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ITER

Disruptions in ITER can cause large
electromechanical stress on conduct-
Ing structures. In particular, toroidally
asymmetric magnetic perturbations
can produce a sideways force. This re-
search is concerned with the sideways
force produced by a vertical displace-
ment event (VDE) and a tearing mode
or kink mode.



Theory and simulation of tokamak disruptions

e H. R. Strauss, R. Paccagnella, J. Breslau, Wall forces produced dur-
Ing ITER disruptions, Phys. Plasmas 17, 082505 (2010).

e The worst case for asymmetric wall force may be caused by a vertical
displacement event (VDE) along with an unstable tearing or kink mode.

e The force depends strongly on the product of the mode growth rate
~ with the wall resistive penetration time 7,,,;;- The force is maximum
when ~7,,,;; = 1. In this regime the force is produced by halo current.

e The force also is proportional to vI2 where I is the total current.

e sideways horizontal force is consistent in magnitude with JET data
and ITER projected force.

e Simulations and simple analytic calculations produce several correla-
tions that can be compared to experiment and other theory and simu-
lations.



Modeling and Simulation Issues
|. Modeling Issues
a. Is ideal MHD or XMHD a better model?
b. what are correct boundary conditions?
c. resistive wall model: 2 walls, 3D blanket
Il. Simulation issues

a. plasma is supposed to scraped off by VDE, lowering edge q,
destabilizing MHD mode. instead initial state is VDE and n = 1 unsta-
ble.

b. should have higher S.



iIdeal MHD vs. XMHD

ideal MHD
e S =1019, 7 & hour
— no time for reconnection and
magnetic island growth
e current sheets, no magnetic
stochasticity
— VDE causes thermal quench
— different physics than expected
in ITER
e absorbing velocity boundary
condition needed, dv,/0n = O,
for wetting of wall
e difficult for VDE to scrape off
edge plasma to destabilize kink

XMHD
e S1/3 =215 x 103, 75 ~ ms
— fast reconnection (Aydemir,
Drake, Breslau ...), single helicity
e island overlap, magnetic
stochasticity, expected for
— thermal quench
— RMP
— prompt loss of runaways
e standard boundary condition
vp, = 0, Is OK, because wall is
wet by halo plasma.
e easier for VDE to scrape off
edge plasma



velocity boundary condition
e M3D uses standard rigid wall boundary condition v, = O.

Zakharov has claimed dv,/0n = 0, because the plasma penetrates
the wall.

A more general boundary condition would be v, /d + 0vn/On = O,
where d is the plasma penetration depth into the wall. But d must
be less than the wall thickness, which is in turn much less than the
width &>1 of MHD kink modes, where |0v,/0n| = kn|vn|. Because
knd < 1, itis a good approximation to take v, = 0.

— does it matter if the plasma penetrates microns into the wall?

e If plasma penetrates the wall, need equations of motion inside the
wall.

e Need a physics based analysis.



M3D and Resistive Wall

e The plasma is bounded by a thin resistive wall of thickness §, resis-
tivity n,. Outside the wall is vacuum. Normal component of magnetic
field is continuous at the wall,

B, = Bb,

where BY, B}, are the normal component of magnetic field in the vac-
uum, and the plasma, adjacent to the wall. ITER wall is more complex,
with 3D structures, will have to be modeled.

e other components of BY solved with Green'’s functions, given BY. The
current in the wall is given by

—~

Jw:Vsz%x(BU—Bp).

This allows time advance of
0B,
ot

:_ﬁ-vanJz_%wv-[ﬁx(BU—BP)]xﬁ]



ITER two wall model
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ITER has two walls. 7outer >>
rinmer \M3D modeling assumes
rimer — 0, The magnetic field
IS continuous at inner wall, no
force on inner wall. In between
Is a 3D blanket structure with in-

termediate penetration time,

Tz(zuter >> Thlanket == Tzzunner)

which will need to be modeled.



Wall Pressure
The normal component of the force density is
1

Inside the wall assume that B, = 5(BY 4+ BP). The normal wall force
density is the magnetic pressure jump across the wall:

_i 2 mv2
fun = o=(1B% = [B1?) ()

The tangential components of the wall force multiplied by the wall thick-
ness are

B
fur = JyBn = —=(B{ = B, (2)
— B, = 2By — pr 3
where the tangent to the wall is I = —n x ¢. Force is produced by

magnetic field jump across the wall.



