) PDE for ®"*! that is independent of ¥Yn*!

s 0 " D D | @
21 w22 1]~ 21 29
Note: J J J J J J

ij” now is
a 4™ order _ _ o
operator: Instead of inverting full S matrix, invert

contains all two sub-matrices sequentially. Gives

the linear same results in 1/8th — 1/4t the time
Ideal MHD

(Alfven Ill n+1 111,54 1121y N

response
Szijnﬂ SZlq)n+1 DJZlq)rJ] + DJZZ\PT

=PPPL
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M3D-C1 code has full Extended MHD equations expressed in a
form that allows non-trivial subsets of lower rank equations:

n

=[¢w]+d, v,

Sii S Sy ||¢d D, D, Dy||¢ Ri Rb
S;ll Szvz S;/s y Vz - D;l Dzvz D;’s ® Vz + R;ll Rgz
Sgl ng 8;3 X D;l Dgz D;I3 X Rgl Rgz
n+1 n
Sip S5 Shl|w Di DS Dj||lw R Rj
S; Sy Sz% o | =|D;; D, D2p3 1| +|Ry Ry
sz s spl|t)] |oaoop oopfln] [Re Re
Phase-l: Resistive MHD: Phase-Il:
Cvig [ Vg |- [Vyl=uve 5V
ot ! ’ ot
5(// oV,
2
——+|y.d]l=nVy ot
ot 5
ay
ot
G_I
ot
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R [| v ’

Ry o |

Ry || T

REI[¢] [Q Q5 Qal[¢T
Ry |4V, +Qn Qn Qn Y,
Ri | L ¥ Qi Qb Qu|lx

Fitzpatrick-Porcelli 4-field model:
(VG [ Vi |+ iy

=[o.V,]+c,[Lw]+uv?y,

]+77Vr,u

:[¢,I]+dﬂ[Vzw,w}+cﬂ[vz,w]+cznvzl



Tilting spheromak in 2-field (left) and 4-field (right) models.

Poloidal
Magnetic Flux

Toroidal
Current Density

Toroidal
Magnetic Field

Toroidal
Velocity




D
1

Linear Growth Rate y
w

1 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

square of the ion skin depth: d;?

4-field (2-fluid) model predicts that growth rate of tilt mode
increases linearly with the square of the ion skin depth d.
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Harris sheet reconnection in 2-field (left) and 4-field (right) models

Poloidal
Magnetic Flux

Toroidal
Current Density

Toroidal
Magnetic Field

Toroidal
Velocity




Comparison of GEM reconnection with 2-field and 4-field models

Poloidal
Flux ¥

Current
Density J

Velocity
stream
function ¢

2-field reduced 4-field 2-fluid

%PFF[ resistive MHD model
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Reconnected Flux

1.0

— d=Oflux |
........... d=1 flux I
0.8 -
—— d=0rate | i
........... d=1 rate __.--"'4-fie|d__.--""
o641 " I
0.4 ' i
e = 2-field -
k’ i
0.0 . . .
0 10 20 30
Time

4-field (2-fluid) equations with di=1 show much greater

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

-0.005

reconnection rate that 2-field (reduced MHD) description

Reconnection Rate



The 2D cylindrical two-fluid MHD equations and definition of the variables.
[ =V §x Z+V y+V,

t B=VyxZ+I2

nMi(%+\7-V\7)+Vp =Jx B=VeII¥ + unv+ VV + VV' |

@-I-V e(nV)=0
ot

30 3
3. , (pe' Y

3 5p _
Vp, —=—2Vn+R |- V.(, -
2 8’[ |:2 pe 2 j| qe QA

J
ne
E%_'_V{% pIVJ:—pVoV —I1,:VV, +V(unV): [V\7+V\7TJ—V'@+QA
E@W@ pvj — PV —T1, sV, + (V) [ WV + W' ]-Ve(G, +4,)

+ {EVpe—E&VnHﬂ
ne | 2 2N




Numerical stability analysis for 2-fluid equations shows sequential
Inverstion method leads to stability for arbitrary timestep

=B,
oJ _ 0B j—d.J)xB |=B xV& —d.B. x V2]
atantVxVx[(\/—d,J)xBo]BOXVZ\/—dIBOXVVJ\
Whistler waves
V =-2x{3 +06t[ 2x V*(V + 05tV) — d; 2 x V*T ||
Alfven Waves

J=7xVAN —d.ZxV*(J +65td)

272 n+1 ny __ n__ 21n . 5 n
[1-(06t)*V* (V™ =V") = st{ast[ V" - d, V23" ]} - 6tz x J ,7Note: these can be
[1+d, 05t x VZ | (3™ = 1") = St x VE[V "™ + (1- OV "] -d,5t2 x v2I"  solved sequentially!

Note!
.............. .
1— (052 V? 0 0 of V. [1-000-1)6t)V? 0 —0(5t)*d,V? St vV, T
0 1-(68)*V2 0 0i ||V,| _ 0 1-60(6-1)(5t)*V? —6t —0(st)*d, V2 ||V,
0 O5tV? 1 —ostdv? |, | 0 (6 -1)5tv? 1 —5td, V20 -1) || I,
—05tV? 0 ostd, V* 1 J, —(0-1)5tV? 0 5td. V2 (6 - 1) 1 J,
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Summary

* Major upgrade to the M3D code Is being
explored--based on quintic C! finite elements

* Primary motivation is to allow efficient, high
order, implicit solution of extended MHD
equations with whister and KAW

« Staged implementation using reduced sets of
equations with 2, 4, and then 6 variables

e |nitial results look promising!
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