# Progress on Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas

Alan H. Glasser

Collaborator: V. S. Lukin







Presented at the 50<sup>th</sup> Annual Meeting of the American Physical Society, Division of Plasma Physics Dallas, Texas November 17-21, 2008



# Scalability of Extended MHD Simulation

- $\gt$  3D extended MHD modeling of magnetically confined fusion plasmas requires petascale computing: 1 petaflop =  $10^{15}$  flops  $\sim 10^5$  procs.
- Scalability: doubling problem size and number of processors causes little or no change in cpu time to solution.
- Advanced extended MHD codes use high-order methods of spatial discretization. NIMROD, M3D, SEL/HiFi.
- ➤ Known scalable methods for elliptic and parabolic systems:
  - Multigrid. Applicable to low-order spatial discretization.
  - FETI-DP domain substructuring. Applicable to high-order spatial discretization.
- Extended MHD dominated by hyperbolic waves, multiple time scales. Requires parabolization, physics-based preconditioning. Luis Chacon.
- ➤ Matrix-free Newton-Krylov iteration.



# **Organization of Presentation**

- ➤ The SEL/HiFi spectral element code
- > Physics-based preconditioning.
- > Preconditioners for ideal and Hall MHD.
- > Static condensation and FETI-DP.
- > Scaling results.
- > Future plans.





# **SEL/HiFi Spectral Element Code**

- Flux-source form: simple, general problem setup.
- > Spatial discretization:
  - High-order C<sup>0</sup> spectral elements, modal basis
  - Harmonic grid generation, adaptation, alignment
- ➤ Time step: fully implicit, 2<sup>nd</sup>-order accurate,
  - $\theta$ -scheme
  - BDF2
- > Static condensation, Schur complement.
  - Small local direct solves for grid cell interiors.
  - Preconditioned GMRES for Schur complement.
- Distributed parallel operation with MPI and PETSc.





# **Spatial Discretization**

#### Flux-Source Form of Equations

$$\frac{\partial u^i}{\partial t} + \nabla \cdot \mathbf{F}^i = S^i$$

$$\mathbf{F}^i = \mathbf{F}^i(t, \mathbf{x}, u^j, \nabla u^j)$$

$$S^i = S^i(t, \mathbf{x}, u^j, \nabla u^j)$$

#### Galerkin Expansion

$$u^{i}(t, \mathbf{x}) \approx \sum_{j=0}^{n} u_{j}^{i}(t) \alpha_{j}(\mathbf{x})$$

#### Weak Form of Equations

$$(\alpha_i, \alpha_j) \dot{u}_j^k = \int_{\Omega} d\mathbf{x} \left( S^k \alpha_i + \mathbf{F}^k \cdot \nabla \alpha_i \right) - \int_{\partial \Omega} d\mathbf{x} \alpha_i \mathbf{F}^k \cdot \hat{\mathbf{n}}$$





# **Physics-Based Preconditioning**

#### **Factorization and Schur Complement**

### Linear System

$$\mathbf{L}\mathbf{u}=\mathbf{r},\quad \mathbf{L}\equivegin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix},\quad \mathbf{u}=egin{pmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \end{pmatrix},\quad \mathbf{r}=egin{pmatrix} \mathbf{r}_1 \ \mathbf{r}_2 \end{pmatrix}$$

#### **Factorization**

$$\mathbf{L} \equiv egin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix} = egin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{L}_{21} \mathbf{L}_{11}^{-1} & \mathbf{I} \end{pmatrix} egin{pmatrix} \mathbf{L}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{pmatrix} egin{pmatrix} \mathbf{I} & \mathbf{L}_{11}^{-1} \mathbf{L}_{12} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

## Schur Complement

$$\mathbf{S} \equiv \mathbf{L}_{22} - \mathbf{L}_{21} \mathbf{L}_{11}^{-1} \mathbf{L}_{12}$$





# **Exact and Approximate Inverse**

## **Preconditioned Krylov Iteration**

#### Inverse

$$\mathbf{L}^{-1} = egin{pmatrix} \mathbf{I} & -\mathbf{L}_{11}^{-1}\mathbf{L}_{12} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} egin{pmatrix} \mathbf{L}_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}^{-1} \end{pmatrix} egin{pmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{L}_{21}\mathbf{L}_{11}^{-1} & \mathbf{I} \end{pmatrix}$$

#### **Exact Solution**

$$egin{aligned} \mathbf{s}_1 &= \mathbf{\mathsf{L}}_{11}^{-1}\mathbf{r}_1, & \mathbf{s}_2 &= \mathbf{r}_2 - \mathbf{\mathsf{L}}_{21}\mathbf{s}_1 \ \mathbf{u}_2 &= \mathbf{\mathsf{S}}^{-1}\mathbf{s}_2, & \mathbf{u}_1 &= \mathbf{s}_1 - \mathbf{\mathsf{L}}_{11}^{-1}\mathbf{\mathsf{L}}_{12}\mathbf{u}_2 \end{aligned}$$

## Preconditioned Krylov Iteration

$$\mathbf{P} pprox \mathbf{L}^{-1}, \quad (\mathbf{LP}) \left( \mathbf{P}^{-1} \mathbf{u} 
ight) = \mathbf{r}$$

Outer iteration preserves full nonlinear accuracy. Need approximate Schur complement S and scalable solution procedure for  $L_{11}$  and S.





