
CEMM Pre-APS Meeting

Scalable Solver Strategies 
for MHD

David Keyes
Columbia University

& TOPS SciDAC Project



CEMM Pre-APS Meeting

Outline
TOPS project “elevator speech”

five slides of propaganda collected by OASCR 
TOPS renewed for a second five years, 2006-2011
TOPS refining its application plans currently
must target the petascale (2 platforms available by late 2008)

Scalable solvers for PDEs
definition of scalable
two families of techniques that will not scale, and why
a family of techniques that will

Comments on the “Jardin-Keyes roadmap” for 
MHD simulations at ITER scale
TOPS wishlist for MHD collaborations
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The TOPS Center for Enabling Technology 
spans 4 labs & 5 universities

Towards Optimal Petascale Simulations

Our mission: Enable scientists and engineers to take full advantage 
of petascale hardware by overcoming the scalability bottlenecks 
traditional solvers impose, and assist them to move beyond “one-
off” simulations to validation and optimization 

Columbia University University of Colorado University of Texas
University of California 

at San Diego

Lawrence Livermore 
National Laboratory

Sandia National Laboratories



CEMM Pre-APS Meeting

Impact: TOPS software has a strong track record of 
taking applications to the architectural leading edge

TOPS is at the heart of 
three Gordon Bell 
“Special” Prizes 1999 

fluids
2003 

seismic
2004 

mechanics

Scales to the edge of 
BlueGene/L (131,072 
processors, 2B unknowns)
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After new coarsening 
algorithm (red), 
nearly flat scaled 
speedup for 
Algebraic Multigrid
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C-old
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Powered numerous 
applications achievements 
in SciDAC-1

accelerator 
design QCD

magneto-
hydro-
dynamics

Prototype shape optimization capability Robust solution algorithm for zero quark mass, fine lattices

~5X speedup of  
plasma fusion code 
through linear solver 
replacement – like 
providing “next 
generation” computer

Re part of “instanton” Im part of “instanton”
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Why TOPS is needed: new algorithms solve 
problems that new architectures cannot address

problem size

Compare with Moore’s Law: 
Over 36 years, processor architecture 
goes through 24 “doubling periods”
Algorithms produce an equal factor 
of speedup on a small problem; much 
more on a larger problem

year

relative 
speedup

16 million 
speedup 

from each
∇2u=f 64

64 64
Consider, for example: 

Poisson’s equation in a 3D 
domain
Solve by “best method 
available” over a span of 
1948 to 1984 (36 years)

Given, for example: 
a “physics” phase that scales 
as O(N)
a “solver” phase that scales 
as O(N3/2)
computation is almost all 
solver after several doublings
Optimal O(N) solver saves 
the computational cycles for 
the physics

Solver takes 
50% time on 
64 procs 0

0.2
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1 4 16 64 256 1024

Solver
Physics

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases

Processor number & relative problem size

O(N) method 
on 64K procs

O(N3/2) method 
on 64K procs

Algorithmic and 
architectural 

advances work 
together!
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SciDAC-2 applications needing scalable solvers
Accelerator design

Maxwell eigenproblems
shape optimization subject to PDE 
constraints

Plasma fusion 
Poisson problems
coupled nonlinear systems within a 
single “physics” domain (e.g., MHD)
nonlinear coupling of multiple physics 
codes

Porous media flow
div-grad Darcy problems

Quantum chromodynamics 
Dirac operator inversions

Quantum chemistry 
generalized eigenproblems

Physicists want to concentrate on 
physics instead of solvers

express solver tasks at a level of 
mathematical abstraction
exploit state-of-the-art solvers as these 
evolve under the interface
run same code on laptops (on travel), 
low-cost unmetered clusters (at work), 
and on unique shared national 
resources

Ordered goals for TOPS (need them 
all, in this order)

usability and robustness
portability
algorithmic efficiency (optimality) 
and implementation efficiency (within 
a processor and in parallel)
algorithmic optimality and software 
stability
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TOPS is building a toolchain of proven 
solver components that interoperate

