Adaptive Mesh Refinement MHD for Magnetic Fusion Applications

Ravi Samtaney samtaney@pppl.gov

http://www.pppl.gov/APDEC-CEMM/

Computational Plasma Physics Group Princeton Plasma Physics Laboratory Princeton University CEMM Meeting, November 14 2004, Savannah, GA

Collaborators

- P. Colella (LBNL, PI APDEC)
- S. C. Jardin (PPPL, PI CEMM)
- ANAG Members (T. J. Ligocki, D. F. Martin and others, LBNL)
- TOPS (D. R. Reynolds and C. S. Woodward, CASC, LLNL)
- P. Parks (GA) and D. Majeski (PPPL)
- V. Wheatley and D. I. Pullin (Caltech)

Overview of MHD Applications

Tokamak Refueling (Pellet, Gas)	Magnetic Reconnection	Richtmyer- Meshkov Instability	Application
Ideal MHD Single fluid Resistive MHD Ablation Model Electron heating Models Anisotropy	Single Fluid Resistive MHD Two Fluid MHD with Hall Term and Kinetic Alfven Wave	Ideal MHD MHD Shocks	y Physics
3D Cartesian Tokamak (shaped plasma)	2D, 3D Cartesian	2D, 3D Cartesian	sometr
Unsplit Upwind Implicit for diffusion term r¢ B=0 (Projection) Newton-Krylov Implicit (Central difference r¢ B=0 by construction)	Unsplit Upwind Implicit for diffusion term r¢ B=0 (Projection) Newton-Krylov Implicit (Central difference r¢ B=0 by construction)	Unsplit Upwind r¢ B =0 Projection	Solver G

Pellet Injection: Current Status

- Motivation
 - Injection of frozen hydrogen pellets is a viable method of fueling a tokamak
 - Presently there is no satisfactory predictive model for ITER
 - Ratio of pellet size to device size is $\sim O(10^{-3})$ (requires AMR)
- Pellet-plasma interactions:
 - Ablation: Considered well-understood
 - Mass deposition: Large scale MHD driven but not-so-well understood
- Objectives
 - Identify the mechanisms for mass distribution during pellet injection in tokamaks
 - Quantify the differences between "inside launch" and "outside launch"
- Physical model
 - Single fluid MHD equations describe plasma
 - Pellet ablates with an analytic ablation model (Parks 1978, Kuteev 1995)
 - Instantaneous heating of ablated mass by electrons
- Phased approach with varying degrees of complexity
 - Ideal and Resistive MHD in 3D Cartesian Geometry (Samtaney et al. Sherwood Fusion Theory Conference 2003)
 - Ideal MHD in (R,Z,φ) coordinates (Samtaney et al. Invited Talk at ICNSP 2003, Computers Physics Communication, 2004; Parks et al. IAEA 2004)
 - Ideal MHD in ($\xi(R,Z)$, $\eta(R,Z)$, ϕ) curvilinear coordinates for shaped plasmas (under development)
- 3D AMR simulations of pellet injection in (R,Z,φ)
 - Mass redistribution dominantly along magnetic field lines
 - "Anomalous" mass redistribution, i.e., outward radial displacement of pellet mass.
 - HFS more efficient than LFS
 - Pellet injection: Estimated speed up ranged from 16-237
 - AMR is a viable approach to efficiently resolve the relatively small pellet

Pellet Injection: HFS Launch

Pellet Injection: LFS Launch

Pellet Injection: HFS vs. LFS

"Anomalous" transport across flux surfaces

rrrrrr

BERKELEY LAI

Pellet Injection – Future Plan

- Complete development of resistive MHD in (ξ(R,Z), η(R,Z), φ) curvilinear coordinates
 - Semi-implicit treatment of diffusion terms requires solving elliptic PDEs in curvilinear coordinates
 - Preservation of equilibrium input from a separate Grad-Shafranov solver
 - Subtract the toroidal equilibrium component of B for increased robustness;
 - subtract out the truncation errors
- Model improvements
 - Incorporate model for electron heating involves integration along field lines (desirable but exact implementation with AMR is difficult) (Collaboration with Parks, General Atomics)
 - Heat conduction anisotropy

AMR For Mapped Grids – Issues

- Upon refinement, the volumes of the cells are not conserved. With care, conservation can be achieved.
- Interpolation routines at coarse-fine boundary need modification to account for non-uniform cells.

