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INTRODUCTION
A theoretical model of the electron dynamics for slow, macroscopic plasma processes (such as
the "neoclassical” tearing instabilities) in a long-parallel-mean-free-path collisionality regime

will be presented.

The model is a hybrid one, with fluid conservation equations for particle humber, momen-

tum and energy, and drift-kinetic closures.

Key to this work is a careful choice of the orderings relating fundamental parameters, aimed at
describing as realistically as possible the low-collisionality, fusion-relevant plasmas of interest.
The conventional ordering of the collisionality in neoclassical theory is deemed too high for
the ions, even in the banana regime. Instead, the orderings p,/L ~ L/ ~ (m./m,)"/? < 1
are adopted, which still yield a theory equivalent to the one based on the neoclassical banana

orderings for the electrons.
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BASIC FRAMEWORK AND ORDERING ASSUMPTIONS

Quasineutral plasma with one ion species of unit charge:

on on
n,=n.=n, &—l—v-(nub):atJrV-(nue):O,
%—]?z—VXE, j = en(u,—u,) = VxB.

Small ion Larmor radius fundamental expansion parameter:

dr~pJL~kp <1.

Small mass ratio and low collisionality orderings, linked to §:
(me/mL)U2 ~¢6, hence p./L~ kp, ~ &
and

U, ~ 0 ~ 6°Q, , hence N\~ Vi [ Vi ~ Ve Ve ~ 6 'L .



Macroscopic flows of the order of the diamagnetic drifts:
Uy, ~ Ue ~ Usye ™ 5UthL ~ 52Uthe .

Close to Maxwellian distribution functions with comparable ion and electron temperatures and

small parallel temperature gradients:

n \V—USP . 2
b'VTsN52 TS/L7 TeNCrm fNMLNéfML7 fNMeN52 fMe .

Using ()., as reference, we have the following hierarchy of time scales:

O(6~ 2) 2 Qe = Vtne/ pe

O): Qo =v,/p. ~ Vine/ L

O0): Ve~ wa=kca~wg=kcg~vy,/L
O(6?) - ~ ke~ Wige = kg e

O(8%) :  collisional dynamics



FLUID AND DRIFT-KINETIC APPROACH

Non-Maxwellian parts of the distribution functions, fy);s, evaluated in the moving reference
frames of their macroscopic flows, like the Maxwellian parts.
2

I, v—u, and |v — u,|* velocity moments of fy,;; equal to zero.

Density, flow velocities and temperatures determined by fluid moment equations.
Solution of drift-kinetic equations for fy);; to provide the fluid closure terms. Since fys

are obtained in the reference frames of their macroscopic flows, the evaluation of the stress

and heat flux tensors is direct without the need of substracting the mean flows.



FLUID MOMENTUM AND TEMPERATURE EQUATIONS

mma(;L =en(E+u, xB)—-VnT,)-mn(u,-V)u, — V- [(pLH —p,.1)(bb —1/3) + PLGV}—V Pt et
aue coll
men— - = —en(E + u.xB) — V(nT,) - V- (pe) — per)(bb —1/3)] + F
O(nmviy,. /L) O(8* nmviy, /L) O(8°nm.vi,. /L)
ndl, 3n 5nT, coll
? ot = — ?U.L . VTL — nTLV -, — V- (QLHb + 2eB b % VTL) + G// .
ndl., 3n SnT, coll
? ot = — ?ue . VTe — nTev U — V- (qub — 9cB b X VTe) + Ge .

O(8nm, v}, /L) O(8*nm, /L)



KINETIC EQUATION FOR THE NON-MAXWELLIAN PART
OF THE ELECTRON DISTRIBUTION FUNCTION

In terms of velocity-space coordinates (v, x, «) in the reference frame of the electron macro-

scopic flow:
v = u/x,t) + v'cosy b(x,t) + v'siny [cosa ej(x,t) +sina es(x,t)] ,
the non-Maxwellian part of the electron distribution function can be represented as
e, x %, 1) = fvae@, x,x,t) + fyne, x, o, %, 1)
with

<fNMe>a - 27T j{d@ fN]\/[e =0 .

