Progress in Linear and Nonlinear Two-Fluid Resistive Plasma Response to Non-Axisymmetric Fields

N.M. Ferraro General Atomics

CEMM Salt Lake City, UT Nov. 13, 2011

Outline

Miscellaneous Progress in M3D-C1

• Linear Results

- Influence of rotation
- Ion rotation vs. Electron rotation
- Linear vs. Nonlinear

Miscellaneous Progress in M3D-C1

- Ability to generate realistic mesh boundaries
- Ability to include non-axisymmetric coils inside of computational domain
 - Fields are decomposed: $\mathbf{B} = \mathbf{B}_{eq} + \mathbf{B}_{plas} + \mathbf{B}_{coil} \underbrace{\widehat{\mathbf{E}}}_{\mathbf{E}}$
 - Terms involving \mathbf{J}_{coil} are removed from eqns.
- Vislt visualization (Sanderson)
- Transitioning focus from Linear → Nonlinear

Split Method Scales Much Better Than Unsplit

Weak Scaling in 3D

Unsplit method fails at large core counts

GENERAL ATOMICS

- (GMRES fails to converge)

3D Response

Analysis Considers Reconstructed DIII-D Equilibria

 Vacuum fields generated by DIII-D I-coils

Boundary conditions:

- Vacuum B_n is held constant at the boundary
- No-slip (v=0)
- Realistic transport
 parameters

– Lundquist number ~ 10^{9}

- Toroidal rotation
 - Rotation is added selfconsistently: $p \neq p(\psi)$

Non-Resonant Fields Bend Surfaces; Resonant Fields Tear Surfaces

- Plot shows Fourier spectrum of B_n
- B_n = component of applied field normal to equilibrium magnetic surfaces
 Vacuum
- Resonant components (along dashed line) cause islands
- Non-resonant components cause bending of surfaces
- Poloidal spectrum of B_n depends on Ψ

RAL ATOMICS

Plasma Response Modifies Spectrum

- Ideal response → no islands → reduction in resonant components
- Excited ideal modes → enhancement of non-resonant components

GENERAL ATOMICS

Plasma Can Kink and Screen

Single-Fluid Results

Single-Fluid Result: Rotation (Usually) Improves Screening

- Plasma may enhance resonant fields at low rotation
- Large rotation screens resonant fields
- Response depends on beta

Single-Fluid Result: Rotation Shear Increases Edge Response

- Large rotation shear seems to increase edge response
- Why? Theory predicts Ω' is destabilizing to low-n peeling-ballooning modes* * Snyder, et al., Nucl. Fusion 47 (
 - * Snyder, et al. Nucl. Fusion **47** (2007) Aiba, et al. Nucl. Fusion **50** (2010) Ferraro, et al. Phys. Plasmas **17** (2010)

Rotation Improves Core Screening; But Sheared Rotation Stochasticizes Edge

Two-Fluid Results

Two-Fluid Results: Ion and Electron Rotations are Distinct

Given Ω, we can change Ω^e=Ω+ω_{*} by adjusting ω_{*}=d_i p'/n

Two-Fluid Effects Shift Resonance

Total Resonant Field (G/kA) 6 6 0.00 mm 3.75 mm Typical in DIII-D .25 mm 37.50 mm 4 4 2 2 vacuum 0 0 1000.0 100.0 10.0 0.1 0.1 10.0 100.0 1000.0 1.0 1.0 counter Ω (krad/s) $co \Omega (krad/s)$

(Mass) rotation at q=3

• Strongest tearing no longer occurs at $\Omega = 0$

Penetration In Core Depends on Electron Rotation

• Screening of q=3 island clearly depends more on Ω^e than Ω

ERAL ATOMICS

Edge Response Depends on Mass Rotation Shear

• Tearing of edge modes is dependent on ion, not electron, rotation shear

ERAL ATOMICS

Linear vs. Nonlinear

Is Linear Response Appropriate?

