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NIMROD currently uses a staggered in time
method for advancing MHD eqns
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* Current scheme for MHD equations (excluding extended physics)
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~ Fully Implicit JENK potentially has
advantages over current scheme

Fully Implicit — Time stepping uses Crank-Nicholson (CN)

— Overcomes time step limitations due to nonlinearities such as
advection, temperature-dependent diffusivities, etc.

— Larger time steps -> Faster time to solve?

— More accurate for a given dt, but
does it matter for problems of interest?
JFNK - lterative (Newton type) method to solve nonlinear F(u)=0
Action of the Jacobian (in building Krylov subspace) is approximated
F(u + ev) — F(u)
€
— Don’t need to form the analytical Jacobian
Preconditioning needed to attain reasonable convergence rates
— Preconditioner usually a simple approximation to the full Jacobian
— Right preconditioned GMRES
— Physics-based preconditioning (Chacon 2008)

F"@;’U%



Goal is fully implicit solve
for all equations

Apply Crank-Nicholson to discretized equations to solve for updates
« Evaluate all fields at the same time value
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V4 Symbolic Form for Fully

Implicit Solve for MHD system

» Linearize to compute the Jacobian
— An approximation is used for the preconditioner
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/ Physics-based preconditioning
A method follows Chacon 2008

* Following Chacon (2008) apply LDU on 2x2 matrix and invert
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where Py = Do — LM ~'U
« Approximate Ps... With

AV V. vAT + AV v
At
 Where L;q.1 is the ideal MHD operator which contains all of the wave

propagation information

— Py M~! matrices computed in NIMROD

— Physics-based preconditioning is same physics as our semi-implicit
operator

PyAV =n? — AL (AV)




/ Scaling/Nondimensionalization
AS required for Newton solve

 NIMROD is coded in dimensional units
« Physical quantities have a disparate range of scales

| Quantity | Dimensional Factor ‘

n n*=25x101"m=3
T T* =5x10%eV
B = 1tes1a

v vy = \/ pr——

t L*/vA

* In JFNK, using GMRES functional evaluations are used to determine the
nonlinear iteration update

— Magnitude of each residual determines the magnitude of nonlinear update
— Differences in the mag. of residual and mag. of solution prevent convergence

 Conversion between nondimensional/dimensional variables and residuals
B n* 7 r -
T* n 4
Dl — B* Dy = n*T




/ Fully Implicit JENK with CN is unable
to achieve reasonable convergence

 Poor GMRES convergence
— Unable to reasonably advance in time
— Ineffective preconditioner?

* High wave-number noise
* Coupled, noise affects preconditioner

0.000
x [m]

 y-component of velocity after one time step
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CN may be responsible for
iInadequate damping

* Model Problem: 1D sound wave with damping
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CN can’t handle damped advection

CN has difficulty accurately capturing physical diffusion in the

presence of strong advection
Model problem O,u = a0, u + y@iu
— Exact Solution

u = ue
ForCN, as gets large A = \(dt) — 1 Vdt
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~ Side-stepping: JFNK within the semi-
implicit scheme

* Perhaps noise in solution produced by CN time-stepping

* Implement JFNK within the semi-implicit time stepping
scheme
— Velocity solved at t=j*dt,
— n, T, B solved at t=(j+1/2)*dt
— Velocity decoupled, n decoupled — System for B, T only
* Nonlinear thermal conductivity, resistivity
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« T coupled to B J_[ Dg 0 ]

— Thermal conductivity depends upon B Lrg D
— Bisindependent of T

Examples of Nonlinear coupling

« Bcoupledto T Dg Lgr
— T independent of B J = [ 0 D ]
— Temperature dependent resistivity

* Fully coupled Dg  Lgr
— Thermal conductivity depends upon B and T J = [ Lrg Dr }

— Temperature dependent resistivity
« Currently these couplings are integrated using a predictor-corrector
method
— Predict T based on explicit B
— Update B based on predicted value of T
— Correct T based on “implicit” value of B
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« Use semi-implicit scheme
— Solve for v, then solve for n
« Preconditioner for T,B system (1), kL (T"),n(T), bb

— Assume small differences in
— Full variances of these terms retained in the functional

Dy Lpt Dg 0
Lrg Dr 0 D

« Here D B and D_T are the matrices for the non-coupled equations
— Use NIMROD factorization routines

on

Split JENK: Implementation Details
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Implicit evaluation of nonlinear

coefficients is expensive
F(u + ev) — F(u)

€

Function evaluations are costly F'|;v ~

— Need to update k|| (T), kL (T),n(T), bb based on Krylov update
— Vector transfers
* NIMROD structures <~ Flat (PETSc) vectors

!Add DT to T to update k_\perp(T) k_\parallel(T)
DO ibl=1,nbl
CALL vector_add(tion(ibl),work2(ibl),v2fac=0.5_r8)
ENDDO
CALL temp _store(’ion end’,newkarti)
CALL find kappa_t
! Subtract DT back off
DO ibl=1,nbl
CALL vector _add(tion(ibl),work2(ibl),v2fac=-0.5_r8)
ENDDO
CALL temp _store(’ion end’,newkarti)



Less iterations, more work...
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SI - GMRES | JFNK - GMRES | JFNK - {GMRES

Iterations | B 2.01, T 9.85 8.90 6.18
Time (s) 45.7 70.8 61.1

* Average over 100 time steps after evolving for 1000 time steps
— Temperature dependent resistivity
— Anisotropic thermal diffusion
* Nonlinear dependence on temperature

« Less GMRES iterations
— More work per GMRES it
— Vector B is 3x larger than T
— One iteration: Full system 4x more work than just T

» Potential benefit: many B and T iterations



Next Step: JFNK with “mixed” finite

/
N element formulation

 Introduce auxiliary variable for heat flux along mag. Field
— Greater accuracy

* Remain within semi-implicit time-stepping scheme
— Solve a system for q,B,T
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AS

Additive Schwarz method is a
scalable preconditioner

Additive Schwarz method (ASM) limits communication

— Approximately applies matrix inversion
— Domain decomposition/processor mapping

“Overlapping” Block Gauss-Jacobi relaxation

— lterative

Per-process preconditioner application

— No global LU decomp
— Local decomposition

PETSc provides routines for ASM

— Matrices already ported to PETSc
— Can be set from command line options

Systems investigated required many

iterations

— SuperlU is faster M1 = Z (R?)T AR
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Multi-level ASM required for an
effective preconditioner

Many iterations of ASM require a lot of communication

Introduce a coarse level

— Many iterations on the coarse level
» Coarse level: linear elements
» Less work since fewer points
* Less communication on lower level

— Use coarse solution as an initial guess

Not directly implemented in PETSc
— Define projection to coarse grid
— Define interpolation from coarse grid

Independent Solver on coarse grid
— SuperLU_dist — smaller system
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X
* Fully Implicit JENK using CN wasn't effective

— Use a different time-stepping scheme

« JFNK within the semi-implicit scheme
— Less iterations, more work
— May be competitive for some problems
— Implement “mixed” finite element formulation

« Additive Schwarz Method
— Scalable — available from interface to PETSc
» Many iterations for MHD problems investigated
— Implement multi-level method to be competitive

Conclusions/Future work