## **Ideal MHD Waves**

## **Linearized, Normalized Equations**

$$egin{aligned} & rac{\partial p}{\partial t} + \gamma 
abla \cdot \mathbf{v} = 0, & rac{\partial \mathbf{b}}{\partial t} = 
abla imes (\mathbf{v} imes \mathbf{B}) \\ & rac{\partial \mathbf{v}}{\partial t} + 
abla \cdot \mathbf{T} = 0, & \mathbf{T} = (eta p + \mathbf{B} \cdot \mathbf{b}) \mathbf{I} - \mathbf{B} \mathbf{b} - \mathbf{b} \mathbf{B} \end{aligned}$$

# **Approximate Schur Complement**

$$\mathbf{S}\mathbf{v} = \mathbf{v} + \nabla \cdot \mathbf{T},$$

$$\mathbf{T} \equiv h^2 \theta^2 \left\{ \left[ \mathbf{B} \cdot \nabla \times (\mathbf{v} \times \mathbf{B}) - \gamma \beta \nabla \cdot \mathbf{v} \right] \mathbf{I} - \mathbf{B} \nabla \times (\mathbf{v} \times \mathbf{B}) - \nabla \times (\mathbf{v} \times \mathbf{B}) \mathbf{B} \right\}$$





## Hall MHD Waves

# **Linearized, Normalized Equations**

$$\begin{split} &\frac{\partial p}{\partial t} + \gamma \nabla \cdot \mathbf{v} = 0 \\ &\frac{\partial \mathbf{b}}{\partial t} - \nabla \times \left( \mathbf{v} \times \mathbf{B} - d_i \frac{\partial \mathbf{v}}{\partial t} \right) = 0 \\ &\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot \mathbf{T} = 0, \quad \mathbf{T} = (\beta p + \mathbf{B} \cdot \mathbf{b}) \mathbf{I} - \mathbf{B} \mathbf{b} - \mathbf{b} \mathbf{B} \end{split}$$

# **Approximate Schur Complement**

$$\mathbf{S}\mathbf{v} = \mathbf{v} + 
abla \cdot \mathbf{T}$$

$$\mathbf{T} \equiv h^2 \theta^2 \left\{ \left[ \mathbf{B} \cdot \nabla \times (\mathbf{v} \times \mathbf{B}) - \gamma \beta \nabla \cdot \mathbf{v} \right] \mathbf{I} - \mathbf{B} \nabla \times (\mathbf{v} \times \mathbf{B}) - \nabla \times (\mathbf{v} \times \mathbf{B}) \mathbf{B} \right\} \\ - h \theta d_i \left[ \left( \mathbf{B} \cdot \nabla \times \mathbf{v} \right) \mathbf{I} - \mathbf{B} \left( \nabla \times \mathbf{v} \right) - \left( \nabla \times \mathbf{v} \right) \mathbf{B} \right].$$



## **Static Condensation**

- $\triangleright$  Implicit time step requires linear system solution:  $\mathbf{L} \mathbf{u} = \mathbf{r}$ .
- $\triangleright$  Direct solution time grows as  $n^3$ .
- ➤ Break up large matrix into smaller pieces: Interiors + Interface.
- > Small direct solves for interior.
- ➤ Interface solve by CG or GMRES, precoditioned with LU or ILU(k) on each processor, with Schwarz overlap between processors.
- Substantially reduces solution time, condition number.





## **FETI-DP**

## Finite Element Tearing and Interconnecting, Dual-Primal



- > Small direct solves for interior.
- ➤ Parallel direct solve for primal points.
- ➤ Matrix-free preconditioned GMRES for dual points.
- Primal solve provides information to dual problem about coarse global conditions, providing scalability.
- ➤ Interior preconditioner accelerates convergence of dual solve.





## **FETI-DP**

Finite Element Tearing and Interconnecting, Dual-Primal Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund, "Dual-Primal FETI Methods for Linear Elasticity," Comm. Pure Appl. Math. **59**, 1523-1572 (2006).