- For typical experimental parameters, linear response may not be strictly valid in some regions
 - Large current density near rational surfaces
 - Back-reaction on rotation is important

- "Displacement" shows overlapping surfaces near separatrix!
- Quantitative predictions of island size, stochasticity from linear calculations are suspect

Linear Response Gets Some Things Right

- Which modes are most sensitive
- How parameters (rotation, viscosity, etc.) affect sensitivity

Total Resonant Field at q=2

3

0ò

 How to optimize coil design

> Calculated resonant field (proxy for resonant torque)

Empirical phase least prone to locking

RAL ATOMICS

3D Fields Shift Edge *T*_e **Profile**

 Linear calculations seem to capture T_e profile shift seen in experiment

Nonlinear Calculations are Underway

- Nonlinear calculations are necessary for some things
 - Rotation/locking
 - Transport
 - Large islands
- Preliminary nonlinear results agree with linear results for nonrotating plasma

Opportunities For CEMM

- 3D equilibrium properly requires nonlinear calculation
 - n = 0 rotation and $n \neq 0$ response are strongly coupled
 - Island saturation is nonlinear
 - There is healthy debate how to do this efficiently!
- Can we simulate a rotation bifurcation (locking)?

 M3D, M3D-C1, and NIMROD are well positioned to address these challenges

Extra Slides

Hermite Elements Are More Efficient Than Linear Elements For Resolving A Boundary Layer in 1D

- Simple equilibrium with one mode-rational surface
- Width of boundary layer determined by resistivity

 $-\eta = 10^{-9}, \Delta \varphi \sim \eta^{\frac{1}{3}}$

Dominant Balance is Between EM and Pressure Torques (At First Order)

- (Poloidal) surface average of first-order torques shows balance between EM and pressure torque densities
 - This is for a low beta $(\beta_N=1.14)$, high viscosity (3.6 m²/s) case!
 - Full flux-surface
 averages would
 yield 0 at this order
 (due to e^{inφ}
 dependence)

Second-order balance requires nonlinear calculation

"Displacement" is Not Always an Accurate Measure of Surface Displacement

- The ideal "displacement" can give a poor indication of perturbed surfaces
- T_e isosurfaces 1.0 1.0 can deviate significantly 0.5 0.5 from displacement 0.0 Z (m) 0.0 -0.5-0.5 -1.0-1.01.0 1.5 2.0 2.5 1.0 1.2 1.4 1.6 1.8 2.0 2.2

What is "Perpendicular" Electron Velocity?

The perpendicular angular velocity is defined as

$$\Omega_{\perp}^{e,i} = \frac{\mathbf{v}^{e,i}}{R} \cdot \frac{\mathbf{B} \times \nabla \psi}{|\mathbf{B} \times \nabla \psi|}$$

• To lowest order, $\mathbf{v}^{e,i} = R^2 \omega^{e,i}(\psi) \nabla \varphi + \lambda^{e,i} \mathbf{B}$. Thus:

$$\Omega_{\perp}^{e,i} = \frac{\left|\nabla\psi \times \nabla\varphi\right|}{|B|} \omega^{e,i}(\psi)$$

- From radial force balance: $\omega^{e,i}(\psi) = \phi'(\psi) + \frac{p_{e,i}'(\psi)}{n_{e,i}q_{e,i}}$
- Ω^{e}_{\perp} vanishes wherever ω^{e} vanishes, but also at \mathbf{B}_{pol} nulls

Diamagnetic Drift

• The diamagnetic drift may be represented in the standard $\mathbf{v} = R^2 \omega(\psi) \nabla \varphi + \lambda \mathbf{B}$ form if p is a flux function

Parallel Thermal Conductivity Narrows Rotation Resonance

Single-fluid calculation

q=2

Two-Fluid Model

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = 0 \qquad \mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \left[\frac{d_i}{n} (\mathbf{J} \times \mathbf{B} - \nabla p_e)\right] \\ n\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi \qquad \Pi = -\mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right] \\ \frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p = -\Gamma p \nabla \cdot \mathbf{u} - \left[\frac{d_i}{n} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n}{n} - \nabla p_e\right)\right] \qquad \mathbf{q} = -\kappa \nabla \left(\frac{p}{n}\right) - \kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla \left(\frac{p_e}{n}\right) \\ -(\Gamma - 1) \nabla \cdot \mathbf{q} \qquad \mathbf{J} = \nabla \times \mathbf{B} \\ \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \qquad p_e = p/2 \end{cases}$$

- Complete (not reduced) two-fluid model is implemented
- Time-independent equations may be solved directly for linear response

