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Outline

e Analytic form of parallel electron closures.

e Implementation of electron closure model in NIMROD.

e Electron heat transport in presence of magnetic island.



Heat flow involves nonlocal integration along
field lines.

e The parallel heat flow definition is
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e Heat flow moment appears as drive:
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e Explicit treatment using g and T at previous timestep.
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Collisional information contained in effective
mean free paths, k’s.
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Figure 1: k;’s resulting from expansion in basis of 512 Legendre polynomials.



Collisional information contamed in
coefficients, a’s.
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Figure 2: a;’s resulting from expansion in basis of 512 Legendre polynomials.



Heat Hux closure approximate for arbitrary
collisionality.
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Figure 3: Heat flux for homogeneous magnetic field and sinusoidal temperature perturbations.



Nearly collisionless closure truncates more
rapidly than collisionless closure.
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Figure 4: Kernal of nearly collisionless closure falls off more rapidly than kenral of colliisonless
closure. Here it was assumed that Ly, s, = 1.



Islands in slab geometry good testbed for

heat flux closures.

Poloidal flux
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Figure 5: Single-helicity island in slab geometry periodic in Z and into plane.



Parallel heat flow _added as vector field to
NIMROD.
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Figure 6: Radial component of flow of heat inside island due to rapid free-streaming/diffusive
transport along field lines.



Diffusive and CEL closures take different
forms.

e Diffusive heat flow uses
6°§:6°F&6T:K‘,LV2T—I—6°(K)” —nL)f)B-ﬁT,

where k| and K are the parallel and perpendicular scalar con-
ductivities.

e CEL closure can be written in several different forms:
6-(1’:&LV2T—§-RLBB-6T+§-Q’”,

where q) = qHB hence,

6-Q]|:B'6q||+q||6-66.

e Pressure equation stabilized numerically with self-adjoint, semi-
implicit operator on left side.
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Semi-implicit operator critical for numerical
stability.
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Parallel heat flow robustly flattens pressure
across O-point.
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Figure 7: Flattening inside island due to rapid free-streaming/diffusive transport along field lines.
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Conclusions

e Robust temperature flattening from CEL heat flow closure.

10% larger parallel heat flow with vy, /732 ~ 10% and n, =
5 x 10" in CEL model compared to diffusive model with k| =
107.

e Processors integrate ~ 102 — 10 m for single heat flux calcula-
tion to converge.

T, = 100eV, vy = 5 X 10°% and Ly¢p =2 — 3m.

e CEL heat flow time > pressure equation solve time

100 processors on 40 X 40 grid and cubic finite elements
spend 80% of CPU time on CEL closures

e More work needed for production runs.
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