#### **Partition**

- $\triangleright$  I: Interior points, inside each subdomain (grid cell)  $\Omega_i$ .
- $\triangleright$   $\Delta$ : Dual interface points, continuity imposed by Lagrange multipliers.
- $\triangleright$   $\Pi$ : Primal interface points, continuity imposed directly.

#### **Initial Block Matrix Form**



$$\mathbf{L}\mathbf{u} = \mathbf{r}, \quad \mathbf{L} = \begin{pmatrix} \mathbf{L}_{II} & \mathbf{L}_{I\Delta} & \mathbf{L}_{I\Pi} \\ \mathbf{L}_{\Delta I} & \mathbf{L}_{\Delta\Delta} & \mathbf{L}_{\Delta\Pi} \\ \mathbf{L}_{\Pi I} & \mathbf{L}_{\Pi\Delta} & \mathbf{L}_{\Pi\Pi} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \mathbf{u}_I \\ \mathbf{u}_{\Delta} \\ \mathbf{u}_{\Pi} \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} \mathbf{r}_I \\ \mathbf{r}_{\Delta} \\ \mathbf{r}_{\Pi} \end{pmatrix}$$



# **Algebraic Reorganization**

#### Local Block Matrices: $I + \Delta$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

#### **Dual Continuity: Lagrange Multipliers**

 $\lambda$  is a vector of Lagrange multipliers used to impose continuity on the dual dependent variables  $\mathbf{u}_{\Delta}$ .

$$\mathbf{B} = egin{pmatrix} \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{B}_{\Delta} \end{pmatrix}, \quad \mathbf{B}_{\Delta}\mathbf{u}_{\Delta} = 0, \quad \mathbf{L}_{BB}\mathbf{u}_{B} + \mathbf{L}_{B\Pi}\mathbf{u}_{\Pi} + \mathbf{B}^{T}\lambda = \mathbf{r}_{B}$$

#### Final Block Matrix Form

$$\mathbf{L} = egin{pmatrix} \mathbf{L}_{BB} & \mathbf{L}_{B\Pi} & \mathbf{B}^T \ \mathbf{L}_{\Pi B} & \mathbf{L}_{\Pi \Pi} & \mathbf{0} \ \mathbf{B} & \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \mathbf{u} = egin{pmatrix} \mathbf{u}_B \ \mathbf{u}_\Pi \ \lambda \end{pmatrix}, \quad \mathbf{r} = egin{pmatrix} \mathbf{r}_B \ \mathbf{r}_\Pi \ \mathbf{0} \end{pmatrix}.$$



## **Solution and Reduction**

Solutions for  $u_B$  and  $u_{\Pi}$ 

$$\mathbf{u}_B = \mathsf{L}_{BB}^{-1} \left( \mathbf{r}_B - \mathsf{L}_{B\Pi} \mathbf{u}_\Pi - \mathsf{B}^T \lambda 
ight)$$

$$\mathbf{S}_{\Pi\Pi} \equiv \mathbf{L}_{\Pi\Pi} - \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \mathbf{L}_{B\Pi}$$

$$\mathbf{u}_{\Pi} = \mathbf{S}_{\Pi\Pi}^{-1} \left[ \mathbf{r}_{\Pi} - \mathbf{\mathsf{L}}_{\Pi B} \mathbf{\mathsf{L}}_{BB}^{-1} \left( \mathbf{r}_{B} - \mathbf{\mathsf{B}}^{T} \lambda 
ight) 
ight]$$

Global Schur Complement Equation for  $\lambda$ 

$$\mathbf{F}\lambda = \mathbf{d}$$

$$\mathbf{F} = \mathbf{B} \left( \mathbf{L}_{BB}^{-1} + \mathbf{L}_{BB}^{-1} \mathbf{L}_{B\Pi} \mathbf{S}_{\Pi\Pi}^{-1} \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \right) \mathbf{B}^T$$



$$\mathbf{d} = \mathbf{B} \mathbf{L}_{BB}^{-1} \left[ \mathbf{r}_B - \mathbf{L}_{B\Pi} \mathbf{S}_{\Pi\Pi}^{-1} \left( \mathbf{r}_\Pi - \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \mathbf{r}_B \right) \right]$$

