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Grad-Shafranov Refinement

DCON reads equilibria from 20 different Grad-Shafranov 
solvers, both direct and inverse.

It processes all equilibria into internal inverse form.

Almost all equilibria are accurate enough for ideal 
stability analysis.

Resistive stability analysis is much more sensitive to 
imperfections.  Most equilibria are not accurate enough.

Goal: Develop a fast, accurate iterative Grad-Shafranov 
solver to refine a pretty good equilibrium into a very 
accurate one.

Application of spectral element code: high accuracy, 
advanced numerical methods.



Resistive DCON: Simple Test Case

Flux Surfaces Pressure Profile

Safety Factor Mercier Criterion



Coarse and Fine Equilibria



Sensitivity to Numerical Equilibrium Quality

Safety Factor Profiles Resistive Stability Results

Coarse vs. Fine Equilibria Coarse vs. Fine Equilibria



SEL Code Features

Spectral elements: exponential convergence of spatial truncation
error + adaptive grid + parallelization.

• George Em Karniadakis and Spencer J. Sherwin, “Spectral/hp
Element Methods for CFD,” Oxford, 1999.

• Ronald D. Henderson, “Adaptive spectral element methods for 
turbulence and transition,” in High-Order Methods for 
Computational Physics, T.J. Barth & H. Deconinck (Eds.), Springer, 
1999.

Grid alignment with evolving magnetic field + adaptation to 
regions of sharp gradients

Time step: fully implicit, 2nd-order accurate, static condensation 
preconditioning, Newton-Krylov iteration or parallel direct.

Highly efficient massively parallel operation with MPI and 
PETSc.

Flux-source form: simple, general problem setup.



Spatial Discretization



Alternative Polynomial Bases

Jacobi Nodal BasisUniform Nodal Basis Spectral  (Modal) Basis

• Lagrange 
interpolatory 
polynomials

• Uniformly-spaced 
nodes

• Diagonally 
subdominant

• Lagrange 
interpolatory 
polynomials

• Nodes at roots of 
(1-x2) Pn

(0,0)(x)

• Diagonally 
dominant

• Jacobi polynomials 
(1+x)/2, (1-x)/2,    
(1-x2) Pn

(1,1)(x)

• Nearly orthogonal

• Manifest exponential 
convergence



Fully Implicit Time Step: Theta Scheme

• Nonlinear Newton iteration.
• Elliptic equations: M = 0.
• Static condensation, fully parallel.
• PETSc: Krylov (GMRES) with Schwarz 

ILU, overlap of 3, fill-in of 5; or parallel 
LU.



Static Condensation

Equation (4) solved by local LU factorization and back substitution.
Equation (6), substantially reduced, solved by global Newton-Krylov.



Inverse Grad-Shafranov Equation
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Parabolic Equations, Pseudo-Time
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Integral Relations, Relaxation
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Flux-Source Form
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Fluxes
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Problem: Mass Matrix Has Huge Condition Number
C = 1.6x1011, Amplifies Errors, Inhibits Convergence

Condensed Mass Matrix: Singular Value Decomposition
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Other Attempted Treatments

Newton Iteration
• Drop mass matrix, solve as static root finding
• Noise in initial conditions inhibits convergence

Line Search with Backtracking
• Globally convergent Newton iteration
• Reduces length of Newton correction while keeping direction.
• Converges from poor initial conditions, far from root
• Doesn’t help with noisy initial conditions

Filter Initial Conditions
• Suppress high-order spectral elements in initial conditions.
• Has little effect on SVD spectrum of mass matrix.
• Increases initial Grad-Shafranov error, inhibits convergence.



Conclusions and Status

Resistive DCON works correctly but requires highly 
accurate Grad-Shafranov solution.

Spectral element code seems like a natural method.

Parabolic formulation of GSEQ, relaxation, flux-source 
form.

Unforeseen numerical problems caused by unavoidable 
noise in initial conditions, inhibit convergence.

Direct solve?

Advice welcome.