Then, keeping the accuracy of O(5*fy.) + O(5° fare):

. mev’ [(m
Inave = fore BT, ( T

2
— 5) siny (cosa ey —sina ep) - VT,



and fx). obeys the following drift-kinetic equation:

Of N o Ofvme T Of N e sinx (1o v Of N e
b - b-VI — —b-VInn——b-VInB =
9 + cosy (v I + - Vinn 9 o \m, Vinn 5 Vn N
v’ mev' v 2 coll
= {COSX T (5— T )b-VTe + cosx T b - [SV(peu — Del) — (pen —peL)VlnB —F. ]+
—%P@%:ﬂnd%V u —3b-[(b-V)u]) + 1‘ mw&—3[v (geyb) — G2
2 X 3T e e SnT Te qu o
1 moa'? (m' m2v' mv'
+ 6ol {2P2(COS X) T ( T 5) + e 10" T + 15| (b x k) - VT, +

moa” (ma’ 2y’ Mo
P -5 € _ 10— 15
[ »(Cos X) T ( T ) + T T +

(&

1
(bx VInB)-VT, +

6€B

/2
+ Py(cos x) ?:ZBT (b x Vinn)- VT, }fMe +

+ (O (fate, fvare) + CD (fvrtes frre)a + (O fases £) + O (faates Far))a

With the 1, ¢/ cos y and v> moments of fy,,. equal to zero, the 1, v'cosy and v'> moments of

this drift-kinetic equation are satisfied identically.



COLLISION OPERATORS

Based on the complete form of the linearized Fokker-Planck operators and using the elec-
tron collision frequency definition

clelnln A,

v, =
2,3
47Tm€'Uthe

the gyrophase averaged collision operators that enter in the drift-kinetic equation are as follows:

; 3
(3) _ Pellte (Tz’_ ) i | Vthe v\ AT, ,
(Cei” (fates fi))a m \T. 1) fare(v') vl o . Sa(0)]| +
Ve]||[Vthe oo (V) Awu, N
5 Jue(v) | & — far (V)| v cos
ENVp, v Vthy n
where
_ 2 ) 1 do(z)
Pla) = (2%)1/2/0 dt exp(—t"/2) and {(x) = 2 p(x) —x o




(CO(fares Fnare) + CD(fxare, Fre)a + (CP(Fxare, far))a = Clfyue] is Legendre diagonal:

C | fi)Pleosx)| = % leosx) QAR
with
CLAW) = “he)farof i) = ol IA0)] + ol Z 1A +
VeU? e, v/ ,0fi(v) v /
+ v’2h 8?/{§ (Uthe) Yo Ve filw) } -
e ] B I P R o I | P
the Uthe Uthy Uthy
and

,U/2 81}/

10 {U/Qacbﬁg}zl(u)]} B W;l) DR = —dm (o)

E[R[fl<v/>] _ v/202qle[fl<vl)]

80/2 ’

L0 pouli)] _ t

v"2 o' o’

VAW = A

,UIZ



ELECTRON CLOSURE VARIABLES

The kinetically defined closure terms in the electron fluid equations are:

(Pef| = Per) = 2mme /OOO dv’ v /(;T dy sinx Py(cosx) fyue = O(8*nmes,) + O(8*nmoi,) |

qp = mme [ o [T dx siny cosx fare = OW@nma,) + O nm,)

2Mele . Ml

Fcoll _ .
‘ 32m % Y T (2n) %8

(b x VT,) —

. B 53 2
— 27Tmel/€vfhe /OOO do’ /0 dx siny cosx fvme b = O (nmLeUthe) ;

2m V-1 53nm ’U3
coll ere T T O e%the
— - < 4 I~ L - e D— - .