We carry users from “one-off” solutions to the 
full scientific agenda of sensitivity, stability, and 
optimization (from heroic point studies to 
systematic parametric studies) all in one software 
suite
TOPS solvers are nested, from applications-
hardened linear solvers outward, leveraging 
common distributed data structures 
Communication and performance-oriented 
details are hidden so users deal with 
mathematical objects throughout
TOPS features these trusted packages, whose 
functional dependences are illustrated (right)*:
Hypre, PETSc, SUNDIALS, 
SuperLU, TAO, Trilinos
These are in use and actively debugged in dozens 
of high-performance computing environments, in 
dozens of applications domains, by thousands of 
user groups around the world                                 
* See also the webpages for each code

Optimizer

Linear 
solver

Eigensolver

Time 
integrator

Nonlinear 
solver

Indicates 
dependence

Sens. Analyzer
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Some TOPS personnel relevant to MHD efforts

Adams               Cai                Demmel            Falgout           Ghattas

Heroux             Keyes                 Li               Manteuffel     McCormick

Moré Ng              Reynolds             Smith     Woodward

HYPRE

HYPRE HYPRE

SUNDIALSPETSc

SuperLU

SuperLU

Trilinos

apps

apps

appsapps opt

opt eigen

So far: 

0.0 FTE
for MHD 

collaborations



CEMM Pre-APS Meeting

Review: two definitions of scalability
“Strong scaling”

execution time decreases in 
inverse proportion to the 
number of processors
fixed size problem overall
often instead graphed as 
reciprocal, “speedup”

“Weak scaling”
execution time remains constant, 
as problem size and processor 
number are increased in 
proportion
fixed size problem per processor
also known as “Gustafson 
scaling”

T  

p

good

poor

N ∝ p

poorlog T

log p
good

N constant

Slope
= -1

Slope
= 0
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Contraindications of scalability
Fixed problem size

Amdahl-type constraints
“fully resolved” discrete problems (protein folding, 
network problems)
“sufficiently resolved” problems from the 
continuum

Scalable problem size
Resolution-limited progress in “long time”
integration

explicit schemes for time-dependent PDEs
suboptimal iterative relaxations schemes for 
equilibrium PDEs

Nonuniformity of threads
adaptive schemes
multiphase computations (e.g, particle and field)
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Amdahl’s Law (1967)
Fundamental limit to strong scaling due to small overheads
Speedup asymptotically independent of number of processors 
available
Analyze by binning code segments by degree of exploitable 
concurrency and dividing by available processors, up to limit
Illustration for just two bins:

fraction f1 of work that is purely sequential
fraction (1-f1) of work that is arbitrarily concurrent

Wall clock time for p processors
Speedup 

for f1=0.01

Applies to any performance enhancement, not just parallelism

pff /)1( 11 −+∝

]/)1(/[1 11 pff −+= p 1 10 100 1000 10000

S 1.0 9.2 50.3 91.0 99.0
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Resolution-limited progress (weak scaling)
Illustrate for CFL-limited 
explicit time stepping
Parallel wall clock time

dd PST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size
τ time step size 
τ=O(hα) bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ ∝ hα ∝ 1/nα = 1/Nα/d  = 1/(PS)α/d )

3 months10 days1 dayExe. time

105×105×105104×104×104103× 103×103Domain

Example: explicit wave 
problem in 3D (α=1, d=3)

27 years3 months1 dayExe. time

105× 105104× 104103× 103Domain

Example: explicit diffusion 
problem in 2D (α=2, d=2)
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“Scalable” includes “optimal”
“Optimal” for a theoretical numerical analyst means a 
method whose floating point complexity grows at most 
linearly in the data of the problem, N, or linearly times a 
polylog term
For iterative methods, this means that both the cost per 
iteration and the number of iterations must be O(N logp N)
Cost per iteration must include communication cost as 
processor count increases in weak scaling, P ∝ N

BlueGene permits this with its log-diameter global 
reduction

Number of iterations comes from condition number for 
linear iterative methods; Newton’s superlinear
convergence is important for nonlinear iterations
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Scalable solvers for PDEs
Linear preconditioners

Domain-decomposition methods
Schwarz (DD by projection)
Schur (DD by partition and elimination)
Schwarz-Schur hybrids

