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Introduction/Motivation

e We are trying to calcuate self-consistent, axisymmetric, toroidal steady-states of a

comprehensive, two-fluid model.

e In particular, we would like to understand the effects of two-fluid terms and gyrovis-

cosity on the the steady-states.

e Our method is to initialize M3D-C*, with an ideal-MHD equilibrium, and time-

integrate the nonlinear extended-MHD equations until steady state is reached.
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Some advantages of integrating the nonlinear physical equations to obtain the steady

state:

e Physical coordinates elimiate singularities at separatrix and magnetic axis;
e Fully two-dimensional, allowing general treatments of flow, shape, etc.;
e Plasma core and vacuum region are treated self-consistently;

e Steady state is steady on all timescales:

e Formulation can be straightforwardly extended to more complete physical models and

three-dimensions.
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M3D-C!: Overview %

e Magnetosonic, shear Alfvén, and whistler waves are all treated implicitly [1].
e Uses a fifth-order C finite-element [2] on a fully unstructured mesh.

e Matrix equations are efficiently and accurately inverted directly using SuperLLU dist [3].
This is made possible by the compactness of the element (asymptotically 3 unknowns

per triangle).

e Full axisymmetric two-fluid equations are implemented in both slab and toroidal ge-
ometry, including ion gyroviscosity. These equations are essentially the Braginskii

equations 4], minus terms proportional to m./m,;.

e [n the X-MHD equations using flux/potential field representation, no field is differ-
entiated more than four times, with the exception of the hyper-viscous terms. This

makes C! elements ideal.
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M3D-C!: Physical Model =
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M3D-C!: What’s New

Improvements to M3D-C'since last published results:

e Numerical integration (79-point Gaus-

sian quadrature).

e Unstructured mesh
e Option for toroidal geometry

e Integration with PETSc

e Different implicitization and time inte-

gration schemes (semi-implicit, fully im-

plicit; Crank-Nicholson, BDF2).
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M3D-C'!: Implicitization issues

e Published results from M3D-C' used a split time step, where velocity advance looked
like:
[1— 0%(6t)*Llut =[1 — 0(6 — 1)(5t)*Llu"™ + 5tc V"

e In toroidal simulations in which the flow is driven by resistivity, our results converged

very slowly with ot.
e We implemented a fully implicit, unsplit

Comparison of 67 Convergence

time step as a check on our results. This R if,ll;".fﬂwl e
showed that the split time step method ~ coos T
was introducting significant errors even § j ) ) ]
at small values of dt. > o ]
0.0005:— ¢ _
e By letting (0 — 1) — 6%, as done by _ o
Caramana [5] and NIMROD, these er- %= ek

8t (T40)

rors were elimintated.
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Results: Toroidal Steady States

The following data result from simulations of the following scenario:
e The simulation is initialized with a solution to the Grad-Shafranov equation.

e A loop voltage is applied by changing the flux at the boundary of the simulation

domain at a constant rate @D =V /27,
e The simulation is run until a steady state in both current profile and flow is reached.

e The resistivity is proportional to 7732, The vacuum region is simply a low tempera-

ture region outside the separatrix.

e A localized density source in included to offset diffusive flux out of the simulation

domain.

e Viscosity smoothly becomes vary large at the boundary to damp flows in the vacuum

region.
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Results: Toroidal Steady States

Hydrodynamic profiles relax to a true steady-state. Here are the initial and steady-state

profiles for a simulation of an NSTX-like profile (a/R ~ 1, § ~ 15%):
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Results: Comparison with Theory

e The current implementation of gyroviscosity has been tested successtully against the
previous (published) implementation that used analytic integrations. M3D-C! with

GV also was able to reproduce linear eigenvalues of MRI in toroidal geometry accu-

rately.

e Simulation results agree relatively well with one-dimensional analytic predictions of

the cross-surface (Pfirsch-Schliiter) flow.
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Results: Spontaneous Rotation

e [t was predicted by Stringer 6] that non-rotating toroidal equilibrium should be un-
stable in resistive-MHD.

e Simulations of a large-aspect ratio, low-3 plasma confirm that this happens when

density diffusion is not too high.

e These simulations are run with the following parameters:

Br/B, ~ 200 q~3
B2 x 1074 S ~10°
a/R~1/20 Re ~ 10°

K = 10_5n0L2/7A K| = noLQ/TA
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Results: Spontaneous Rotation

Poloidal rotation is found to occur spontaneously at sufficiently low rates of density

diffusion.
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Results: Rotation due to gyrovsiscosity

e We have not observed spontaneous rotation in resistive- or Hall-MHD simulations
of NSTX-like plasmas (high-3, low aspect-ratio, elongated, and diverted), without

gYTOVISCOSIty.
e Including gyroviscosity leads to significant rotation in NSTX-like plasmas.
e In the large aspect-ratio simulations, gyroviscosity has virtually no effect.
e We do not fully understand the physics of this spin-up yet.

e These simulations use NSTX coil configurations with the following parameters:

BT/Bp%i% q%1
B~ 15% S ~ 103
a/R~1 Re ~10°

k=2X10"*ngL?/74 k)| = T5noL”/Ta



Results: Toroidal Velocity %Sﬁb‘:ﬁ&‘:ﬂ&‘:ﬂ‘sﬁv

v,(t = 500 7,) v,(t = 600 7,)

Without gyroviscosity With gyroviscosity



Results: Poloidal Velocity
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Poloidal Flow (¢t = 500 T,)
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Conclusions

e We have been able to obtain self-consistent steady-states of the extended-MHD equa-

tions for realistic plasma configurations with free boundaries.

e The flows observed in the simulations are in relatively good agreement with one-

dimensional theoretical predictions.

e Spontaneous poloidal rotation has been observed to occur in large aspect-ratio, circular

cross-section configurations, as has been predicted.

e Gyroviscosity leads to plasma rotation in NSTX-like configurations.
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Future Work %

e We are working to gain an analytical understanding of the spin-up due to gyroviscosity.

e We are also working to simulate H-mode profiles, to observe the self-consistent flows

in the presence of an edge pedestal.

e These steady-states will serve as a starting point for three-dimensional linear stabil-
ity calculations. Work to extend M3D-C'! to do 3D linear stability calculations is

beginning.

e We plan to develop M3D-C! into a fully three-dimensional implicit nonlinear code.



PRINCETON PLASMA
PHYSICS LABORATORY

=PPPL

References

[1] S. C. Jardin and J. A. Breslau, Phys. Plasmas 12, 056101 (2005).

[2] S. C. Jardin, J. Comp. Phys. 200, 133 (2004).

[3] X.S.LiandJ. W. Demmel, ACM Trans. Mathematical Software 29, 110 (2003).

[4] S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), vol. 1, pp. 205-311.
[5] E. J. Caramana, J. Comp. Phys. 96, 484 (1991).

[6] T. E. Stringer, Phys. Rev. Lett 22, 770 (1969).



