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•  Current scheme for MHD equations (excluding extended physics) 

NIMROD currently uses a staggered in time 
method for advancing MHD eqns 
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•  Fully Implicit – Time stepping uses Crank-Nicholson (CN) 
–  Overcomes time step limitations due to nonlinearities such as 

advection, temperature-dependent diffusivities, etc. 
–  Larger time steps -> Faster time to solve?  
–  More accurate for a given dt, but  

     does it matter for problems of interest? 
•  JFNK - Iterative (Newton type) method to solve nonlinear F(u)=0 
•  Action of the Jacobian (in building Krylov subspace) is approximated 

–  Don’t need to form the analytical Jacobian 
•  Preconditioning needed to attain reasonable convergence rates 

–  Preconditioner usually a simple approximation to the full Jacobian 
–  Right preconditioned GMRES 
–  Physics-based preconditioning (Chacon 2008) 

Fully Implicit JFNK potentially has 
advantages over current scheme 



•  Apply Crank-Nicholson to discretized equations to solve for updates 
•  Evaluate all fields at the same time value 

Goal is fully implicit solve  
for all equations 



•  Linearize to compute the Jacobian 
–  An approximation is used for the preconditioner 

•  Define 

Symbolic Form for Fully  
Implicit Solve for MHD system 

Extended MHD => M is not diagonal 	





•  Following Chacon (2008) apply LDU on 2x2 matrix and invert 

 wher e 
•  Approximate          with 

•  Where          is the ideal MHD operator which contains all of the wave 
propagation information 
–  Psf,             matrices computed in NIMROD 
–  Physics-based preconditioning is same physics as our semi-implicit 

operator 

Physics-based preconditioning 
method follows Chacon 2008 



•  NIMROD is coded in dimensional units 
•  Physical quantities have a disparate range of scales 

•  In JFNK, using GMRES functional evaluations are used to determine the 
nonlinear iteration update 
–  Magnitude of each residual determines the magnitude of nonlinear update 
–  Differences in the mag. of residual and mag. of solution prevent convergence 

•  Conversion between nondimensional/dimensional variables and residuals 

Scaling/Nondimensionalization 
required for Newton solve 



•  Poor GMRES convergence 
–  Unable to reasonably advance in time  
–  Ineffective preconditioner? 

•  High wave-number noise 
•  Coupled, noise affects preconditioner 

•  y-component of velocity after one time step 

Fully Implicit JFNK with CN is unable 
to achieve reasonable convergence 



•  Model Problem: 1D sound wave with damping 
•  Reinterpret sound speed as Alfven speed 
•  CN: No damping for large Alfven speed 

CN may be responsible for 
inadequate damping 

Parameters taken from 	


test case	





CN can’t handle damped advection 
•  CN has difficulty accurately capturing physical diffusion in the 

presence of strong advection 
•  Model problem 

–  Exact Solution 

•  For CN, as     gets large  



•  Perhaps noise in solution produced by CN time-stepping 
•  Implement JFNK within the semi-implicit time stepping 

scheme 
–  Velocity solved at t=j*dt,  
–  n, T, B solved at t=(j+1/2)*dt 
–  Velocity decoupled, n decoupled – System for B,T only 

•  Nonlinear thermal conductivity, resistivity  

Side-stepping: JFNK within the semi-
implicit scheme 



Examples of Nonlinear coupling 

•  T coupled to B 
–  Thermal conductivity depends upon B 
–  B is independent of T 

•  B coupled to T 
–  T independent of B 
–  Temperature dependent resistivity 

•  Fully coupled 
–  Thermal conductivity depends upon B and T 
–  Temperature dependent resistivity 

•  Currently these couplings are integrated using a predictor-corrector 
method 
–  Predict T based on explicit B 
–  Update B based on predicted value of T 
–  Correct T based on “implicit” value of B 



•  Use semi-implicit scheme 
–  Solve for v, then solve for n 

•  Preconditioner for T,B system 
–  Assume small differences in 
–  Full variances of these terms retained in the functional 

•  Here D_B and D_T are the matrices for the non-coupled equations 
–  Use NIMROD factorization routines 

Split JFNK: Implementation Details 



Implicit evaluation of nonlinear  
coefficients is expensive 

•  Function evaluations are costly 

–  Need to update                                               based on Krylov update  
–  Vector transfers 

•  NIMROD structures  Flat (PETSc) vectors 



Less iterations, more work… 

•  Average over 100 time steps after evolving for 1000 time steps 
–  Temperature dependent resistivity 
–  Anisotropic thermal diffusion  

•  Nonlinear dependence on temperature 

•  Less GMRES iterations 
–  More work per GMRES it 
–  Vector B is 3x larger than T 
–  One iteration: Full system 4x more work than just T 

•  Potential benefit: many B and T iterations 



Next Step: JFNK with “mixed” finite 
element formulation 

•  Introduce auxiliary variable for heat flux along mag. Field 
–  Greater accuracy  

•  Remain within semi-implicit time-stepping scheme 
–  Solve a system for q,B,T 

•  Jacobian 



Additive Schwarz method is a 
scalable preconditioner 

•  Additive Schwarz method (ASM) limits communication 
–  Approximately applies matrix inversion 
–  Domain decomposition/processor mapping 

•  “Overlapping” Block Gauss-Jacobi relaxation 
–  Iterative 

•  Per-process preconditioner application 
–  No global LU decomp 
–  Local decomposition 

•  PETSc provides routines for ASM 
–  Matrices already ported to PETSc 
–  Can be set from command line options 

•  Systems investigated required many  
iterations 
–  SuperLU is faster 



Multi-level ASM required for an 
effective preconditioner 

•  Many iterations of ASM require a lot of communication 
•  Introduce a coarse level  

–  Many iterations on the coarse level 
•  Coarse level: linear elements 
•  Less work since fewer points 
•  Less communication on lower level 

–  Use coarse solution as an initial guess  

•  Not directly implemented in PETSc 
–  Define projection to coarse grid 
–  Define interpolation from coarse grid 

•  Independent Solver on coarse grid 

–  SuperLU_dist – smaller system 



•  Fully Implicit JFNK using CN wasn’t effective 
–  Use a different time-stepping scheme 

•  JFNK within the semi-implicit scheme 
–  Less iterations, more work 
–  May be competitive for some problems 
–  Implement “mixed” finite element formulation 

•  Additive Schwarz Method 
–  Scalable – available from interface to PETSc 

•  Many iterations for MHD problems investigated  

–  Implement multi-level method to be competitive 

Conclusions/Future work 