Wall Force

The total wall force, normalized to be dimensionless, is given by

= RO Top2 ) 40 [ ARGund + full + fug) @

where Bg is the magnetic field on axis, and L, = [dl is the wall
circumference. Of particular importance is the net horizontal force, F,.

e Halo current is the normal component of current J% flowing into the
wall: It contributes to the wall force through B;g — B where RBY ~

¢ ¢
[tdl' RJ, + constant.
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Disruption Simulations

The M3D code was used to calculate disruptions. The initial state is an
ITER reference case equilibrium (FEAT15MA) with ¢ = 1.2 on axis,
which is VDE unstable. The equilibrium was rescaled to generate a
RWM / tearing unstable equilibrium with ¢ = 1.1 on axis, and kink un-
stable equilibria with ¢ = 0.82 and ¢ = 0.6 on axis. The latter model

what might occur if outer layers of plasma were scraped off during a
VDE.

Boundary conditions: 0By, /0t #= 0, v, = O.

Parameters: nR/(v4a?) = 107>, nwR/(v4ad) = 1071,
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VDE - Kkink disruption

a max 0.i18E+01 max 0.328+01 &1 max 0.68E+00

min —-0.18E+01 t= 46.18 min -0.11E+01 t= 46.18 min 0,Y9E-01 t= 486,18

o

A nonlinear kink mode at time t = 46.1874,, showing (a) poloidal flux
1, (b) toroidal current —RJy, (c) toroidal field RBy , at toroidal angle

o = .
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VDE - Kkink disruption

a max G.23E+01 max 0.61E+01 &1 max 0.48E+00

min -0 48E4+00 t 57891 min —0.7BE+00 L 5781 min 025E+Q0 t= 5791

The nonlinear kink mode at time ¢t = 57.9174,, showing (a) poloidal
flux <, (b) toroidal current —R.J,, (c) toroidal field RBy , at toroidal

angle ¢ = . The current is concentrated at the o and x points of 1.
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normal wall force

max 0.29E-01 min —0.21E-01 t= 46.i1B

Normal force density att = 46.18714, when itis maximum, f,(0/2w, ¢/27),
where 0 is the poloidal angle from the origin, and ¢ is the toroidal angle.
The horizontal axis is 6 /27, and the horizontal axis is ¢/27. The force
IS concentrated near the top of the wall, on the inboard side.
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Time dependence of I, P, TPF, Hy and Fy

P.I,Hf, TPF,Fx vs. time
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toroidal current I, pressure P, TPF, halo current fraction H ; and hori-
zontal force F; as a function of time. The quantities I, P, and F are in
arbitrary units. There is a close time correlation of halo current fraction
H ¢ and horizontal force F.
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VDE - RWM / tearing disruption

8 max O.BTFE+L0D [ max 0.30E+01

b max 0.42E-01 &1 max 0.34E+00
min 037E-01 t= 11845

min —0.19E+01 t 11845 min —0.6BE+00 ¢t 118.45 min —0.862E-05 t 118.45

A nonlinear RWM / tearing mode at time t = 118.45714,, showing

(a) poloidal flux %, (b) toroidal current —R.Jy, (c) temperature T, (d)
toroidal field RB , at toroidal angle ¢ = 7. The mode has predomi-
nantly m,n = 2, 1 structure.
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VDE - RWM / tearing disruption

a8 max O0.13E+01 [ max 0.32E+01 b max Q.25E-01 gl max 0.24E+00
min —0:656E+00 L= 13043 min —0I1E4+01 t= 13043 min —0:¥1E-04 L= 13043 min 08BE-01 t= 13043

The nonlinear RWM / tearing mode at time ¢t = 130.43714,, Show-
ing (a) poloidal flux v, (b) toroidal current —R.Jy, (c) temperature T,
(d) toroidal field RB , at toroidal angle ¢ = w. The plasma current
and temperature are more broken up, indicating magnetic stochasticity
characteristic of “classical’ disruptions.
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Scaling of horizontal force Fi with vy7y,.
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The force tends to a limit for an ideal conducting wall v, — oo, and
Is zero for 7, = 0. The force has a maximum for v, =~ 1. The curves
correspond to different initial rescaling of the equilibrium: “1” — g = .6,
“2" —qo = .8, “3"— qo = 1.1 The difference between force “1” and “2”
IS o 7.