UNCLASSIFIED



# FETI-DP, Variational Formulation Symmetric Matrix

$$\mathbf{L}\mathbf{u} = \mathbf{r}, \quad \mathbf{B}\mathbf{u} = 0, \quad \mathbf{L}^T = \mathbf{L}$$

$$\mathcal{L} \equiv \frac{1}{2} \left( \mathbf{u}, \mathbf{L} \mathbf{u} \right) - \left( \mathbf{u}, \mathbf{r} \right) + (\lambda, \mathbf{B} \mathbf{u})$$

$$rac{\delta \mathcal{L}}{\delta \mathbf{u}} = \mathbf{L} \mathbf{u} - \mathbf{r} + \mathbf{B}^T \lambda = 0$$

$$rac{\delta \mathcal{L}}{\delta \lambda} = \mathbf{B} \mathbf{u} = 0$$





# **Solution Strategy**

- $\triangleright$  Small dense block matrices of  $\mathbf{L}_{BB}$  solved locally by LAPACK.
- $\triangleright$  Sparse global, primal matrix  $S_{\Pi\Pi}$  solved by SuperLU.
  - Short-term: redundant on all processors.
  - Medium-term: distributed SuperLU.
  - Long-term: ILU(*k*)-preconditioned GMRES.
- ➤ Global Schur complement matrix **F** solved by matrix-free parallel preconditioned GMRES.
- ➤ Choose primal interface constraints to provide coarse global problem, ensure scalability. 2D: vertices. 3D: more complicated.
- The scalability of **F** is accomplished by the coarse, primal solver. The quality of the preconditioner determines the rate of convergence but not the scalability.



# **Condition Number and Scalability**

#### Condition Number

$$\mathbf{L}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \quad \kappa(\mathbf{L}) \equiv \frac{\lambda_{\max}}{\lambda_{\min}}$$
 (19)

#### **Scalability Theorem**

A matrix **L** is scalable if its condition number, and hence the number of Krylov iterations to convergence, is independent of the number of subdomains. Jan Mandel and Radek Tezaur, "On the convergence of a dual-primal substructuring method," *Numer. Math* **88**, 543-558 (2001). For a symmetric-positive-definite (SPD) matrix, the condition number of the FETI-DP dual matrix is bounded by

$$\kappa(\mathbf{F}) \le C \left[ 1 + \log^2(H/h) \right], \tag{20}$$

with C constant and H and h characteristic coarse and fine grid spacings.



# **Weak Scaling Test Problem**

- ➤ Ideal or Hall MHD waves in a doubly periodic uniform plane.
- $\triangleright$  2D **k** vector in computational plane, 3D **B** vector specified by spherical angles about normal to plane. Continuous control of angle  $\theta$  between **k** and **B**.
- ➤ Initialize to pure eigenvector: fast (whistler), shear (kinetic Alfven), or slow wave.
- ➤ Unit cell: (knx, kny) full wavelengths.
- > Two test cases:
  - 1. Each processor has one unit cell. Scale up unit cells with nproc. Hold (nx,ny,np) fixed in each unit cell.
  - 2. One unit cell held fixed, scale up (nx,ny) with nproc. Splits wave length among multiple processors.
- $\triangleright$  1 64 processors on bassi debug queue.
- ➤ Largest test problem size: 16 x 16 wavelengths, 64 processors, 589,824 spatial locations, 3,538,944 variables, 2 large time steps, CFL number ~100, 1 jacobian evaluation, wallclock time ~30 seconds.





# **FETI-DP Dual Condition Number**

MHD Slow Wave, Various k-B Angle  $\theta$ 





Number of Processors

## **Wallclock Time to Solution**

MHD Slow Wave,  $\theta = 75^{\circ}$ , FETI-DP vs. Static Condensation





**Number of Processors** 

UNCLASSIFIED



## **Conclusions**

#### Physics-Based Preconditioning

- Reduces matrix order requiring solution
- Improves condition number and diagonal dominance.
- Similar to time step split, but maintains full nonlinear accuracy.

#### > FETI-DP

- Provides scalable solver for SPD preconditioning equations, i.e. ideal MHD.
- Computational results verify analytical scalability theorem.
- Requires extension to non-SPD problems, such as Hall MHD.
- Primal solve requires minor modifications to achieve true scalability.
- 3D primal constraints require research.

#### > Static Condensation

- Appears to be as scalable as FETI-DP on 1-64 processors.
- No increase in condition number and time as theta approache 90 degrees.
- Requires no extension for non-SPD problems.
- Already implemented for the 3D HiFi spectral element code (Sato).





## **Future Plans**

- ➤ Increase number of processors; bassi → franklin.
- ➤ Improve parallel implementation, scaling; profiling.
- > Test static condensation on Hall MHD Schur complement.
- ➤ Investigate extension of FETI-DP to non-SPD problems.
- Continue Schur complement development for dissipative terms, nonuniformity, and nonlinearity.
- > Port methods to 3D codes:
  - HiFi
  - M3D
  - NIMROD





# Poster Sessions, 9:45 – 12:45 AM Monday

#### ➤ BP6.00050

"Development and verification of HiFi -- an adaptive implicit 3D high order finite element code for general multi-fluid applications"

V. S. Lukin, A. H. Glasser, W. Lowrie, E. Meier, U. Shumlak, M. Sato

#### ➤ BP6.00051

"Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas" Alan H. Glasser