Magnetic Reconnection - Current Status

MR is an important canonical problem in plasma physics Semi-implicit single-fluid resistive MHD code $S \pm 10^{\circ}$

CCCCCC

t=0

Magnetic Reconnection - Current Status

- 3D Reconnection
 - Perturb the 2D GEM configuration
 - Periodic in Z
 - $B_{z} = 1$
 - S=200
 - Essentially 2D

Richtmyer-Meshkov Instability - Status

- Close agreement between analysis and simulations.
- RMI stabilization by a magnetic field (Samtaney, Phys. Fluids 2003)
 Ideal MHD simulations Over of NERSC Annual Report

NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING CENTER 2005 ANNUAL REPORT

Richtmyer-Meshkov Instability - Status

- Transitions in Solution Type with Increasing β
 Singular approach to the hydrodynamic limit
 - with Increasing β
 - $\beta \rightarrow \infty$: solutions \rightarrow hydrodynamic triplepoint, except shocked hydrodynamic contact replaced by an inner layer, with angular width $\propto \beta^{-1/2}$ (Wheatley, Pullin and Samtaney, Journal of Fluid Mechanics – to appear 2004)
- 3D RM Simulations demonstrate suppression of instability for canonical flow in 3D (Pullin, Wheatley & Samtaney, Intl. Workshop on Phys. Of Comp. Turbulence, Cambridge 2004)

Implicit Method – Motivation and Status

- Estimates of resolved resistive MHD simulations of pellet injection in CDXU
 - O(10⁶-10⁷) time steps (explicit method)
 - With AMR need O(10⁵) time steps on coarsest mesh
 - Resolution/time step requirements more stringent for larger devices
 - Implicit treatment can reduce the number of time steps
- Long term goal: Develop an AMR MHD solver using Chombo coupled with SUNDIALS for implicit time stepping (APDEC, TOPS, CEMM)
- Developed an implicit conservative, solenoidal B, single fluid resistive MHD code in collaboration with TOPS (D. R. Reynolds, C. S. Woodward, CASC, LLNL)
 - Nonlinear solver based on inexact Newton iteration
 - Krylov iterative method (GMRES) as the linear solver
 - Spatial accuracy can be set to $O(h^2)$ or $O(h^4)$
 - Test cases: linear wave propagation, GEM reconnection and pellet injection

Implicit Method – Current Status

- GEM Reconnection Challenge in 2D
 - Implicit 3-4 times faster (O(dt²)) and 35 % faster (O(dt⁴)) than explicit
- Pellet injection in 3D Cartesian geometry
 - Surrogate for the real pellet injection problem in 3D tokamak geometry
 - Same time stepping constraints due to large toroidal field

<u>No preconditioning</u> for linear solves

Implicit and explicit methods agree on reconnected flux "Star" agree with published results (Brin et al. J. Geophysical Research 2001)

Implicit Method – Future Plan

- Develop "physics-based" preconditioners (Chacon & Knoll 2003)
 - Expect that implicit solvers will speed up if preconditioners are chosen wisely
- Curvilinear coordinates for shaped plasmas
- Develop strategies for coupling with Chombo to achieve AMR

Summary and Future Plan

- Magnetic reconnection in 3D and high S in 2D
- Pellet injection in (R,Z,φ) agrees qualitatively on the differences between HFS and LFS pellet launches
- RM instability suppression demonstrated in 3D, and developed analytical theory in 2D
- Progress on implicit NK
- Tokamak geometry for shaped plasmas for refueling simulations
- Anisotropic transport
- Include electron heating model
- Supersonic gas injection
- Implicit treatment preconditioners, AMR

Linear Wave Propagation Tests

- Domain [0:2]x[0:2]
- Wavenumber vector: k_x=n π, k_y= m k_x - (n,m)=(1,1), (1,2), (1,3)
- Angle between wave direction and \mathbf{B}_0 varied from 0 to $\pi/2$
- Amplitude of waves ε=10⁻
- Equilibrium state: $\{\rho_0, 0, 0, 0, B_{x,0}, B_{y,0}, p_0\}$ $- \rho_0=1, \rho_0=0.1$ $- |B_0|=1$
- t_{end}¹/₄ 2
- Computed with nonlinear code (nonlinearities ~ O(ε²))

