Error Field Calculations with M3D

Josh Breslau

CEMM Meeting Dallas, TX November 16, 2008

Motivation

- Left uncorrected, the NSTX error field produces magnetic islands that can mode lock, braking plasma rotation and destabilizing RWMs.
- Analysis with IPEC has helped to predict these effects and design effective mitigation strategies.
- Analysis with M3D can extend these results to the nonlinear, resistive, rotating plasma regime inaccessible to the ideal linear code.
- M3D analysis should be extensible to other RMP effects, such as potential ELM mitigation or destabilization.

Calibration with IPEC

- In order to establish a baseline for comparison, we first compared the steady-state predictions of island widths in response to boundary perturbations between codes.
 - Add various low-m, n=1 perturbations of specified amplitude to initial poloidal flux on plasma boundary:

$$\tilde{\psi}_{boundary}\left(\theta,\varphi\right) = \tilde{\psi}_{0}\cos\left(\varphi - m\theta\right)$$

- Measure plasma displacements, singular currents with IPEC; infer island widths.
- Solve for instantaneous equilibrium+vacuum field (or evolve M3D nonlinearly until saturation of *n*=1 islands to include plasma response), measure island widths directly, compare to linear results.

1st Test: DIII-D Equilibrium, q_0 =1.07

Begin by solving the Poisson equation

$$\frac{\partial^2 \psi}{\partial R^2} - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial z^2} = -RJ_{\phi}$$

for ψ , subject to the perturbed boundary condition, where J_{ϕ} is the unperturbed equilibrium toroidal current density.

Time-evolving from this state with various choices of resistivity, viscosity, etc. will show the effect of the plasma response on the islands.

Instantaneous Perturbed Flux

Island Widths are Characterized using Field-line-following diagnostic

2,1 Island Widths agree well with Inferred IPEC Widths in Linear Regime

IPEC prediction is inferred from formula based on singular current sheet at rational surface in ideal model, shielding interior.

m=2, n=1 perturbation applied at boundary

Nonlinear Studies Based on EFIT Reconstruction of NSTX shot 122444

island at q=2 (s=0.6).

Steady State Response

Island width has expected scaling with perturbation amplitude.

Peak response is at m=2.

Time-Dependent Response

- Start with zero perturbation, ramp up linearly to full size in five Alfvén times to produce current sheets.
- □ Magnetic Reynolds number S = 2000; Prandtl number Pr = 0.02; perturbation amplitude = 7.5×10^{-3} .
- Island size lags perturbation slightly, becomes stochastic on longer timescale.

Sharp current sheets form away from the q=2 surface

Circular Cross-Section at High Aspect Ratio

Radial zones are packed at q=2 surface to help resolve small islands.

Ramp up pert. over 50 τ_A

Ramp up pert. over 5 τ_A

Island Width Comparison

• Although the plasma response lags the perturbation, the final state should be independent of the ramp-up rate.

• Current sheet formation and shielding of interior plasma are not observed. To find them, use larger S, faster ramp...

Ramp up pert. over 1 τ_A

Small Islands Form as Current Sheet Decays

Penetration of Perturbed Current

t =10

t = 16

t = 30

Straight Cylinder

- "Unroll" A=3, circular cross-section tokamak by computing equilibrium with A=300, $q_{\min}=10^{-2}$.
- Study segment $0 < \phi < 2\pi/100$ with pbc, m=2, n=100 pert.

Summary & Future Plans

- □ M3D agrees reasonably well with IPEC ideal predictions of steady-state island width responses to model perturbations in linear regime.
- □ Current sheet formation is only detectable with large *S*, large perturbations, and rapid ramp-ups.
- □ When current sheet appears, interior is shielded for several ramp-up times even as 2,1 island grows rapidly.
- Scans to follow will also include rotation effects, and may make use of the new linear M3D-C¹ code for greater computational efficiency.
- □ More accurate models of the NSTX error (or applied RMP) fields will give better predictive capability.