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SEL Code Features

High order spectral elements: exponential convergence of spatial
truncation error + adaptable grid + parallelization.

Time step: fully implicit, 2"-order accurate, Newton iteration, static
condensation preconditioning.

Efficient parallel operation with MPI and PETSc.

Grid adaptation to concentrate the grid where spatial convergence is
the worst + alignment with evolving magnetic field.

Flux-source form: simple, general problem setup.



Flux-Source Formulation
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UF is a set of dependent variables, UF = (90U f0r),

{&}; = {&, 1} 18 an arbitrary (LOGICAL) coordinate system in which
calculations are performed: {£.9} € [0, 1] x [0, 1]

{r}; = {z.y} is the fixed (PHYSICAL) coordinate system in which fluxes

and sources are EX[’H‘HHHE‘(’L‘

JEn) = % is the jacobian of the transformation between the
coordinate svstems.
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Representation on Curvilinear
Logically Rectangular Grid

Physical Space

Magnetic Flux, extrema—(-6.053e+00, 3.961e-01) .
Logical Space
(Uniform Orthogonal Grid)

Magnetic Flux, extrema=(-6.053e+00, 3.961e-01)
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Harmonic Grid Generation

Harmonic mapping of a logical grid onto a curvilinear physical grid
with some boundaries.

Usually, but not necessarily, use a conformal structured logical grid of
a fixed size.

Allows for both static and dynamic regrid.
Implicit or explicit time-stepping.

Ability to approximately align the physical grid with magnetic field
(or achieve any other desired property) within the constraints of a
given logical grid topology.



Adaptive Field-Aligned Grid Generation

Variational Principle
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* Alignment of the grid is controlled
by g tensor; Want to have contours
of constant &' be parallel to B —
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Euler-Lagrange Equation
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Expressed in Logical Coordinates (Chacon)

L 5 96t 9ed 26 oy  Grid density (adaptation) is
= 53 ( J g™ agk ; z) =0, agj — ;j controlled by the weight function o,
J 08 \wyg Oxt O v ¢ which is determined from a

measure of spatial convergence.

Metric Tensor Used for Alignment

g=BB, +ByBy+el, B, =zxVy, B,=FkzxB!



SEL with Static Regrid (adaptation only)

a) Smooth initial mapping from logical to physical grid: = = x(§,n) and y = y(§, n)
b) Initial condition of the simulation: U(z,y) — U(&,n) = U, c;(€,7)

Evaluate spatial convergence of the solution in both directions along the logical grid to

get two smooth functions of space (C¢(&, n), C, (€, n)).
IF MAXVAL(C;, C)) = G, (ELSE skip to Step (6)):

a) Rescale (C¢(&, n), C, (§, m)):
Cg CT?

Ce 1+ C, =1+
¢ T T MAXVAL(Ce, Cy) 1 T MAXVAL(C,, Cy)

b) Calculate (&, n) = MAX(C,, C,) and g = {OCé (é }
Use SEL machinery to solve the Beltrami Equation with given o and g for the “old”
logical coordinates {&, n} in terms of the “new” {&', n'}.

From {&(€°, '), n (S, M)}, {x(S, M), ¥ (& M)} and U(G, n), we interpolate the physical
coordinates {x, y} and the solution vector U onto the new logical grid to find
x(€,n),y(E,n)} and U, ).

Continue the calculation of the physical problem at hand using the new logical-to-
physical grid mapping, reevaluating spatial convergence every time step until
MAXVAL(C,, C,) = Gtol => return to Step 3.



SEL with Static Regrid: Schematic

If MAXVAL(C,, C,) = Gy,
Calculate (&, 1), and g (&, 1)

P e -

Solve a system of coupled

non-linear “Physics” PDEs

Solve Beltrami Eqgs.:
(Ex.:gcénlinga&ie[;n Eq., In 2D, a system of
educe ,
Hall MHD. two c‘oupled PDEs for
Extended 2-fluid MHD, ...) &(&,m),n(E,n)

Evaluate (C,, C,)

B

Interpolate to find x(&', '), y (§',n) and U(E', ).
E,m)—=(@En)



GEM Hall MHD Benchmark:
SEL (vs. NIMROD vs. M3D-C1)
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Kinetic Energy

GEM Hall MHD Benchmark

Initial and boundary conditions as in the original GEM challenge
(Birn, et. al., J. Geophys. Res. 106, 3715 (2001)):

B, = Bytanh(y/A), p = po(1/cosh?(y/A) +.2), vi= 0, zero guide field, uniform temperature;

A =d/2; box size: [Ix, ly] =[25.6d,, 12.8d,], periodic in x, perfectly conducting walls in y.

SEL scan in electron viscosity
219.65

v = 2e-5, Kinetic 3
v = le-5, Kinetic /

v = Se-6, Kinetic '
v = le-5, Total
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Comparison of K.E. vs time for 3 codes

— SEL v=5x10"
e NIMROD
e M3D-C’ H=1x10"*

NOTE:
In SEL, E, = vn"A(n™)

In M3D-C', E, = HA(J)

10 20 30 40

Time

Comparison results as of late Auqust, 2006.

(For more on Hall reconnection dependence on electron viscosity,
see poster VP1.00076 on Thursday afternoon)



GEM Hall MHD Benchmark

Electron z-momentum at t = 20.0625 Density at t = 20.0625
=] (Y] W
=+ |- V — 1 % 10-5 =+ |-

ol Logical grid: ~ol % %
. [nx, ny, np] = [40, 40, 8]
T # of time-steps = 419 Rl
RS dt =.0625 — .25 hs
—IID —|5 E] IEr i[]l -10 -3 0 5 10
X . . X
# of grid remappings = 18 _

Electron z-momentum at t =29.125 Density at t =29.125
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GEM Hall MHD Benchmark

Computational grid at t = 20.0625 Computational grid at t = 29.125
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GEM Hall MHD Benchmark

Cut at mid-plane
(x-axis in units of d.)
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Measure of Merit for Static Regrid
(magnetic reconnection in reduced MHD)

Compare several identical simulation runs while varying only the
polynomial order np of the grid [nx,ny]=[6,16].

np cpu time griderr efficacy # of regrids | fraction of time for regrid
12 8.784*10% sec 4.11*1073 2.77*%1073 0 0

11 8.774*10%sec 4.69%104 2.43*102 3 7.4 %

10 3.544*10% sec 9.26*10 3.04*102 3 7.8 %

9 2.49*10% sec 1.01*10-3 3.97*102 4 11.3%

8 1.696*10* sec 1.53*10-3 3.85*102 5 14.7 %

griderr = MAXVAL(C,, C); efficacy (“merit”) = 1 / (runtime * griderr)

Log,,Griderr