APPLICATION: STATIONARY AXISYMMETRIC SYSTEM

V-B=0, j=VxB, E=-Vd—-VVyp
V- (nu,)=V-(nu,) =0 u—u—i'
L) T e) 9 e L en.]
b-VT, = O(6*T./L) , b-VI, = O*T,/L) , T.—T < T.

—en(E + u, xB) + V(nT)) = O(6*T,/L)

en(E + u. x B) + V(nT.) + V- |(p, — per)(bb —1/3)] = F = 0

3
Qnue-VT6 + nl.,V-u + V- (qub —

SnT,
2eB

beTe): 0



LOWEST-ORDER STATIONARY FLUID RELATIONS

The axisymmetric magnetic field is
B = VY xVp + RB,Vyp
and the lowest-order stationary fluid system (valid on the MHD time scale ¢t < 671Q_!) yields
the well known relations:
n=Ny), T,=T"(), @&=0oV(y)=0(Ti/e), RB,=(RB,)" () =I(y)

@l 1 dNOTW)
S — 5 ,

u, = u = U,(¢)B+ R?

From these, it follows that:

V- (bxk) = V- (bxVInB) = I(¢) b-VInB

b-[(b-V)u = U,()) b-VInB



HIGHER-ORDER STATIONARY ELECTRON FLUID RELATIONS

Keeping the highest accuracy of O(§°nm.v3,./L), the parallel component of the stationary

electron momentum equation yields

2
b SV(PeH —Per) = (pe) = Per) VID B — Fg‘)”] = NOTO p. v

© N0 (0 BR2

(& e

<e<1> n Te) eVoNO T

and keeping O(&°nm.v},, /L), the stationary electron temperature equation yields

5N O)7(0) )) sNOTO [ qr®)

: — N e 0] — ,
V- (qb) = V ( 5 P X VI e g5 P VB,

Notice that, within this highest available accuracy, the stationary electron temperature equa-

tion does not provide any information on the higher-order correction 7,(x) — T\" (¢)!



STATIONARY ELECTRON DRIFT-KINETIC EQUATION

Using the previous stationary fluid results and calling ¢ = fNMe/f](\g)e = ¥, g1 P(cosy), the

stationary electron drift-kinetic equation can be written as:

(cosxb @ + b VinB siny ag) =

0x 2 ox
- ed n 3 me? T, eVol
= v'cos) b‘v(ﬂ(m _N<0)) i (2 2Te()>b v(Té‘”) T R
meu' mo? (5 mo?\ I dTV
— 1P UB + 2+P — |5 — —( b-VInB
{ 2(cosX) e + [ Paleosx) 37" (2 2Téo))63 dy) } ViR
+ v'cosy D1 + C[g]
where
Vel Uthe |Vt v 4rvy,, . 1 % .
D, = I 3t t/ 5( ) _ e g () and Clg] = 0 [nge} > B(cosx) Cilgl]
enviy, v Vth, n fM =0




The stationary electron drift-kinetic equation can be solved with the methods of neoclassical

theory in the banana regime. Thus, using the variable
A(x,x) = sin? X Bpae(1)/B(x), 0 <\ < B./B, vj(x,0",A) = £0'(1 = AB/Bpa)'?

one gets

_ o) _ N() 12 — 70
9 3 €<CD P ) n—N 3 mev\ T, =1,
9 = g+ ©4/V) gu + B+ 00 = St = e G e e T

e

m.U,B m.I (5 a7 : / 3
eVe e ) /
+U|/| —T + eBT(())(Q 2T€()> d¢] (U|/|) H(1—=)) K(%v,)\)ﬂLh( (x,0,A)

where g,; ~ h'? ~ 4% and g,0 ~ h®) ~ §3.

The function 1% (x, v/, \) = O(5°) satisfies

ohB) (x, v, A eVl . .
v b (ax ) _ o Té‘”zoa}zz‘ + Dilx,v)| + Clo(v)) H(L—X) K@, v, A) + (v)/v) gp]
which has the integrability constraint
dl . eVl
fv—” C{ o(v)) H(1 = A) K(¥,v', ) + (v)/v') gpl} = j{dl 7;}22 + Di(x,0)

and the solution of this Spitzer problem determines the function K (¢, v, \).



