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Introduction/Motivation

• We are trying to calcuate self-consistent, axisymmetric, toroidal steady-states of a

comprehensive, two-fluid model.

• In particular, we would like to understand the effects of two-fluid terms and gyrovis-

cosity on the the steady-states.

• Our method is to initialize M3D-C1, with an ideal-MHD equilibrium, and time-

integrate the nonlinear extended-MHD equations until steady state is reached.
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Advantages of this Method

Some advantages of integrating the nonlinear physical equations to obtain the steady

state:

• Physical coordinates elimiate singularities at separatrix and magnetic axis;

• Fully two-dimensional, allowing general treatments of flow, shape, etc.;

• Plasma core and vacuum region are treated self-consistently;

• Steady state is steady on all timescales;

• Formulation can be straightforwardly extended to more complete physical models and

three-dimensions.
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M3D-C1: Overview

• Magnetosonic, shear Alfvén, and whistler waves are all treated implicitly [1].

• Uses a fifth-order C1 finite-element [2] on a fully unstructured mesh.

• Matrix equations are efficiently and accurately inverted directly using SuperLU dist [3].

This is made possible by the compactness of the element (asymptotically 3 unknowns

per triangle).

• Full axisymmetric two-fluid equations are implemented in both slab and toroidal ge-

ometry, including ion gyroviscosity. These equations are essentially the Braginskii

equations [4], minus terms proportional to me/mi.

• In the X-MHD equations using flux/potential field representation, no field is differ-

entiated more than four times, with the exception of the hyper-viscous terms. This

makes C1 elements ideal.
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M3D-C1: Physical Model
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M3D-C1: What’s New

Improvements to M3D-C1since last published results:

• Numerical integration (79-point Gaus-

sian quadrature).

• Unstructured mesh

• Option for toroidal geometry

• Integration with PETSc

• Different implicitization and time inte-

gration schemes (semi-implicit, fully im-

plicit; Crank-Nicholson, BDF2).
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M3D-C1: Implicitization issues

• Published results from M3D-C1 used a split time step, where velocity advance looked

like:

[1− θ2(δt)2L]un+1 = [1− θ(θ − 1)(δt)2L]un + δtc∇vn

• In toroidal simulations in which the flow is driven by resistivity, our results converged

very slowly with δt.

• We implemented a fully implicit, unsplit

time step as a check on our results. This

showed that the split time step method

was introducting significant errors even

at small values of δt.

• By letting θ(θ − 1) → θ2, as done by

Caramana [5] and NIMROD, these er-

rors were elimintated.
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Results: Toroidal Steady States

The following data result from simulations of the following scenario:

• The simulation is initialized with a solution to the Grad-Shafranov equation.

• A loop voltage is applied by changing the flux at the boundary of the simulation

domain at a constant rate ψ̇ = VL/2π.

• The simulation is run until a steady state in both current profile and flow is reached.

• The resistivity is proportional to T−3/2. The vacuum region is simply a low tempera-

ture region outside the separatrix.

• A localized density source in included to offset diffusive flux out of the simulation

domain.

• Viscosity smoothly becomes vary large at the boundary to damp flows in the vacuum

region.
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Results: Toroidal Steady States

Hydrodynamic profiles relax to a true steady-state. Here are the initial and steady-state

profiles for a simulation of an NSTX-like profile (a/R ≈ 1, β ≈ 15%):
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Results: Comparison with Theory

• The current implementation of gyroviscosity has been tested successfully against the

previous (published) implementation that used analytic integrations. M3D-C 1 with

GV also was able to reproduce linear eigenvalues of MRI in toroidal geometry accu-

rately.

• Simulation results agree relatively well with one-dimensional analytic predictions of

the cross-surface (Pfirsch-Schlüter) flow.
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Results: Spontaneous Rotation

• It was predicted by Stringer [6] that non-rotating toroidal equilibrium should be un-

stable in resistive-MHD.

• Simulations of a large-aspect ratio, low-β plasma confirm that this happens when

density diffusion is not too high.

• These simulations are run with the following parameters:

BT/Bp≈ 200 q≈ 3

β ≈ 2× 10−4 S ∼ 105

a/R≈ 1/20 Re∼ 108

κ = 10−5n0L
2/τA κ‖ = n0L

2/τA
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Results: Spontaneous Rotation

Poloidal rotation is found to occur spontaneously at sufficiently low rates of density

diffusion.

D = 10−5L2/τA D = 10−3L2/τA
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Results: Rotation due to gyrovsiscosity

• We have not observed spontaneous rotation in resistive- or Hall-MHD simulations

of NSTX-like plasmas (high-β, low aspect-ratio, elongated, and diverted), without

gyroviscosity.

• Including gyroviscosity leads to significant rotation in NSTX-like plasmas.

• In the large aspect-ratio simulations, gyroviscosity has virtually no effect.

• We do not fully understand the physics of this spin-up yet.

• These simulations use NSTX coil configurations with the following parameters:

BT/Bp≈ 3 q≈ 1

β ≈ 15% S ∼ 103

a/R≈ 1 Re∼ 105

κ = 2× 10−2n0L
2/τA κ‖ = 75n0L

2/τA
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Results: Toroidal Velocity

Without gyroviscosity With gyroviscosity
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Results: Poloidal Velocity

Without gyroviscosity With gyroviscosity
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Conclusions

• We have been able to obtain self-consistent steady-states of the extended-MHD equa-

tions for realistic plasma configurations with free boundaries.

• The flows observed in the simulations are in relatively good agreement with one-

dimensional theoretical predictions.

• Spontaneous poloidal rotation has been observed to occur in large aspect-ratio, circular

cross-section configurations, as has been predicted.

• Gyroviscosity leads to plasma rotation in NSTX-like configurations.
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Future Work

• We are working to gain an analytical understanding of the spin-up due to gyroviscosity.

• We are also working to simulate H-mode profiles, to observe the self-consistent flows

in the presence of an edge pedestal.

• These steady-states will serve as a starting point for three-dimensional linear stabil-

ity calculations. Work to extend M3D-C1 to do 3D linear stability calculations is

beginning.

• We plan to develop M3D-C1 into a fully three-dimensional implicit nonlinear code.
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