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Our ELM computations for the FY06 OFES ‘Performance Targets’ 
use MHD equilibria fitted to laboratory measurements (EFIT) to 
model specific DIII-D discharges.

• The NIMROD code treats the equilibrium as a separated steady state.
• This year, we also use the number density profile and solve particle continuity.

Fitted flux-surfaces for DIII-
D discharge 113317.

(courtesy of T. Osborne, GA)
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Linear ELM Tests
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Mesh of curved finite elements packed 
near the magnetic separatrix.

Before proceeding to nonlinear simulations, we ran linear 
computations to understand numerical convergence properties with
both models and to confirm drift stabilization at high wavenumber.

• Computations with the large density gradient 
and the spatial representation used for last 
year’s simulations are not converged without 
large (~1000 m2/s) values of artificial particle 
diffusivity.

• With the particle diffusivity at 2.5 m2/s and 
Spitzer resistivity, the computations ran out of 
memory before achieving convergence.

• Increasing resistivity by a factor of 100 
improves convergence properties but adds to 
the ballooning character of high-n modes with 
resistive MHD.



We converge the MHD modes as in spectral computations, by 
changing the order of the polynomial basis functions.
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Computed growth-rate for the n=13, 21, and 42 
MHD modes with ηped/μ0=7 m2/s and 
anisotropic thermal conduction.

Magnetic divergence error for the n=13, 21, 
and 42 MHD (k2

divb=                                      )
modes with ηped/μ0=7 m2/s and anisotropic 
thermal conduction.

• Growth-rate increasing with n is a ballooning trait.
• This may be an artifact of the resistivity, and further study is warranted.

( ) ∫∫ ⋅∇ dVolbdVolb 22 ~~



The same set of parameters also resolves the fastest-growing part 
of the two-fluid spectrum but not the high-n modes.

Computed growth-rate for the n=13, 17, 21, and 
42 two-fluid modes with ηped/μ0=7 m2/s, 
anisotropic thermal conduction, and D=2.5 m2/s.

Magnetic divergence error for the n=13, 17, 21, 
and 42 two-fluid modes.

• Two-fluid effects tend to stabilize the computed high-n modes.
• The divergence error shows that n=42 is not resolved at these parameters.
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With D increased by a factor of 2 and smaller time-step, the two-
fluid computations find that modes with n≥30 are stable.

• Ion flow has not been included in the steady-state component of our calculations.  
This implies an electrostatic potential profile such that vE and vdi cancel.
• Nonetheless, the gyroviscous force contains similar terms ~

Comparison of resistive MHD and two-fluid growth-rate spectra computed 
with D=5 m2/s.  Mode frequency is not a simple Doppler shift.
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The diamagnetic drift profile is narrower than the low-n ELM 
eigenfunctions.

Poloidal component of 
diamagnetic drift.

• Estimates based on Roberts-Taylor                       suggests stability to n ~O(1).
• Hastie, Catto, and Ramos have shown that radial localization reduces the 2fl effect.

Toroidal flow velocity from the 
n=21 MHD eigenmode.

Toroidal flow velocity from the 
n=21 two-fluid eigenmode.
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Nonlinear ELM Computation

Evolution of the magnetic fluctuation 
energy spectrum.

Though poloidal resolution is marginal (growth rates only accurate to ~35%) 
with a 20×120 mesh of elements biquintic elements, memory and CPU 
limitations do not allow for larger computations at this time.

• Though increased by a factor of 100, 
the resistivity evolves with the local 
temperature (η~T-3/2).

• The 3D evolving number density is 
used in all coefficients.

• Toroidal resolution of 0≤n≤42 satisfies 
the milestone requirement.

• The nonlinear computation is initiated 
with eigenmodes from the two-fluid 
spectrum calculation.

• High-n harmonics of the unstable band 
and an n=1 distortion are generated 
nonlinearly.
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Unlike our previous MHD results, the nonlinear two-fluid computation 
forms a helically localized structure.

Temperature perturbations reach 100 eV at 
t=7.72 μs (Tped=400 eV).  Perturbed plasma 
flow vectors are superposed.

• The broad range of unstable modes shows nearest-neighbor (in n-space) coupling of 
modes resonant at about the same q-value, which is 3 in this case.
• The low-n distortion and high-n harmonics appear to lock the unstable ELMs together--
this point needs further verification.
• The results are similar to those reported by P. Snyder for reduced-Braginskii flux-tube 
computations.

Number density in the φ=0 plane at 
t=7.92 μs shows three groups of ripples.



Computation-Oriented Discussion
• There are successes in this application of NIMROD:

• Code’s first large, three-dimensional two-fluid computation
• Use of new gyroviscous capabilities
• Completion within the milestone deadline

• There is room for improvement:
• Poloidal and toroidal resolution are marginal.

• The next harmonic bands may lead to further shaping.
• Toroidal coupling must be added to the preconditioning operation.

• Solves have algebraic vectors as large as 7.5×106 complex elements
• GMRES orthogonalizes iterates--large iteration counts are costly
• Time-step was severely limited just to improve condition numbers

• The distributed-memory interface to the SuperLU library will reduce 
memory requirements.
• Modifying some aspects of the basis functions may improve resolution of 
high-wavenumber modes, as noted earlier.

• This exercise motivates ‘peta-scale’ computing and provides an indication of 
what is needed.  (Besides above, parallel i/o and high-performance graphics.)



Conclusions
• Physics:

• Global computations have obtained two-fluid stabilization at high-n 
via gyroviscous stress.
• Radial localization of the drift flow profile in DIII-D equilibria has 
a large influence on two-fluid stabilization.
• Nonlinear interaction of ELMs generates high- and low-n 
perturbations of the same helicity.
• A helically localized structure emerges as the perturbations 
approach O(1) amplitude.

• Computation:
• NIMROD needs further work on preconditioning and spatial 
representation.
• We need to prepare for peta-scale computing.

• Programmatic:
• The NIMROD Team has met the theoretical performance targets 
for OFES for the past two years.