ODD PARALLEL CLOSURES

Once the solution of the Spitzer problem f((zp,v’,)\) is known, it specifies the poloidal flow

stream function U,(¢) and the odd parallel closures ¢ |(x) and F"(x):

2 SO VAN / P /
Ue(v) = NO () ;mm(w) /0 dv v?’ﬁ(\g)e(w,v) /Old)\ K, v, \)

™m.B

5NOT0) ( [ dT"

B
> \eB du +U)+

Qe| = — / dv'’ /5fMe<¢7 ) /Old)\ k(wvvla)\)v

maw

2mev. (g
Fcoll _ eVe [Jll N(O)UeB .
e| 3(2m)1/2 (e T

3NOT dTe(O)) 2mm v v;,, B

2B di 5 h F ) [N K, 0, A)



CLOSURE PROBLEM FOR THE PRESSURE ANISOTROPY (p. — p..)

With a Legendre series expansion, (h@) + h(?’))(x, v,x) = %, h(x,v') P(cosy), the | = 2
projection of the drift-kinetic equation can be expressed after algebraic elimination of the

electric potential using the fluid momentum equation as:

0 B 2 2(Pel| — PeL) 0go(x,v")
B3?2p. 2 1B32 |2 N dl b. 2222
5’x{ 5 2(%,7) 3N O i Ox
5 mev”? T. F ecﬁ)” / 1 4
= (2 — 27’6(0)) b-V (2T€(0>> — N(O)Te(()) + D1<X7 v ) + & Cl [hl + gpl] )

where gy = hg + g,0 is an unknown function that must satisfy

fo ' o golx, ) fin(w,v) = 0 and Mo gox,0) fin(,v) = 0,
and

3B(x)

hi(x,v) = QB—W)

[ldx Ky, A)

The pressure anisotropy is given by (p.| —pe1) = (4mm,/5) J5° dv' v"* hy f](\% but the /5° dv’ v" f](\%

moment of the above equation results in an identity!



The conclusion is reached that, within the available accuracy of O(#°®), the stationary and
axisymmetric drift-kinetic equation does not contain information on the pressure anisotropy

moment (p.| — p.1)(x) = O(8°nTy).

This is consistent with the fluid moment equation for (p. — p..) which, in the stationary

and axisymmetric case and within O(5%) accuracy, reduces to

N (0)(0)

V- [(Q%BH - qu||)b} + 3¢erb-VInB + V- (ebfb > VTQ(O)) +

3N OTO)

e (bx VIV) -k =0.

So, the determination of (p, —p.i)(x) as well as T.(x) — 7T\"(¢)) in a stationary and ax-
ixymmetric system requires carrying the analysis at least to O(§!). This would necessitate a
drift-kinetic equation accurate to the second order of the electron gyroradius and including the

qguadratic parts of the collision operators.



SUMMARY

A closed fluid and drift-kinetic electron system for slow dynamics has been put forward. It is
accurate to the third order in a small ion gyroradius and large parallel collisional mean free
path expansion, and is compatible with the neoclassical theory for electrons in their banana

regime.

The stationary and axisymmetric limit of such electron system has been studied. Here, the
lowest significant order expressions for the poloidal flow and the odd parallel closures, ¢, and
Fgﬁ’”, have been derived. On the other hand, it has been shown that the lowest significant
order of the stationary pressure anisotropy, (p, — p.)/(nT,) = O(6%), is not determined by the
available third order equilibrium system. Therefore, even though the parallel collisional friction
force is known with third order accuracy, F"'/(nT,) = O(6°/L), the equilibrium parallel electric

e

field can only be determined in its collisionless second order: b-V(e®/T.) =b-Vinn = O(6*/L).



