Progress on NIMROD disruption mitigation modeling

V.A. Izzo, *et. al.* Presented at CEMM Meeting 11-16-08

Recent efforts focus on many aspects of the runaway electron problem

Three topics:

- D₂ Dilution cooling as an "optimal" runaway suppression mechanism (vast majority)
- Effects of plasma elongation on MHD and runaway confinement (very brief)
- Direct calculations of suprathermal electron acceleration and confinement (also brief)

Recent efforts focus on many aspects of the runaway electron problem

Three topics:

- D₂ Dilution cooling as an "optimal" runaway suppression mechanism
- Effects of plasma elongation on MHD and runaway confinement
- Direct calculations of suprathermal electron acceleration and confinement

Overview of the runaway electron problem

- The crux of the problem:
 - Disruptions \rightarrow large E fields \rightarrow high energy runaway electrons
 - Avalanche amplification of runaways:

 $A = exp(\gamma t) \approx exp(2.5I_p)$ (Huge in ITER)

- Solutions?
 - Collisional suppression

$$E_{crit} = 0.12n_{e,20}$$

 Confinement time shorter than acceleration time

D₂ dilution should be optimal for collisional suppression

$$E/E_{crit} = \eta(n,T)j/0.12n_{e,20} \propto T^{-3/2}n^{-1}$$

- The least cooling for the largest density increase minimizes E/E_{crit}
- Imagine cooling purely by D₂ dilution, neglecting all radiation and atomic physics. Then T~n⁻¹. In this case, $E/E_{crit} \sim n^{1/2}$
- When the temperature drops more strongly due to radiative cooling, then E/E_{crit} rises more sharply with density. Since the thermal quench precedes the current quench, E/E_{crit} always gets worse before it gets better
- In normal DIII-D operation, assume T=4keV, n=8x10¹⁹/m³, j=2x10⁶A/m². Then we have **E/E_{crit}=0.09**
- For ITER nominal parameters of T=8.9keV, n=10²⁰/m3, j=1.4x10⁶A/m², this gives us E/E_{crit}=0.01

DIII-D Simulation assumes 100x density increase, in-situ carbon

A uniform carbon density of 1% of the pre-dilution core electron density (8.6x10¹⁷/m³) is assumed. At this initial T_e (~40eV), the physical value of Spitzer resistivity can be used for the simulation without numerical difficulty

Both resistivity and thermal conduction impact occurrence/amplitude of MHD

Two perpendicular heat transport models are considered:

Pfirsch-Schluter-

$$\chi_{\perp}(m^{2}/s) = \frac{1.411 \times 10^{-21} n \ln \Lambda_{i}}{B^{2} T^{1/2}} (1+1.6q^{2})$$

Braginskii-
$$\chi_{\perp}(m^{2}/s) = \frac{2kT}{m_{i} \omega_{ci}^{2} \tau_{i}} \approx \frac{2.4 \times 10^{-20} n}{B^{2} T^{1/2}}$$

Difference is ~3-4x

Two values of resistivity, Spitzer and a factor of 2.3 higher

Significant current peaking can occur

Spitzer resistivity, Braginskii transport

Flux surfaces tend to re-heal in the current quench

The case with the most significant MHD (P-S transport, 2.3 times Spitzer resistivity) sees nearly all flux surfaces destroyed after 1/1 crash, but the flux surfaces mostly reform by the end of the current quench

Rosenbluth ratio in DIII-D is bad news

ITER simulation has 150x density multiplication

- An ITER equilibrium generated by L. Lao is used
- D_2 dilution cooling by a factor of 150 is assumed for the initial condition, where the post dilution density is assumed to be a uniform value of 1.5×10^{22} /m³

•A uniform beryllium density of 1% of the predilution electron density (10¹⁸/m³) is assumed. The beryliium radiation is comparable to the bremsstrahlung in some regions, but does not dominate the overall radiated power

•Simulation is run at actual Spitzer resistivity, P-S transport

Thermal quench is MHD-free

More uniform cooling, little current peaking

Rosenbluth ratio is much better in ITER

Dilution cooling conclusions

- You can't really beat the Rosenbluth criteria in DIII-D, but demonstration of massive particle injection in the core maybe sufficient for ITER
- ITER shows less propensity for MHD in this mitigation scenario. Also, flux surfaces heal during the current quench in DIII-D
- Particle loss in the NIMROD simulations is the biggest issue for ITER
 but I have no idea if this is real

Recent efforts focus on many aspects of the runaway electron problem

Three topics:

- D₂ Dilution cooling as an "optimal" runaway suppression mechanism
- Effects of plasma elongation on MHD and runaway confinement
- Direct calculations of suprathermal electron acceleration and confinement

Does elongation effect runaway electron confinement during disruptions?

Some tokamaks tend to observe RE's during some current quenches:

FTU, Tore-Supra, TEXTOR all run circular, limited plasmas

JET ran only limited plasmas for a number of years before the installation of its first divertor. Disruption runaways were much more prevalent back then, compared to now.

JT-60U is diverted, with low elongation

Some tokamaks don't see RE's during the current quench (except perhaps during killer pellet experiments):

DIII-D, ASDEX-U, and C-Mod run diverted, elongated plasmas (vertically unstable)

This suggests that elongation and/or vertical stability might have something to do with generation of runaways during a disruption.

C-Mod low elongation simulation in progress

Previous high elongation C-Mod simulation with Ne gas jet. Higher n modes grow first, fast growth of n=1 tends to trigger thermal quench

Low elongation simulation with other wise similar plasma parameters and Ne jet parameters in progress– no conclusions yet

Recent efforts focus on many aspects of the runaway electron problem

Three topics:

- D₂ Dilution cooling as an "optimal" runaway suppression mechanism
- Effects of plasma elongation on MHD and runaway confinement
- Direct calculations of suprathermal electron acceleration and confinement

Postprocessing to determine runaway confinement time in NIMROD results

Experimental Motivation:

 C-Mod experiment seeds plasma with suprathermal electrons to study runaway conversion and confinement during the disruption.

Procedure:

- Assume (initially) that suprathermal/runaway electrons follow the field lines perfectly
- Initialize suprathermal electrons with given positions and velocities
- Run nimfl to track electron trajectories, but advance electron velocity and time using F=eE-mvµee

Rapid loss of electrons during the thermal quench

Summary

- D₂ Dilution cooling as an "optimal" runaway suppression mechanism
 - \rightarrow Mostly wrapped up, some interesting results, probably a short paper
- Effects of plasma elongation on MHD and runaway confinement
 - \rightarrow Very preliminary, eventual experimental comparison w/ C-Mod
- Direct calculations of suprathermal electron acceleration and confinement
 - $\rightarrow\,$ Some results, but more physics to include, possible inclusion in nimrod during run time

