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Scalability By Domain Decomposition

» 3D extended MHD modeling of magnetically confined fusion plasmas
requires petascale computing: 1 petaflop = 10" flops ~10° procs.

» Efficient petascale computing requires scalable linear systems:
solution time independent of grid size, number of processors.

» Current method: static condensation; not scalable.

» Domain decomposition is a promising approach to scalability.
» Schwarz overlapping methods.

» Non-overlapping methods, domain substructuring, e.g. FETI-DP.

» Analytical proofs of scalability for simple systems: Poisson, linear
elasticity, Navier-Stokes.

» Empirical studies: using existing 2D SEL code for extended MHD.
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Condition Number and Scalability

Condition Number

Lui — )\iui, K (L) — )\max

)\min
Scalability

A matrix is scalable is its condition number, and hence the
number of Krylov iterations to convergence, is independent of
the number of subdomains.

Theorem

Scalability of dual matrix F has been proven analytically for
a limited range of elliptic problems: Poisson, lincar elasticity,
Navier-Stokes. «(F) = C[1 +In(H/h)]", v =2 or 3.

Conjecture
e F is scalable for a broader range of problems, to be determined
=D empirically.
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Development Platform
SEL 2D Spectral Element Code

» Flux-source form: simple, general problem setup.

» Spatial discretization:
» High-order C° spectral elements, modal basis

« Harmonic grid generation, adaptation, alignment

» Time step: fully implicit, 2"-order accurate,

* 0-scheme
e BDF2

» Static condensation, Schur complement.
« Small local direct solves for grid cell interiors.

* Preconditioned GMRES for Schur complement.
» Distributed parallel operation with MPI and PETSc.
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Alternative Polynomial Bases

Uniform Nodal Basis Jacobi Nodal Basis Spectral (Modal) Basis
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» Lagrange interpolatory » Lagrange - Jacobi polynomials
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* Diagonally

, « Manifest exponential
subdominant

* Diagonally convergence

) dominant
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Static Condensation

» Implicit time step requires linear

Interfacel I, Latticework Grid

system solution: L u =r.
» Direct solution time grows as n3.

» Break up large matrix into smaller

Interior

Interior

Interior

pieces: Interiors + Interface.
» Small direct solves for interior.

» Advanced parallel iterative solves for
interface.

Interior

Interior

Interior

» Substantially reduces solution time.

» Not scalable to petaflop parallel
computers; solution time grows with
problem size.

Interior

Interior

Interior

» Los Alamos
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FETI-DP

Finite Element Tearing and Interconnecting, Dual-Primal

» Break up large matrix into three pieces:
interior + dual + primal. - -

» Small direct solves for interior.
» Parallel direct solve for primal points.
Vertex, Edge, Vertex,

» Matrix-free preconditioned GMRES for Primal Dual Primal
dual points. ry ry " ool

» Primal solve provides information to
dual problem about coarse global
conditions, providing scalability.

Interior Interior Interior

: . — . o S
» Interior preconditioner accelerates Vertex,§  Edge, Vertex,

convergence of dual solve. Primal | Dual Primal

» The iterative, parallel, dual problem is
scalable!
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FETI-DP

Finite Element Tearing and Interconnecting, Dual-Primal
Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund,
“Dual-Primal FETI Methods for Linear Elasticity,”
Comm. Pure Appl. Math. 59, 1523-1572 (2006).

Partition
» I: Interior points, inside each subdomain (grid cell) Q.
» A: Dual interface points, continuity imposed by Lagrange multipliers.

» II: Primal interface points, continuity imposed directly.

Initial Block Matrix Form

Lyr Lia L u; r;
Lu=r, L= Lar Laa Lapgp ], u=Jlua ], r=| ra
S Lor Loa Loo ung I
» Los Alamos |
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Algebraic Reorganization

Local Block Matrices: I + A

- L;r Lia Uy { rr
LBB—(LAI LAA)’ uB_(uA)’ I'B—(rA>

Dual Continuity: Lagrange Multipliers

A is a vector of Lagrange multipliers used to impose
continuity on the dual dependent variables ua.