18



Scaling to ITER and JET

Outward wall force in ITER is Fyppp = 9.03 x 10°N. The dimen-
sional horizontal wall force is F.;7pp = Fz X Frppgr. The ITER hori-
zontal force corresponding to point “a” of the previous graph is 65M N.
The factor Fyrpp scales as 12, where I, < (aB) is the plasma cur-
rent, assuming fixed aspect ratio and q. In JET, the current is about
20% of the ITER current, so that the JET horizontal force could be 2.75
MN. This value is consistent with JET experiments.
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More on simulation model

e v, = 1 effect is because of competition between n = 1 mode and
VDE to reach the wall.

e force appears «x vI2f(y7w), has some numerical and analytic sup-
port

— ideal MHD RWM has vy, =~ 1, but for large 7, the force is small.
e Worst case may be VDE carrying MHD stable plasma to wall

— plasma edge is scraped off, g drops, plasma becomes MHD unstable,
but so far has been difficult to simulate

— may need mesh refinement where VDE localizes the plasma
21



Model Analytic Force Calculation

Inductive wall force can be calculated using a simple model. The mag-
netic field is approximately,

B = V¢ x ¢ + Bg,

assuming circular flux surfaces, v = ¥g(r) + Ymn exp(imb + ing),
with constant toroidal current V2o = 2B/(qoRg) inside the plasma
boundary at r = a.

Bg (1 —go0)(a/b)
q%R% 1 — (a/b)2 + 2%
where a IS plasma radius, b is wall radius, £ is plasma displacement in

the major radius R direction. This gives an approximately vI2 scaling,
for small growth rate, v oc (1 — qg). Testable: Fp x &g, Fiy x &5.

ER- ()

Fp=



Current vs. Displacement Calculation

A vertical (VDE) displacement interacts with the helical kink.

Jy = Jyo(r —r1sin@) + Jy1(r —r1sin ) cos(d + ¢)

where 1 > O for an upward displacement. The total toroidally varying
plasma current is

dJ s
I, = /drrd@ ~CLrisingcos(d + ¢) = —w/er¢1r1 sin ¢.

where Jy1 was first Taylor expanded and then integrated by parts. Us-
Ing analytic model gives

dly  ridMyy
do a2 do
Here My = | ZJydRdZ, the vertical moment of the current. This re-

lation was seen in JET (Zakharov 2008, Gerasimov 2010) and claimed
to validate “Hiro” current model.

22



Correlation of force and displacement in simulations

FX,FY,CY vs. time

Correlations as a function of
time: FX = C(FRagR)a FY =
C(FZ7€Z)7 CY = C([qﬁa MIZ)

FX,FY,CY

-
FHER

where C(a,b) =< ab >< a? > 1/2< 2 >"1/2 and < a >= [ déa.
(&R, &y) Is the (horizontal, vertical) displacement of the current centroid
as a function of toroidal angle ¢. The toroidal variation of the current
dl4/d¢ is positively correlated with dM7y 7 /d¢ for an upward VDE. (ver-
ifled negative correlation for downward VDE.) The positive correlations
FX,FY show that the force has the same sign as the plasma displace-
ment, F « &.
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Summary

e MHD simulations were done using M3D code with thin resistive wall.
Disruptions were produced by VDE and either tearing or kink instability,
causing quench of temperature, current, and wall force.

e The force depends strongly on the product of the mode growth rate
~ with the wall resistive penetration time 7,,,;;- The force iIs maximum
when ~7,,, = 1. In this regime the force is produced by halo current.

e The wall force could be mitigated by making the wall more conducting.

e sideways horizontal force is consistent in magnitude with JET data
and with ITER projected values.

e Simulations and simple analytic calculations produce several correla-
tions that can be compared to experiment and other theory and simu-
lations.
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Future Work

e carry out JET and NSTX simulations and compare with data.

e wall shape effects: ITER second vacuum wall, 3D wall: ports, external
magnetic perturbations

e investigate the possible effects of boundary conditions.

e perform higher resolution simulations with more realistic S and other
parameters, and study effect of very high S on development of mag-
netic stochasticity.

e study duration of wall force (impulse)
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