Multigrid

Linear accelerators
Krylov methods

Nonlinear rootfinders
Newton-like methods

Hybrids (nonlinear Schwarz, FAS multigrid) 
and implications for multiphysics coupling
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Digression for notation’s sake
We need a convenient notation for 
mapping vectors (representing 
discrete samples of a continuous 
field) from full domain to subdomain 
and back
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Let Ri be a Boolean operator 
that extracts the elements of 
the ith subdomain from the 
global vector
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into the global vector, 
padding with zeros
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Schwarz domain decomposition method

Consider restriction and extension 
operators for subdomains,           ,      
and for possible coarse grid,
Replace discretized                   with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0
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T
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Schwarz formula (projections)
If A is an operator on a space V and Ri are 

0
1

000
11 )()( RARRRRARRRB TT

i
T
ii

T
ii

−−− +∑=

0
1

00
11 RARRARB T

ii
T
ii

−−− +∑=

restrictions into (possibly overlapping) subspaces of 
V, Vi, such that V=∪Vi

Then for a good approximation, B-1, to A-1:

or

Then

where C is independent of H and h (resp. P and N)
CAB =− )( 1κ
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Schur formula (partitions)
Given a partition
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Condense:

The full system matrix factors:

Then for a good approximation, B-1, to A-1:
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HH
T
HEi EE

T
E RARRSRM

iiii

111 −−− +=∑

))(log1()( 121 −− += HhCSMκ

Since S and M may be complicated, we can further 
decompose the multisegmented interface into simple 
edges and a vertex block, preconditioned separately:

then

where C is independent of H and h (but may still retain 
dependencies on other “bad” parameters, such as jumps 
in the diffusion coefficients)

Schwarz-on-Schur
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Operator projection ideas not limited to DD
In the abstract, Schwarz theory is about polynomials 
of projection operators
Appropriate for other types of preconditioners, too 
Suppose we have two preconditioners, each of which 
is effective on part of the problem, and we use them 
sequentially

)(1
1 AufBuu −+← −

)(1
2 AufBuu −+← −

1
1

1
2

1
2

1 )( −−−− −+= BABIBB
This leads to a multiplicative scheme:

This is the form of a standard two-level multigrid 
scheme in which B1 is a “smoother” and B2 handles the 
complementary modes: T

CC
T RARARARB == −− ;11

2
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smoother

Finest Grid

First Coarse Grid
coarser grid has fewer cells

(less work & storage)

Restriction
transfer from 
fine to coarse 
grid

Recursively apply this 
idea until we have an 
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse 
to fine grid

For multigrid, one recurs on this…
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Algebraic multigrid
For Poisson, there is a correspondence between the hard-to-
smooth error modes and wavenumber, leading to the 
classification of “fine” (easy to smooth) and “coarse” (hard to 
smooth, near null-space)
For more general operators, this geometrical correspondence 
is broken; the “coarse” space is whatever is complementary to 
the readily smoothable space and is found algebraically, in an 
operator-sensitive way (anisotropy, inhomogeneity, etc.)
This freedom from geometry is liberating, since problems on 
unstructured meshes are readily accommodated
Near null-space modes may now, however, be dense to 
represent, unlike in Poisson (okay, if just a few of them)
Identifying the coarse space may defy heuristics and need to 
be found adaptively (see SIAM Review 47:317-346 (2005) )
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Krylov accelerators
Given                                            and iterate    , we 
wish to generate a basis                                        for       
(                ) and a set of coefficients                    
such that       is a best fit in the sense that                 
minimizes 
Krylov methods are algebraic Petrov-Galerkin 
methods that define a complementary “test” basis 

so that        
may be solved for y
In practice  k << n and the bases are grown from seed 
vector                                   via recursive multiplication 
by       and Gram-Schmidt

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21
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{ }kyyy ,...,, 21

x
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|||| bAVy −
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bAxr −= 00

Vyx ≈

0
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Onward to nonlinearity
Linear versus nonlinear problems

Solving linear systems often constitutes 90% of the running 
time of a large PDE simulation
The nonlinearity is often a fairly straightforward outer loop, 
in that it introduces no new types of messages or 
synchronizations not present in Krylov-Schwarz, and has 
overall many fewer synchronizations than the preconditioned 
Krylov method  or other linear solver inside it