B = 00 , Baua =0, Lpgup+Lpggug +B'A=rg
0 Bx

Final Block Matrix Form

T
Lz Lgn B up rp
L=|{Llop Lon 0 |, u=|ung|, r=|rn
A B 0 0 A 0
» Los Alamos |
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Solution and Reduction
Solutions for up and uy
up — LpL (rB — Lpnuy — BT)\)
Sun = Lon — Loslpplan
un = Sl [ 11— LusLyg (s — BT
Global Schur Complement Equation for )
FA=d

F=B(Lpp +LyplenSanluslyy) B

—1 —1 —1
% d = Blgp [PB — LpuSpp (PH - LHBLBBI'B)}
> Los Alamos |
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Algorithms: Example

Schur Complement Matrix-Vector
Product FA, Egs. (8) and (9)

Compute up — BT\, using restriction Rp and sign o.
Compute up — Lzzup, using LAPACK.
Copy vp = ug.
Compute umg; = Lggug.
Assemble ury; into upg,, using extension R%}.
Compute ur, — Sguyg, using SuperLU_DIST.
Disassemble uyy, into uyy, using restriction Ryj.
Compute ug = Lpnur;.

Compute up = Lgpup, using LAPACK.

. Add ugp = ug +vp.

i 11.

Compute FA = Bupg, using extension Rg and sign o.
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Cell-Wise Preconditioning

Definitions For Each Subdomain ¢,

B%), A = scaled jump matrix
RS)A — restriction matrix from full interface to dual variables

SS) = Schur complement obtained by eliminating interior variables

Preconditioner
T
-1 _ Z (1) RU) g()RU)TR()T —1gy — pm-1
t—1
- fé; Alamos
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Solution Strategy

Small dense block matrices of Lgg solved locally by LAPACK.
Sparse global, primal matrix $; solved by SuperLU.

 Short-term: redundant on all processors.
e Medium-term: distributed SuperLU.
* Long-term: ILUn-preconditioned GMRES.

Global Schur complement matrix F solved by matrix-free parallel
preconditioned GMRES.

Choose primal interface constraints to provide coarse global problem,
ensure scalability. 2D: vertices. 3D: more complicated.

The scalability of F is accomplished by the coarse, primal solver. The
quality of the preconditioner determines the rate of convergence but
not the scalability.

-
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Research Program

» Use existing 2D SEL spectral element code as test bed.

» Implement FETI-DP as a modification of existing static condensation
routines.

» Study a progression of extended MHD systems as nx, ny, and nproc are
increased to determine constancy of:
 condition number
* Krylov iterations to convergence

e Cpu time per processor
» Extend spectral element code to 3D.

» Investigate optimal choice of primal constraints for scalability.
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Test Equation

Anisotropic Convection-Diffusion

Scalar PDE

%+V-VUV-(D-VU)+S

Velocity Vector and Diffusion Tensor

(o Dy Dyo
p— D:
() e (o o)

D1y =dy, Doz =1/dy, Dio=di +da, Doy = dy — do

detD =1 +d3 —d?

Source Term

S(x,y) = sin(mmz) sin(nry)

Initial and Boundary Conditions

u(z,y,t) =0atx=0,1; y=0,1, t=0
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Parallel Scaling Tests
Isotropic Heat Equation
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Parallel Scaling Tests
Anisotropic Heat Equation
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Parallel Scaling Tests
Anisotropic Convection-Diffusion Equation
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Status of Development of FETI-DP: Past Work

Literature study, equations derived, algorithms formulated.

Code written, compiled, debugged: ~2500 new lines of Fortran 95.
Extensive testing and verification of method on single real processor.
Operation on parallel Linux clusters; bassi.nersc.gov.

Scaling tests, comparison to older method of static condensation.

Profiling and optimization: understand where time is going, tune algorithm.

vV V. V ¥V V V VY

Scalability appears to extend to asymmetric problem, convection-diffusion
equation, condition number doesn’t scale increase with problem size.

» Problem: waves, hyperbolic problems.
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Status of Development of FETI-DP: Future Work

» Treatment of hyperbolic problems.

» Physics-based preconditioning applied at the level of vectors
and matrices. Preserve flux-source form, adapt FETI-DP
implementation. Luis Chacon.

» Apply to extended MHD, 2D reconnection.
> Extension to C! triangles, incorporation into M3D.

» Extension to 3D; optimal choice of primal constraints.
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