We can wrap Newton, Picard, fixed-point or other 
iterations outside, linearize, and apply what we know
We consider both Newton-outside and Newton-inside 
methods
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Newton-Krylov-Schur-Schwarz: 
a solver “workhorse”

Newton
nonlinear solver
asymptotically 

quadratic
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Newton-like iteration
Given                                                           and iterate      
we wish to pick        such that

where
Neglecting higher-order terms, we get

where                                   is the Jacobian matrix, 
generally large, sparse, and ill-conditioned for PDEs
In practice, require
In practice, set                                     where      is selected 
to minimize         

nnFuF ℜ→ℜ= :,0)( 0u
1+ku

0)()()( '1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([ 1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+



CEMM Pre-APS Meeting

Newton-Krylov-Schwarz

for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients 
check linear convergence

} // End of linear solver
perform DAXPY update 
check nonlinear convergence

} // End of nonlinear loop

Newton 
loop

Krylov 
loop
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Nonlinear Schwarz preconditioning
Nonlinear Schwarz has Newton both inside and 
outside and is fundamentally Jacobian-free
It replaces                with a new nonlinear system 
possessing the same root, 
Define a correction            to the     partition (e.g., 
subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the 
components of the     partition
Then sum the corrections:                            to get 
an implicit function of u

0)( =uF
0)( =Φ u

thi

thi

)(uiδ
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n

i u ℜ∈)(δ

)()( uu ii δ∑=Φ
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture
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Nonlinear Schwarz, cont.
It is simple to prove that if the Jacobian of  F(u) is 
nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root
To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :

The residual 
The Jacobian-vector product

Remarkably, (Cai-Keyes, 2000) it can be shown that 

where                   and 
All required actions are available in terms of            !

0)( =Φ u
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vu ')(Φ
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T
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Full Approximation Scheme 
(FAS) multigrid

In Newton-Krylov-Schwarz, the linearization is global, then 
the global linear problem is additively domain decomposed 
into local subdomains
In nonlinear Schwarz, the nonlinear problem is additively 
domain decomposed directly into local subdomains
FAS multigrid is like nonlinear Schwarz, except that the 
subspaces are global and multiscale rather than local and 
multidomain; and they are handled multiplicatively rather 
than additively
Historically, FAS has not had a good software engineering 
model, since the user must provide nonlinear residual 
evaluations of arbitrary subsets of the global problem
TOPS is working on this, using macros and inlining (and 
techniques borrowed from automatic differentiation); FAS 
should become available in PETSc-3 during TOPS2
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0)( =Φ u
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Scaling fusion simulations up to ITER

c/o S. Jardin, PPPL

1012 needed 
(explicit 
uniform 

baseline)

International 
Thermonuclear
Experimental
Reactor

2017 – first 
experiments, in 
Cadaraches, 
France
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1.5 orders: increased processor speed and efficiency
1.5 orders: increased concurrency
1 order: higher-order discretizations 

Same accuracy can be achieved with many fewer elements

1 order: flux-surface following gridding
Less resolution required along than across field lines

4 orders: adaptive gridding
Zones requiring refinement are <1% of ITER volume and 
resolution requirements away from them are ~102 less severe

3 orders: implicit solvers
Mode growth time 9 orders longer than Alfven-limited CFL

Where to find 12 orders of magnitude in 10 years?
H

ar
dw

ar
e:

 3
So

ftw
ar

e:
 9

Algorithmic 
improvements bring 

yottascale (1024) 
calculation down to 

petascale (1015)!
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increased processor speed
10 years is 6.5 Moore doubling times

increased concurrency
BG/L is already 217 procs, MHD now at ca. 212

higher-order discretizations 
low-order FE preconditioning of high-order discretizations 
(Orszag, Fischer, Manteuffel, etc.)

flux-surface following gridding
evolve mesh to approximately follow flux surfaces

adaptive gridding
within SciDAC, this is APDEC; we will team to make it implicit

implicit solvers
we propose Newton-like fully implicit, with Krylov/MG innards

Comments on JK roadmap
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Engage at a higher-level than Ax=b
Newton-Krylov-Schwarz/MG on coupled nonlinear system

Sensitivity analyses
Optimization techniques

design of apparati
control of experiments

TOPS’ wishlist for MHD collaborations —
“Asymptopia”
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